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ABSTRACT

The EMIME project aims to build a personalized speech-to-speech
translator, such that spoken input of a user in one language is used
to produce spoken output that still sounds like the user’s voice how-
ever in another language. This distinctiveness makes unsupervised
cross-lingual speaker adaptation one key to the project’s success.
So far, research has been conducted into unsupervised and cross-
lingual cases separately by means of decision tree marginalization
and HMM state mapping respectively. In this paper we combinethe
two techniques to perform unsupervised cross-lingual speaker adap-
tation. The performance of eight speaker adaptation systems (su-
pervised vs. unsupervised, intra-lingual vs. cross-lingual) is com-
pared using objective and subjective evaluations. Experimental re-
sults show the performance of unsupervised cross-lingual speaker
adaptation is comparable to that of the supervised case in terms of
spectrum adaptation in the EMIME scenario, even though automati-
cally obtained transcriptions have a very high phoneme error rate.

Index Terms— unsupervised cross-lingual speaker adaptation,
decision tree marginalization, HMM state mapping

1. INTRODUCTION

The language barrier is an important hurdle to overcome in order
to facilitate better communication between people across the globe.
It would be exciting and extremely helpful if we had a real-time
automated speech-to-speech translator, especially when the transla-
tor could reproduce a user’s input voice characteristics inits output
speech. This is exactly the principal goal of the EMIME project
(Effective Multilingual Interaction in Mobile Environments). Cross-
lingual speaker adaptation is thus one of the key goals of EMIME.

Such a speech-to-speech translator consists of speech recogni-
tion, machine translation and speech synthesis. EMIME focuses on
speech recognition and synthesis. Bridging the gap betweenspeech
recognition and synthesis [1] is also an implicit goal. Thus, we
hope to employ a unified modelling framework which applies to
both recognition and synthesis. As speech recognition is typically
HMM-based and we want to easily alter the voice identity of output
speech, the HMM-based speech synthesis technology [2, 3] isthe
ideal choice. As a statistical parametric approach, the HMM-based
framework provides a great deal of flexibility, especially with respect
to its generality across languages and the ease of altering voice char-
acteristics of models. Consequently, this paper investigates cross-
lingual speaker adaptation based on unified HMM modelling.

We proposed a decision tree marginalization technique in [4] for
unified HMM modelling, by which speech recognition can be per-
formed with speech synthesis models. We found that this technique

made it feasible to conduct unsupervised intra-lingual speaker adap-
tation in a unified modelling framework. As a result, employing the
HMM state mapping technique [5] as well as decision tree marginal-
ization should make unsupervised cross-lingual speaker adaptation
viable in a unified modelling framework. We investigate the viabil-
ity of the combination of these techniques in this paper.

In Section 2, decision tree marginalization and HMM state map-
ping are briefly reviewed. In Section 3, details on applying the two
techniques simultaneously to unsupervised cross-lingualspeaker
adaptation are described. We then compare the performance of
supervised and unsupervised cross-lingual speaker adaptation sys-
tems in the context of English and Mandarin Chinese in Section 4.
Conclusions follow in Section 5.

2. COMPONENT TECHNIQUES

2.1. Decision Tree Marginalization

Decision tree marginalization [4] allows deriving speech recognition
models from a full-context speech synthesis model set according to
given triphone labels. Hence, the first stage is training a conventional
HMM-based speech synthesis system from scratch, of which each
HMM state emission distribution is typically composed of a single
Gaussian PDF.

Conventionally, making a new synthesis model is carried outby
traversing a synthesis decision tree according to the new full-context
label and eventually assigning one leaf node to it. The basicidea
of decision tree marginalization is fairly straightforward in the sense
that it generates a triphone recognition model in almost thesame
manner. The only difference from making a new synthesis model is
that both children of a decision tree intermediate node of the syn-
thesis system are traversed when the question associated with the
intermediate node is irrelevant to any triphone context. Sofinally
a triphone label is associated with more than one leaf node, which
form a state emission distribution of multiple Gaussian components.
In other words, a triphone model for recognition constructed by de-
cision tree marginalization can be viewed as a linear combination
of full-context single Gaussian models for synthesis. No model pa-
rameters are changed during the whole process. See Figure 1 for an
example.

The decision tree marginalization process described aboveis ac-
tually a special case. It can be extended such that an arbitrary context
combination of full-context labels is marginalized out. For instance,
we can create tonal monophone models by marginalizing out all the
contexts that are unrelated to the base phone context and tone infor-
mation.
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Fig. 1. An example of decision tree marginalization, showing how
a new recognition model “r-ih+z” is derived from a decision tree
of a speech synthesis system (“L ” / “ R ”: left/right phone; “G?”:
clustered state emission distribution PDFs)

2.2. HMM State Mapping

We consider the case in which we have adaptation data in an input
language (L1) and an average voice model set for synthesis in an out-
put language (L2). In theory, this prevents us from directly adapting
the voice identity of the average voice model set into that ofthe adap-
tation data, because language mismatch eliminates all the correspon-
dence between the data and the model set. Two possible solutions
are (i) training a bilingual model set [6] and (ii) reconstructing the
correspondence. HMM state mapping [5] is an effective method ca-
pable of reconstructing the correspondence for cross-lingual speaker
adaptation when a bilingual model set is unavailable.

HMM state mapping requires two decent average voice model
sets inL1 andL2, respectively. The two average voices are pre-
sumed to sound like a single person. Each state-cluster ofL1 (or
L2) is then associated with the most similar one ofL2 (or L1) by
matching state-cluster PDFs in the two model sets which havemin-
imum (symmetric) Kullback-Leibler divergence between them. It is
not guaranteed that every state-cluster ofL2 (or L1) is touched. Un-
touched ones are ignored typically. Wuet al. [5] proposed two ways
of applying state mapping rules to cross-lingual speaker adaptation:

Transform version is performed by first generating speaker depen-
dent transforms by carrying out intra-lingual speaker adapta-
tion using the acoustic model set trained forL1. Following
this, voice characteristics of the acoustic model set inL2 are
converted by applying these speaker-dependent transformsto
state-clusters ofL2’s acoustic models, according to prepared
state mapping rules between the two acoustic model sets.

Data version is performed by first mapping state-clusters of the
acoustic model set inL1 to those ofL2’s acoustic models.
Then adaptation data inL1 is associated with state-clusters of
L2 through state-clusters ofL1. Finally the adaptation data
in L1 is treated as if it were inL2 and adaptation is performed
usingL2’s acoustic models in the “intra-lingual” sense.

3. COMBINING DECISION TREE MARGINALIZATION
AND HMM STATE MAPPING

As discussed above, decision tree marginalization makes itfeasible
to perform unsupervised intra-lingual speaker adaptationand HMM
state mapping makes it feasible to perform supervised cross-lingual
speaker adaptation. We expected that their combination would en-
able unsupervised cross-lingual speaker adaptation.

First of all, we prepared HMM state mapping rules using two av-
erage voice synthesis model sets inL1 andL2, respectively, and per-
formed speech recognition with the help of decision tree marginal-
ization in order to obtain estimated triphone transcriptions of adap-
tation data uttered inL1.

Once estimated triphone transcriptions of adaptation datawere
available, either the transform version or the data versionof HMM
state mapping was used for “supervised” cross-lingual speaker adap-
tation. Note that estimated transcriptions were triphone sequences in
L1. So rather than the synthesis model set inL1, it is the recognition
models ofL1 constructed by decision tree marginalization that were
involved in the “supervised” cross-lingual speaker adaptation.

4. EXPERIMENTS

4.1. Experimental Setup

We trained two average voice, single Gaussian synthesis model sets
on the corpora SpeeCon (Mandarin) and WSJ SI84 (English), re-
spectively, and derived HMM state mapping rules and eight synthe-
sis systems from them. Half of the eight systems were supervised
and the rest were unsupervised. We collected bilingual adaptation
data from two Chinese students (H andZ) who also spoke English
well. The Mandarin and English prompts, which were not included
in our training data, were also selected from SpeeCon and WSJ, re-
spectively. Mandarin and English were defined as input (L1) and
output (L2) languages, respectively, throughout our experiments.

System name format: (S/U) (1/2) - (D/T/M )
S/U supervised / unsupervised
1/2 cross-lingual / intra-lingual
D/T data/transform version of HMM state mapping
M Decision tree marginalization was used instead of HMM

state mapping. The average voice model set of Mandarin
(L1) was therefore unnecessary.

Following this naming rule, the eight synthesis systems were S2,
S1-M, S1-T, S1-D, U2, U1-M, U1-T and U1-D:

S2 purely built on the English side

S1-M We marginalized out all the English-specific contexts first.
As a result, a Mandarin full-context label was associated with
more than one English state-cluster. Then Mandarin adapta-
tion data could be treated as English data for “intra-lingual”
speaker adaptation.

S1-T & S1-D as described in Section 2.2
U2 purely built on the English side; as described in Section 2.1

U1-M We marginalized out all the non-triphone contexts and then
recognized Mandarin adaptation data with English models.
Mandarin adaptation data was thus associated with the En-
glish average voice model set.

U1-T & U1-D as described in Section 3

As decision tree marginalization was engaged in all the four
unsupervised systems and S1-M, their transforms were estimated
over multiple Gaussian component models instead of single Gaus-
sian ones.

Speech features were 39th-order mel-cepstra,log F0, five di-
mensional band aperiodicity, and their delta and delta-delta coeffi-
cients. The CSMAPLR [7] algorithm and 40 adaptation utterances
were used. Global variances were calculated on adaptation data. A
simple phoneme loop was adopted as a language model for recogni-
tion. The average phoneme error rate was around 75%.



4.2. System Evaluation

We calculated RMSE of mel-cepstrum (MCEP) andF0, as well as
correlation coefficients and voicing error rates ofF0, for objective
evaluation. See Table 1 (“AV” means “average voice”).

MCEP F0

RMSE (/frm) RMSE (Hz/frm) CorrCoef
H Z H Z H Z

AV 1.39 1.43 26.0 35.9 0.46 0.49
S2 1.04 1.04 11.8 9.6 0.46 0.56
U2 1.06 1.08 13.0 14.0 0.47 0.54

S1-T 1.23 1.22 20.0 12.6 0.47 0.51
U1-T 1.24 1.26 21.1 16.5 0.48 0.53
S1-D 1.13 1.14 19.5 12.6 0.47 0.51
U1-D 1.13 1.13 22.7 17.3 0.48 0.55
S1-M 1.10 1.11 25.9 22.3 0.48 0.54
U1-M 1.10 1.11 25.1 21.0 0.48 0.53

Table 1. Objective evaluation results

The proposed method was mainly designed for spectrum adapta-
tion. Table 1 confirms that the performance of unsupervised adapta-
tion is comparable to that of supervised adaptation no matter which
approach was applied, especially in terms of spectrum. According
to Table 1:

(1) Intra-lingual systems provided the best performance interms
of spectrum adaptation, which makes sense as there was no language
mismatch.

(2) It is not surprising that S1-T and U1-T provided worse per-
forming spectrum adaptation, because the transforms were estimated
on the Mandarin side but used to adjust the English average voice
models; there was an obvious language mismatch.

(3) In contrast, mapping rules were applied to the Mandarin
adaptation data before transform estimation when the data version
of HMM state mapping was used. Since transforms were directly
estimated on the Mandarin data and the English average voicemod-
els, the language mismatch in S1-D and U1-D could be partly al-
leviated by the maximum likelihood linear transformation (MLLT)
based adaptation algorithm. RMSE of MCEP thus decreased.

(4) In S1-M and U1-M, without any explicit mapping rules, the
Mandarin adaptation data was directly associated with PDFsof the
English average voice models by prior phonetic knowledge and in an
ML-based data-driven manner, respectively. This could be regarded
as an automatic, more precise, mapping process. So S1-M and U1-M
could be slightly better than S1-D and U1-D in terms of spectrum.

(5) Unfortunately, the great prosody distinction between En-
glish and Mandarin meantF0 adaptation was not nearly as effective.

Speaker Language Mean StD Min Max

H Mandarin 137.9 25.2 72.9 236.3
H English 128.7 11.8 64.1 222.6
Z Mandarin 117.9 15.4 58.1 182.1
Z English 112.0 10.3 59.3 186.1

Table 2. F0 statistics (Unit: Hz)

Initially we synthesized speech with adapted pitch contours, but
unnatural pitch patterns resulting from unsupervised cross-lingual
speaker adaptation were perceived during informal listening evalua-
tion. In addition, Table 2 confirms that the prosody of English (i.e.

stress-timed & atonal) is distinct from that of Mandarin (i.e. syllable-
timed & tonal). Hence, pitch and duration of utterances to besub-
jectively evaluated were synthesized by the English average voice
model set. We then shifted the meanF0 value of each synthesized
pitch contour to that of speech data of the corresponding bilingual
speaker (H or Z). So our formal listening test merely focused on
the performance of spectrum adaptation.

Our formal listening test consisted of two sections: naturalness
and speaker similarity. In the naturalness section, a listener was re-
quested to listen to a natural utterance first and then utterances syn-
thesized by the eight systems each as well as vocoded speech in a
random order. Having listened to each synthesized utterance, the lis-
tener was requested to score what he/she heard on a 5-point scale
of 1 through 5, where 1 meant “completely unnatural” and 5 meant
“completely natural”. The speaker similarity section was designed
in the same fashion, except that a listener was requested to listen to
one more utterance which was synthesized directly by the average
voice models and the 5-point scale was such that 1 meant “sounds
like a totally different person” and 5 meant “sounds like exactly the
same person”.
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Fig. 2. Naturalness score (speakerH)
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Fig. 3. Naturalness score (speakerZ)

Twenty listeners participated in our listening test. Because of
the anonymity of our listening test, only two native Englishspeak-
ers can be confirmed. The results in Figure 2 and Figure 3 suggest
that unsupervised cross-lingual speaker adaptation is comparable to
or sometimes better than the supervised case in terms of natural-
ness. We noted that in the case of intra-lingual speaker adaptation
with speakerZ’s speech adaptation data, the supervised system S2
outperformed the unsupervised one U2. This is probably because
speakerZ speaks Mandarin accented English while speakerH has a
more natural English accent. In order to avoid the potentialeffect of
non-standard English accents, only speakerH was involved in the
speaker similarity evaluation.



It is observed from both objective and subjective evaluation re-
sults that for speakerH , *1-D and *1-M followed the intra-lingual
adaptation systems closely while *1-T evidently underperformed.
Reviewing the analysis of Table 1, we noted the state emission PDFs
of *1-D, *1-M and intra-lingual systems for transform estimation
were all in English, which was the output language, and that the
difference was just language identities of their adaptation data. By
contrast, both the emission PDFs and adaptation data of *1-Tfor
transform estimation were in Mandarin, which was not the output
language. Hence, it would appear that it is necessary to makesure
we use output language distributions for estimation of cross-lingual
speaker transforms. The language identity of adaptation data is less
important than that of a model set to be adapted.
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Fig. 4. Similarity score (Mandarin reference uttered by speakerH)
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Fig. 5. Similarity score (English reference uttered by speakerH)

The results in Figure 4 were obtained in the EMIME scenario
– speaker similarity has to be compared between natural speech in
L1 and synthesized speech inL2. This figure shows unsupervised
speaker adaptation is comparable to the supervised case in terms of
speaker similarity. However, Figure 5, where both natural and syn-
thesized speech were in English, shows an interesting contrast in
that supervised adaptation outperformed the unsupervisedcase. We
attribute this phenomenon to human perception being affected by
language mismatch. Namely, because the prompt of a natural En-
glish utterance was the same as that of synthesized ones, andthus
they were uttered with close prosody, the listeners could more eas-
ily perceive how similar/dissimilar a synthesized utterance was to a
natural one, and tended to grade supervised adaptation withhigher
scores. In the case shown by Figure 4, the language mismatch made
it more difficult for the listeners to compare a synthesized utterance
with a natural one. The listeners didn’t think either synthesized ut-
terance (adapted supervisedly or unsupervisedly) soundedmore sim-
ilar/dissimilar to the natural one. This explanation needsto be con-
firmed by further experiments and analysis.

Comparing with the cross-lingual systems *1-D and *1-M, we

didn’t observe significantly better performance of the intra-lingual
systems. This suggests the MLLT-based speaker adaptation tech-
nique is able to compensate for language mismatch between adapta-
tion data and an average voice model set fairly well.

5. CONCLUSION

We implemented unsupervised cross-lingual speaker adaptation by
combining recently developed decision tree marginalization and
HMM state mapping techniques. It was observed that unsupervised
cross-lingual speaker adaptation was comparable to the supervised
case in terms of spectrum adaptation in the EMIME scenario. We
have observed language mismatch is the main problem for cross-
lingual speaker adaptation, so introducing some extra techniques to
alleviate the mismatch before speaker adaptation would be helpful.
Since prosody plays an important role in voice characteristics as
well, we may need to pay more attention to improving prosody
adaptation in order to deal with two dissimilar languages.
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