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ABSTRACT
Human behavior is often complex and context-dependent.
This paper presents a general technique to exploit this “mul-
tidimensional” contextual variable for human mobility pre-
diction. We use an ensemble method, in which we extract
different mobility patterns with multiple models and then
combine these models under a probabilistic framework. The
key idea lies in the assumption that human mobility can be
explained by several mobility patterns that depend on a sub-
set of the contextual variables and these can be learned by a
simple model. We showed how this idea can be applied to
two specific online prediction tasks: what is the next place
a user will visit? and how long will he stay in the current
place?. Using smartphone data collected from 153 users
during 17 months, we show the potential of our method in
predicting human mobility in real life.

Author Keywords
prediction,user mobility,smartphone,mobile context.

INTRODUCTION
Smartphones have become attractive option for sensing hu-
man and social behavior [6, 20, 2]. As phones are usually
kept in relatively close proximity [18] and contain many use-
ful sensors that can record contextual and user activity cues
(location, application usage and calling behavior), they can
be effectively used to capture and mine user behavior in ev-
eryday life [6, 5]. The availability of multiple data sources
from smartphones also enables the possibility of predicting
future user behavior, based on sensed past user activities.

In this paper, we study the prediction of user mobility from
smartphone data under a general predictive framework. We
propose new algorithms for exploiting multiple contextual
variables using a probabilistic approach, that infers the con-
ditional dependencies between contextual input variables and
output variables that correspond to predictions. For example,
our approach estimates the conditional probabilities over the
set of destinations that a user can go to, given his current
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context such as location and time. In particular, we address
two fundamental tasks for mobility prediction: what is the
next place a user will visit?; how long will he stay in the
current place?.
We formulate the mobility prediction problem as one of learn-
ing the conditional distribution of the output variables given
multiple contextual input variables. Instead of defining a
complex model that exploits all useful context sources, we
develop a principled way to combine multiple mobility-related
patterns. For a specific task (next place prediction, duration
prediction), the framework focuses on finding relevant con-
textual features, and on building single models that capture
specific mobility patterns. The set of single models is then
combined together under a probabilistic approach. Another
contribution of this work relates to the integration of gen-
eral and personalized prediction models, where we model
the fact that, while human mobility is highly personal, user-
independent patterns could be extracted from the data and
used as prior knowledge about mobility when making pre-
dictions. We show how this approach significantly improves
the performance of a personalized predictive model. To our
knowledge, this is a novel approach to exploit population-
based patterns for predicting mobility of specific persons.
We validate our approach using a large-scale data set involv-
ing 153 users in a 17-months data collection campaign. This
longitudinal data allows us to study the predictability of user
mobility from smartphone data collected in real-life condi-
tions, in which users’ locations are not always available. For
the two prediction tasks, the proposed ensemble approach
is showed to be effective in exploiting multiple dependen-
cies between user context and mobility, leading to improved
performance over single basic predictors. The experimental
results also showed that the predictability of user mobility
depends on many factors. On one hand, there are situations
in which the human mobility cannot be predicted reliably
due to low number of observations of the same context or
the complexity of human behavior (e.g., the large number of
options for lunch leads to low predictability of the restau-
rant the user goes). On the other hand, repetitive mobility
pattern can be learned and predicted reliably as long as the
smartphone collected enough observations.
The paper is organized as follows. The next section is ded-
icated to related work, followed by a description of the raw
data and place extraction process. Then, we present the gen-
eral formulation of prediction tasks and detail the models for
the two specific prediction tasks. Finally we provide experi-
mental results and present some concluding remarks.



RELATED WORK
Predicting human mobility has been an increasingly relevant
topic in pervasive computing thanks to the improved abil-
ity to track people location [15, 1]. While our work con-
siders location data with state-of-the-art accuracy extracted
from smartphones, it is also possible to get location data of
lower resolution using other sensing methods. Song et al.
[22] studied the predictability of human mobility from very
coarse location data of GSM tower IDs. WiFi access points
are another popular data source for localizing and predicting
user mobility [23]. Recently, Vu et al. proposed a frame-
work to extract places from WiFi records, and predict human
movement using joint WiFi and Bluetooth traces [24].

The prediction of human mobility has also been considered
in various settings, such as inferring a destination based on
partial paths [13], predicting the location and the stay du-
ration at a given time in the future [21], or estimating the
probability that a person is present at a specific place at a
given time [12]. All these example can be viewed as learn-
ing an input-output function from past, available observa-
tions, where the input is the user context (partial path, cur-
rent location, time), and the output is the variable we want
to predict (destination, arrival time).

Previous work on human mobility prediction often consid-
ers multiple contextual data sources. For the combination of
location and time, a simple, yet effective method is to build
a model for each location separately [12]. More sophisti-
cated methods typically require a carefully designed model,
such as the spatio-temporal decision tree for mining trajec-
tory pattern proposed in [16]. Recently, Cho et al. [4] pro-
posed a model that combine spatial, temporal, and social re-
lation information for predicting human movement. In these
works, the combination method is task-specific and hard to
be extended to a large number of contextual variables. As an
alternative, ensemble methods represent a promising direc-
tion, as recently addressed in [19]. This work is, however,
limited to choosing a single best model rather than combin-
ing the (typically available) prior information from multiple
models. The existing literature on mobility prediction points
out to a need for improved, principled ways to exploit and in-
tegrate the potentially large number of contextual variables
available on mobile devices like smartphones.

RAW MOBILE DATA AND PLACE EXTRACTION
In this paper, we use data collected with Nokia N95 smart-
phones for a period of 17 months. The data collection cam-
paign started from October 2009 in a European country. There
are 153 participants consisting mainly of students, profes-
sionals and few others (retired people, housewives). Each
participant carried the smartphone as their main and unique
phone, and thus recorded data in real-world condition.

The data collection framework was based on a server-client
architecture in which a client software was installed in the
smartphone to record data and upload it automatically to a
server via WiFi network. The client was programmed to
record various data types (e.g., GPS, WiFi APs, calling logs,
etc.) with dynamic sampling rates depending on the inferred
state of the user (e.g., indoor-staying, outdoor-moving, etc)

in order to preserve battery life. This enables the phone to
record data continuously with the only restriction of charg-
ing the phone once a day. The location data comes from two
sources: GPS sensor and WiFi data. The estimation location
WiFi APs location was integrated in the sensing software,
which looked for co-presence of APs and GPS data.

The raw location data was first transformed into a symbolic
space which captures most of the mobility information and
excludes actual geographic coordinates. This was done by
first detecting visited places and then mapping the sequence
of GPS coordinates into the sequence of visits of checked-in
places (represented by a place ID). This procedure has two
main advantages: i) the resulted high-level representation is
simple for modeling and captures most important informa-
tion of user mobility, and ii) the model can predict user mo-
bility without knowing the actual coordinates, thus avoiding
the privacy issues related to location sharing.

Place discovery. The automatic extraction of places that
people visit has been addressed in previous works with dif-
ferent ways of defining places [10, 9, 11, 17]. We used a
modified version of a recently proposed approach [25]. The
raw trajectory data is first used as an input to detect stay
points, which are defined by circular geographic regions in
which users stay for a significant amount of time (in our
work, at least 20 minutes). All discovered stay points are
then clustered into meaningful locations called stay regions
using a grid clustering algorithm. This method divides the
space with a uniform grid where each cell is a square region
of side length equal to D meters. Then the algorithm finds
places of 3 × 3 cells by looking for the highest density cell
and sets any unassigned stay point of 3 × 3 region around
the cell to the new stay region (see Fig. 1(a)). This process
repeats until all non-empty cells are assigned. A drawback
of this method is that the discovered regions are not highly
optimized to cover most stay points, see Fig. 1(a), where one
point stays out the place. We improved the place discovery
algorithm by adding an additional step of maximizing the
number of covered stay points with respect to the set of re-
gions that cover the highest density unassigned cell. Figure
1(b) illustrates a simple example of our variant, where we
chose the best 3 × 3 region among 9 possible regions. In
our implementation, we also increased the resolution of the
grid and consider 5 × 5-cells region instead of 3 × 3-cells
region. Cell size was set to D2 = 50 × 50 meters and the
final dimension of stay regions is 250×250 meters, which is
large enough to handle WiFi-location noise occurred in some
places. Compared to the original grid clustering algorithm,
our variant generates less but more accurate stay regions by
finding the best fit of stay regions for the set of stay points.

High-level representation. Once the visited places are de-
tected, we can remap the sequence of raw coordinates into
sequence of place IDs. Note that not all coordinates belong
to a place as some might correspond to motion of the user,
and the place ID is set to NULL for these transition points.
The sequence of visits is then derived from the sequence of
place IDs, where a visit corresponds to a time interval with a
single non-null place ID which last at least 20 minutes. (The
duration of a visit is defined as the time difference between
the last point and first point of the interval). For a given



(a) Stay points and grid clustering (b) Modified grid clustering

Figure 1. Place discovery from stay points. The grid clustering can be
viewed as the process of finding the set of square regions that cover all
detected stay points.
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Figure 2. The sequence of visits (colored by place ID) and the two pre-
diction tasks.

user u, the high-level representation of location data is then
v(u,1), ..., v(u,Nu) where v(u,i) denote the ith visit for user u,
Nu is the total number of visits for that user, and each visit
is characterized by the ID of the place v(u,i).id, the check-in
time v(u,i).time, and the duration v(u,i).duration.

CONDITIONAL MODEL FOR MOBILITY PREDICTION
In this paper, we consider the issue of human mobility pre-
diction in an online setting, in which the user model updates
its parameters after each visit to predict future visits. In other
words, we simulate a smartphone personalized application
that learns user mobility patterns and make predictions on
the fly. As the available data increases continuously (i.e., the
model knows more about user habits), we hypothesize that
the prediction accuracy could be improved over time.

Formulation of the prediction tasks
The problem of predicting human behavior can be formu-
lated as finding a function f : X → Y where X is the
contextual space and Y is the behavioral output space. Let
{x(u,i), y(u,i)}u=1..U,i=1..Nu

be a training set of U users, in
which user u has Nu context-output pairs. In our online set-
ting, to predict the output y(u,i) of the context x(u,i), we can
only use data {x(u,j), y(u,j)}j=1..(i−1) to learn the function
f . Note that the both the context space X and the output
space Y depends on the task. Also, to improve the predic-
tive performance, in addition to location and time, we can
also enrich the context by considering some additional con-
textual information available on the phone, such as the den-
sity of nearby Bluetooth devices, or the various phone ap-
plication logs that might be indicative or the user’s states.
In this setting, we investigate two predictive tasks which are
illustrated in Figure 2.

Task 1 (next place prediction): We want to predict what
could be the place ID of the next visit, v(u,i+1).id, given
that we have knowledge of v(u,i).

Task 2 (duration prediction): We want to predict the stay
duration of the ith visit to a given the place v(u,i).id with an
arrival time v(u,i).time.

Y

X

C 1 C K

X1 XF

Y

X

Full conditional model Factorized conditional model

X 2
X1 X 2 XF

Figure 3. Conditional models

Conditional model
We consider a probabilistic approach in which the context
and the outcome are modeled as random variables. Formally,
we learn the distributionP (Y |X) where X = {X1, X2, ..., XF }
denotes the set of F contextual variables and Y denotes the
outcome variable. For example, if both contextual variables
and outcome variable are discrete, then we can estimate the
conditional probability from observation as follows: p(Y =

y|X = x) =
nx,y+α∑

y′ (nx,y′+α)
, where nx,y is the count of ob-

serving the context-outcome pair (x, y) in the learning data,
and α is a (small) regularization factor. To simplify the pre-
sentation, we also use the notation p(y|x) to represent the
conditional probability p(Y = y|X = x) hereafter.

Clearly, the more accurate the context is, the less uncertain
the outcome might be. In other words, the model is more ac-
curate if we consider more relevant contextual variables. For
example, the combination of current location and time could
be more effective than using location or time alone. How-
ever, if the contextual space X is large then we need more
data to estimate robustly the distribution P (Y |X). The main
challenge then to build a model that can exploit efficiently
the available contextual variables from limited data samples.
An extreme case is to consider the full conditional model
(Fig 3 (a)), in which the outcome variable Y depends on
all contextual variables Xf jointly. This could be the ideal
model if we had enough samples from the true distribution
and the computational power was not a problem. On the
extreme, one could consider a Naive Bayes model in which
model characterizes dependencies between Y and each con-
textual variable Xf separately. However, the Naive Bayes
model is based on the (strong) hypothesis that contextual
variables are independent given the outcome.
Ensemble method. We propose to use an intermediate solu-
tion by factorizing the distribution into multiple conditional
distributions which take subsets of X as context as in Figure
3 (b). Formally

P (Y |X) =

∏K
k=1 Pk(Y |Ck)wk

Z(X)
(1)

where Ck ⊂ X denotes a subset of contextual variables, wk
is a weighting factor for the distribution Pk, and Z(X) is a
normalization constant. This is analogous to considering a
logarithmic opinion pool [8] of K conditional distribution
given by K models, each of which uses a specific subset of
contextual variables and a distribution over the output space.
Note that we do not restrict that the sets of contextual vari-



ables to be unique. Instead, we could use various models for
the same set of contextual variables to improve the predic-
tive performance. The weight vector w = (w1, ..., wk) is
a parameter of the combination, and there are several ways
to learn it from the given observations. This should in ef-
fect give more weight to models that are more accurate. Let
xk be the shortened context of x which uses contextual vari-
ables in Ck. The model performs the following steps for
predicting y(u,i):

Step 1: For each model k, update model parame-
ters based on the mobility history of user u:
{x(u,j)

k , y(u,j)}j=1..(i−1)
Step 2: Compute conditional output distributions:

Pk(Y |Ck = x
(u,i)
k ).

Step 3: Compute output of Combined model :

(y(u,i))∗ = argmaxy
∏K
k=1 pk

(
y|x(u,i)

k

)wk

.

In the above prediction process, there are two types of model
parameters: the parameters of each individual conditional
distributionPk() and the combination weight vector w. While
conditional distributionsPk() is estimated from mobility his-
tory of a single user u (i.e., personalized model), the com-
bination weight can be shared between multiple users. In
practice, we can learn w on a training dataset to obtain a
user-independent solution for w. The learning of w depends
on the output space, and it will be detailed in the following
sections.
Up to now, we present our general predictive model. In the
next sections, we will present in detail models for the two
basic prediction tasks, which correspond to two settings: dis-
crete output space and continuous output space.
PREDICTING NEXT PLACE
For the prediction of next place, the outcome could be one
of the region IDs that have been previously visited or a new
place. Formally, at time t, the output space is:

Y = { v(i).id | v(i).time ≤ t} ∪ {NewPlace}
whereNewPlace corresponds to any previously non-visited
place. Since the output space is discrete, we consider a
multinomial distribution over the set of possible destinations
including the special category, NewPlace. For this task, we
build the context at visit i based on location and time, as
given in Table 1. Although the previous location is also rel-
evant for the prediction task, we did not used it since this in-
formation is usually unavailable due to missing data. While
most of these variables involve the current visit only, the
two variables X5 and X6 accumulate information from the
past mobility to build contextual information. These vari-
ables group places into various categories, depending on fre-
quency and duration of visits (user behavior is expected to
be similar for places of the same category). While the place
category is less specific than the actual place, its use is help-
ful for infrequently visited places for which the number of
observations per place is limited.
Parameter estimation
For predicting y(u,i) given x

(u,i)
k = xk, we could use the

direct estimate of the conditional distribution (called ’flat’ in
the discussions to follow) as follows:

Name Description Task
X1 LOC ID of the current place 1 & 2
X2 HOUR hour of the day. 1 & 2
X3 DOW day of the week (from Monday to Sunday). 1 & 2
X4 WE workday/weekend indicator. 1 & 2
X5 FREQ frequency of visits to the current place. It

is discretized into 5 levels based on monthly
frequency. These levels are separated by 4
values of 1, 4, 10 and 30 visits in a month.

1 & 2

X6 DUR The average visit duration of the current
place. It is discretized into 4 levels, sepa-
rated by 1 hour, 2 hours and 4 hours.

1

X7 BT Number of nearby BT devices during the first
10 minutes of the visit. It is discretized into 5
levels that are separated by 4 values 1, 2, 4,
and 8 nearby devices.

2

X8 PC Binary variable which indicates if user call
or sending SMS to someone during the first
10 minutes of the visit.

2

Table 1. Contextual variables for the two prediction task. Temporal
variables (X2, X3, X4) are computed with leaving time for task 1, and
they are computed with arrival time for task 2.

pflatk (y|x(u,i)
k ) =

nxk,y + α

nxk
+ α · |Y|

, (2)

where nxk,y =
∑i−1
j=1 1[x

(u,j)
k = xk ∧ y(u,i) = y] denotes

the number of times the user went to place y given the cur-
rent context xk, and nxk

=
∑i−1
j=1 1[x

(u,j)
k = xk] is the

number of occurrences of xk. In the above formulation, the
factor α adds a regularization effect towards the uniform dis-
tribution, especially when the counts are small. Note that
this effect becomes less important when the context xk is
popular (i.e., the denominator is large), for which the esti-
mation of conditional probability is more accurate.

The flat estimation of conditional probability in Eq. 2 con-
siders each observation equally, regardless of time. If the
user changes his behavior over time (e.g., changing their
home address or changing job), then the flat estimation is
biased strongly by the previous mobility patterns. This can
be solved by introducing the time variable as part of the es-
timation. Let (q1, .., qnxk

) be the index sequence of occur-
rences of the context xk in decreasing order of timestamp.
The weighted estimation, which focuses on recent observa-
tions computes the conditional probability as:

pweightedk (y|xk) =

∑nxk
j=1

1[y(u,qj)=y]
j + α∑nxk

j=1
1
j + α|Y|

, (3)

where each observation is weighted by 1
j where j is the num-

ber of occurrences of the context xk since the visit v(u,qj).
In our experiments, we used both the flat estimation and
weighted estimation models (Cf. Table 2).

Learning the combination weight
In this section, we describe how to learn the combination
weight for the next place prediction task. As discussed in the
general condition model, the combination weights could be
shared across users, although basic models are personalized
and are trained for each user separately.



Let {x(u,i), y(u,i)}u=1..U,i=1..Nu
be a training set for learn-

ing w. For each example (u, i), we always has K output
distributions coming from K personalized models that were
trained on a subset of data {x(u,j), y(u,j)}j=1..(i−1). Let

p
(u,i)
k,y = pk

(
y|x(u,i)

k

)
be the conditional probability pro-

vided by the kth model, then the combined conditional prob-
ability can be written as:

p(y|x(u,i)) =

∏K
k=1

(
p
(u,i)
k,y

)wk

Z(x(u,i))
, (4)

where Z(x(u,i)) =
∑
y′
∏K
k=1

(
p
(u,i)
k,y′

)wk

is the normaliza-
tion term. Ideally, we want to find the weight vector w so
that the probability of the true destination, p(y(u,i)|x(u,i)) is
higher than other possible destinations. Formally, we want
that ∏K

k=1

(
p
(u,i)

k,y(u,i)

)wk

>
∏K
k=1

(
p
(u,i)
k,y

)wk

∀y 6= y(u,i)

⇐⇒ 〈ln p
(u,i)

.,y(u,i) ,w〉 > 〈ln p
(u,i)
.,y ,w〉 ∀y 6= y(u,i)

where p
(u,i)
·,y denotes the K-dimensional vector of probabili-

ties of output y given by all K models. The above inequal-
ities is very similar to ranking problems [3] which could be
learned by minimizing the following objective function:
λ

2
‖w‖2 +

∑
u,i

∑
y

max(0, 1− 〈ln p
(u,i)

.,y(u,i) − ln p(u,i)
.,y ,w〉)︸ ︷︷ ︸

hinge loss

(5)
where λ is a regularization parameter and ln p

(u,i)
.,y can be

viewed as input feature vector to a linear model. We can
solve this optimization problem by using Stochastic Gradi-
ent Descent (SGD) [14], which is simple to implement and
efficient in many machine learning applications.

PREDICTING STAY DURATION
A fundamental modeling difference between predicting the
next place and predicting duration lies in the nature of the
output variable. The duration is represented by a positive
continuous variable: Y = R+. For this task, we use all con-
textual variables for next place prediction except the average
stay duration variable since the distribution over duration in-
cluded already this information. Note that we use arrival
time as temporal context since the leaving time is unknown
(and the variable to be inferred). In addition to location and
time, we also study the use of Bluetooth and phone usage
information as contextual variables (see Table 1). Given that
the visit duration is unknown, we build the context based on
the first 10 minutes of the visit. In other words, if we use
Bluetooth and phone usage information, then time of pre-
diction is delayed by 10 minutes after arrival time.
Parameter estimation and prediction
Duration model. The distribution over duration is based on
a log-normal distribution which can handle robustly multiple
scales (e.g., minute,hour). We used a mixture of log-normal
distributions for modeling the conditional distribution of du-
ration y given context xk:

pk(y|xk) =

M∑
m=1

pm

yσm
√

2π
exp

(
(ln y − µm)2

2σ2
m

)
(6)

where M is the number of components, pm is the mixture
weight of component m, and µ and σ are the mean and stan-
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Figure 4. Distribution of visit duration at a given place.

dard deviation, respectively, in log-space. This is equivalent
to have a mixture of normal distributions on the log-space of
the duration. Figure 4 illustrates the distribution of duration
at work of one user in our data. As can be seen, there are two
peaks at 4 and 8 hours which could be due to the higher like-
lihood of having lunch outside and or staying at the working
place the entire day.

For predicting y(u,i) given x
(u,j)
k = xk, we first select the

set of visits that has the previous context: J = {j|j <

i,x
(u,j)
k = xk}. The parameters of the mixture model are

then estimated based on the set of observed durations
{v(u,j).duration} for all j ∈ J . In our implementation, we
use the EM algorithm for learning the mixture model.

Leaving time model. We could also predict the duration
indirectly by considering the leaving time. The idea is that
the arrival time at a place sometimes varies but the the leav-
ing time does not change much (e.g., going to work at 8am
whatever the time coming back home the night before). As-
sume that the leaving time (from 12am to 11:59pm) will not
change, we can predict the leaving time then infer indirectly
the stay duration. For example, if the user was leaving his
office at 6:30pm last time, and he has just arrived at office at
2pm then the potential duration is 4.5 hours. If the leaving
time is earlier than the current arrival time then the leaving
time is considered to be in the next day. Since we have mul-
tiple occurrences of the same context xk, each occurrence
suggests a “potential duration” . Finally, the set of “potential
durations” is used to estimate the mixture model.

General vs personalized model. Although human behav-
iors are personal, people share some common behaviors in
real life [7] (e.g., staying long time at home during the night,
having lunch at restaurant for about 1 hour, etc.). By ex-
ploiting general contextual information such as the time of
the day or the frequency of visit, we could predict to some
degree the duration of visit. While the global model is not as
accurate as the personalized model, it could be useful when
the knowledge about user is very limited.

Unlike the personalized model, the general model is esti-
mated only once, using data from multiple users. We also
use a mixture model to represent the conditional distribution



of duration given contexts. Given the large number of ob-
servations from all users over the whole recording period,
one could expect the general model to be a robust prior for
improving the performance of the personalized model. Let
p̂(y|x) be the conditional probability given by the general
model and pk(y|xk) is the conditional probability given by
a personalized model. We used a linear combination of Gen-
eral model and Personalized model for predicting:

p(y|x) =
1

nxk
+ 1

p̂(y |x) + 1− nxk

nxk
+ 1

pk(y |xk) (7)

where nxk
is the number of occurrences of xk in the mobil-

ity history of the considered user, which acts as a reliability
measure on the personalized model.

Predicting duration from a conditional distribution. A
simple method to predict duration is to output the mode of
the estimated conditional distribution (Eq. 6). In our im-
plementation, we use a more sophisticated method, which is
based on the expected error on estimated distribution. Since
the stay duration can vary significantly, we need an error
measure that is meaningful across long stays and short stays.
For this reason, we normalize the time difference between
predicted and actual duration by the max value of these two.
Formally, we define an error function as: error(y′, y) =
|y′−y|

max(y′,y) . This relative error function ranges between 0 and
1, with corresponds to the percentage of error made by the
prediction. Given the conditional distribution p(y|xk), the
expected loss E(y′) of a given prediction y′ is defined as
E(y′) =

∫
y
error(y′, y)p(y|xk)∂y. The predicted duration

is the one that minimizes the expected loss: y∗ = argminy′ E(y′).

Note that the estimation of E(y′) involves an integral which
might be intractable. A solution is to approximate the 1-D
function with a step function, whom integral might be com-
puted efficiently. The basic idea of approximation by step
function is to divide the continous space into segments us-
ing a set of boundaries {vj} of increasing order, then the
approximated value is constant in each segments. Formally,
a function g(y) can be approximated by g̃(y) where: g̃(y) =

g
(
vj+vj+1

2

)
∀y ∈ (vj , vj+1). Clearly, the approximation is

more accurate if we use many steps of small width, but it
also increase the algorithmic complexity. In our implemen-
tation, we found that using a few hundreds bins is enough to
obtain optimum performance. This approximation technique
is also used in the next section.

Learning the combination weight
For a given combination weight vector w, the combined
probability of stay duration y at the ith visit of user u can
be written as follows:

p(y|x(u,i)) =

∏K
k=1

(
p

(u,i)
k,y

)wk

Z(x(u,i))
=

exp〈lnp(u,i)
.,y ,w〉

Z(x(u,i))
, (8)

where Z(x(u,i)) =
∫
y

exp〈lnp
(u,i)
.,y ,w〉∂y is the normaliza-

tion factor. Similar to the previous section, the goal is to find
w that gives high probability to the true duration and low
probability to other possible durations. Since Y is continu-
ous, it is not possible to add pairwise loss between the true
duration and all possible durations in the learning problem.

Instead, we could learn w to maximize the conditional likeli-
hood :

∏
u,i p(y

(u,i)|x(u,i)).Taking the log, and substituting
p(y|x(u,i)) in Eq. 8, we get the following problem:

w∗ = argmax
w

∑
u,i

〈ln p(u,i).,y ,w〉−ln

∫
y

exp〈ln p(u,i).,y ,w〉∂y.

Since the computation of Z(x(u,i)) is intractable, we use the
step function to approximate the integral. The approximated
optimization problem is then:

argmax
w

∑
u,i

〈ln p(u,i).,y ,w〉 − ln
∑
j

(vj+1 − vj)e
〈ln p(u,i)

.,v̄j
,w〉

where v̄j =
vj+vj+1

2 are representative value of the segment
[vj , vj+1]. In our implementation, SGD [14] was used to
solve this optimization problem.

EXPERIMENTAL RESULTS
In this section we first present a procedure we implemented
to prepare the data for the prediction tasks. We then present
results on next place prediction and on visit duration pre-
diction tasks, and finalize with a discussion about computa-
tional complexity of our method.

Handling real-life data for predictive tasks
Basic location statistics. Given the real-life recording con-
ditions, the collected data contains time intervals in which
the phone did not record any data (either the phone was off
or the recording was manually turned off by participants) or
when location data is missing. While the set of volunteers
participated in the campaign for 1 year of data on average
(each user contributed between 3 and 17 months of data),
only 74% user-days have at least 1 location records (active
days). Considering these days, we found that 62% of all 10-
minute slots have at least 1 location record. This sparsity
of the data generates difficulties in both the learning of user
behavior and the evaluation of prediction methods.

Defining trusted observations. Due to the missing location
data during the recording, some actual visits might have not
been detected, and some detected visits might be erroneous.
For example, if the phone is out of battery 30 minutes af-
ter the user arrived to his office, the detected visit would
have the correct start time but an erroneous end time. For
this reason, we introduced the concept of trusted transition
and trusted visit for learning and evaluation of our predictive
model.

Trusted transition: A transition between visit v(u,i) and
v(u,i+1) is trusted if there are location data points of user u
every 10 minutes between the leaving time of v(u,i) and the
starting time of v(u,i+1).

Trusted visit: A visit v(u,i) is trusted if there are location
data points in both the period of 15 minutes before the arrival
time and the period of 15 minutes after the leaving time.

By construction, during a trusted transition (in which user’s
location is available every 10 minutes), we are certain that
the user did not stay at any places more than 20 minutes,
so that the detected next place in the data set is the actual
next place. For a trusted visit, we know that the user was
outside the visited place right before arrival and after leav-
ing, so both the starting time and leaving time are trusted.
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Figure 6. Fraction of trusted transition for each rank of the destination,
ordered by number of visit.

Note, however, that these filtering methods work under the
assumption that the raw location data is always accurate (
e.g., 50 meters or less). This is in general true given the
location estimation method used in our framework, but in
practice we detected a small amount of non-accurate data
after manually checking some abnormal (most likely impos-
sible) behaviors (e.g., multiple visits at a same place during
nights). Unfortunately, we do not have a fully reliable way
to detect and filter out these anomalies which come mainly
from the data sources (e.g., instabilities in WiFi).
Final data for prediction tasks. The processed data con-
sists of 98.000 visits from 153 users, corresponding to an
average of 2.5 visits per user per active day. On average,
the place discovery algorithms outputs 37 distinct places per
user, but this number varies significantly depending on the
user. As can be seen in Figure 5, the largest fraction of users
visited 20-80 distinct places in which they stayed for at least
20 minutes. After filtering, we get 30,000 trusted transitions
for next place prediction and 41,000 trusted visit for dura-
tion prediction. These numbers correspond to 0.6 trusted
transitions per day per user and 0.8 trusted visits per day
during the recording periods for each user. As user behav-
ior models are trained from trusted transitions and trusted
visits, the relative low rate of trusted observations is expect
to have a direct effect on the predictive performance, espe-
cially for infrequent places for which the number of observa-
tions is already low. For frequently visited places, one could
expect that the model can make accurate predictions in the
long term. To study the distribution of visits over places,
we sort the set of places of each user by the total number of
visits. Then we report the percentage of trusted transitions
for each place-rank of destination (e.g., most visited, second
most visited, etc) in Figure 6. Note that, to reduce the in-
fluence of missing data, we only consider trusted transitions.
On one hand, a few top places have very large fraction of vis-
its compared to the rest of place. On the other hand, despite
the low frequency of visit, the total number of occasional
visits are not ignorable (e.g., 10% of trusted transitions’ des-
tinations are places outside the top-10 places). While only a

Table 2. Average accuracy of conditional models for next place predic-
tion. The higher the better. The baseline performance is 0.411.

Feature set Flat Wei. Feature set Flat Wei.
LOC 0.577 0.590 FREQ+HOUR 0.568 0.573
HOUR 0.559 0.561 FREQ+HOUR+WE 0.572 0.576
DAY 0.411 0.392 DUR+HOUR 0.573 0.577
WE 0.432 0.424 DUR+HOUR+WE 0.580 0.583
FREQ 0.483 0.497 FREQ+DUR 0.514 0.523
DUR 0.481 0.486 FREQ+DUR+HOUR 0.570 0.573
LOC+HOUR 0.602 0.604 FREQ+DUR+HOUR+WE 0.572 0.575
LOC+HOUR+DAY 0.544 0.545 ALL 0.520 0.520
LOC+HOUR+WE 0.599 0.601
Ensemble method 0.64

Wei.=Weighted
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Figure 7. Learned w of the ensemble model for next place prediction.

few top places are involved in daily routines, we also found
that the mobility patterns are quite complex in our data with
18% of loop-transitions (i.e., v(u,i).id = v(u,i+1).id) in the
set of trusted transitions (which could be affected by erro-
neous raw location data). In the leave-one-user-out cross-
validation, we train the combination weight vector on data
from 152 users and then making prediction for every trusted
observation of the remaining user. Recall that to make pre-
diction at time t, all model parameters are estimated with
user’s data up to time t, in other words, the model always
predict the future.
Next place prediction results
Accuracy. Table 2 reports the all-time average prediction
accuracy over the set of trusted transitions. The baseline ac-
curacy is 0.411, which corresponds to the model that outputs
the most visited place up to prediction time with an excep-
tion that if the user was in the most visited place then the
next destination is predicted to be the second most visited
place. As described earlier, we consider various sets of con-
textual variables for building single models, then we com-
bined them together to get a ensemble model that exploits
all the contextual information. For each set of variables, we
considered two models corresponding to two ways of esti-
mating the probability. These sets were obtained by a heuris-
tic greedy process which starts with individual features, then
adding more features to the existing sets of features until the
performance is not improved. Note that LOC is more spe-
cific than the place categories FREQ or DUR, combining the
actual location and its categories does not enrich the context.
Finally, we also consider the set of all contextual variables.
Among the set of conditional variables, we see that LOC is
the most important for predicting next place with accuracy
0.59 using weighted estimation. In general, weighted esti-
mation is slightly better that flat estimation, which can be
explained by the fact that people change their mobility pat-
terns over time. Note that the model using only location with
flat estimation is equivalent to a 1st-order Markov chain de-
fined on the set of destinations. HOUR is the second most
important contextual variable and the combination of loca-
tion and hour also result the best single model with 0.604
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Figure 8. Next place prediction accuracy vs. number of previously
observed transitions and the recording time. The dark curve is the
average estimated on all users. Each fine curve corresponds to one user.

accuracy. Note that using richer context does not improve
the accuracy, which seems to come from the sparsity of ob-
served data in the contextual space. For example, the mod-
els that consider the all contextual variables have accuracy
around 0.53, even worse than using LOC or HOUR only.
Although the use of rich contextual set does not improve the
performance of single predictor, it can contribute to the final
solution of the ensemble method. Our ensemble method suc-
cessfully exploits the large number of contextual variables
by combining the output probability from multiple models.
Using prior information from these models, we reach the
all-time average accuracy of 0.64. Figure 7 illustrates the
weights learned for each single model. As can be seen, al-
most all selected subsets of contextual variables contribute
to the final solution.
Predictability over time. Since our personal model param-
eters are updated after each observation, we could expect
that the prediction accuracy would improve over time. Fig-
ure 8(a) illustrates the accuracy of the ensemble model as a
function of number of previously observed transitions. Ker-
nel density estimation was used to estimate the accuracy at a
given number of trusted transitions (we used normal kernel
with σ = 4 + 0.2n where n is the number of transitions).
The dark curve is estimated on the whole set of trusted tran-
sitions for all users and the fine curve is estimated on data
for each user separately. Note that the number of transi-
tions varies depending on the user, which results in curves
of different length. As expected, the accuracy has the ten-
dency to increase as the number of observed transitions in-
creased. However, we also observed a large variance of ac-
curacy at the beginning (10-50 transitions), which reduces as
the number of transitions increases. Also, many user curves
are not monotone, which suggests again that user mobility
patterns might change over time. Figure 8(b) shows the evo-
lution of accuracy as a function of time since the first trusted
transition had occurred. To improve the readability of the
figure, we only show curves for people who contribute at
least 6 months of data and have at least 300 trusted tran-
sitions. Again, we observe that the accuracy generally im-
proved over time. However, its seems that the correlation be-
tween the accuracy and the recording time is weaker than the
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Figure 9. Human mobility in weekly calendar.

correlation between the accuracy and the number of trusted
transitions. This justifies that the number of observations
plays a central role in prediction.

Finally, we study the predictability of human mobility with
respect to the weekly calendar. Figure 9(a) and (b) show
the number of trusted transitions and the accuracy of the en-
semble model, respectively, in each 30-minute time slot in
the weekly calendar. As can be seen, the number of transi-
tions reflects the daily movement of people in real life, such
as going to work in the morning or having lunch at noon in
weekdays. While there are few transitions during the nights,
the destinations of these transitions are quite easy to pre-
dict (probably going home). On the contrary, 3-4pm is the
most inactive period in office hours, but the predictability
is low, illustrated by the dark colors in Figure 9(b). Tran-
sitions in weekends are hardest to predict, especially from
9am-4pm. It is also interesting to note that the accuracy on
Sunday evening is higher than on Saturday evening, which
reflects the pattern of going home on Sunday evening and
getting ready for work on Monday.
Visit duration prediction
In this section, we study the performance of our models on
the data set consiting of 41,000 trusted visits. Recall that we
developed a user-independent model (called general model)
which exploits the general dependencies between duration
and general contextual variables such HOUR or DOW. For
all mixture models, we set the maximum number of com-
ponents to be 2 (larger number does not help improving the
performance). The baseline results correspond to a model
that always outputs the median of trusted visit duration, esti-
mated to be 2.3 hours. Table 3 reports relative error of dura-
tion prediction of general model with various sets of contex-
tual variables. These sets were obtained by heuristic greedy
process similar to the case of next place prediction. The best
contextual variable was found to be HOUR while the best



Table 3. All-time averaged error of general conditional models. The
lower the better.

Feature Error Feature set Error
FREQ 0.519 FREQ + HOUR 0.442
HOUR 0.505 FREQ + HOUR + DOW 0.445
DOW 0.592 FREQ + HOUR + WE 0.443
WE 0.587 FREQ + HOUR + WE + BT 0.442
BT 0.586 FREQ + HOUR + WE + BT + PC 0.443
PC 0.596 FREQ + HOUR + BT 0.441

FREQ + HOUR + PC 0.442
FREQ + HOUR + BT + PC 0.445

baseline 0.590

Table 4. Duration error of Personalized model and Gen-
eral+Personalized model.

context Personalized General+Personalized
Dur. mod. Lea. mod. Dur. mod. Lea. mod.

WE 0.536 0.672 0.531 0.669
DOW 0.543 0.668 0.529 0.658
HOUR 0.470 0.477 0.447 0.456
LOC 0.423 0.562 0.407 0.543
PC 0.539 0.672 0.535 0.669
BT 0.525 0.654 0.517 0.648
FREQ 0.481 0.661 0.477 0.655
LOC + WE 0.427 0.548 0.407 0.524
LOC + DOW 0.461 0.545 0.420 0.503
LOC + HOUR 0.420 0.428 0.376 0.384
LOC + HOUR + WE 0.429 0.437 0.377 0.385
LOC + HOUR + DOW 0.477 0.481 0.398 0.403
BT + PC + HOUR + WE 0.490 0.497 0.436 0.443
FREQ + WE 0.481 0.652 0.474 0.643
FREQ + HOUR + WE 0.444 0.455 0.404 0.413
FREQ + BT 0.480 0.627 0.468 0.613
FREQ + BT + WE 0.483 0.616 0.465 0.596
FREQ + BT + HOUR + WE 0.474 0.480 0.411 0.417
Ensemble distribution 0.355
Ensemble output 0.375

Dur. mod.=Duration model ; Lev. mod.=Leaving time model

set of contextual variables was {FREQ,HOUR,BT}, which
gives a relative error of 0.441.

Thanks to its user-independent nature, the general model
can be used for new users without retraining. However, we
could not expected that this model could have optimal per-
formance since each user has a different mobility pattern.
The results of the personalized models are reported in Table
4. We found that the best single personalized model is based
on LOC and HOUR, giving a relative error of 0.42, which
is slightly better than the performance of the general model.
By combining the best general model with the personalized
model, the relative error drops significantly to 0.376 with
the best single model. Finally, the ensemble method over
general+personalized models also improve the performance:
our ensemble method (called ensemble distribution) reduces
the relative error to 0.355. We also implemented a linear
combination approach (called ensemble output) which is a
popular combination method that used the output value of
basic models only. As can be seen, this baseline approach for
combining multiple models improves very slightly the best
general+personalized model (0.375 vs 0.376). This result
emphasizes the strength of our approach which can combine
efficiently multiple models.

Finally, we study the average error conditioned on the stay
duration. The set of visits is divided into 5 categories: less
than 1h, 1-2h, 2-4h, 4-8h, more than 8h. The histogram of
stay duration in Figure 10(top) shows that short visit (less
than 1 hour) and long visit (more than 8 hours) are the two
most popular categories. However, the average errors for
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Figure 10. Average relative error with respect to stay duration.
<1h 1-2h 2-4h 4-8h >8h accuracy

<1h 8034 1913 1021 601 1168 0.63
1-2h 2318 1992 981 533 678 0.31
2-4h 953 978 2969 1170 656 0.44
4-8h 402 364 1221 2667 675 0.50
>8h 270 428 492 1087 7490 0.77

Table 5. Confusion matrix of duration prediction and accuracy per
category. Rows correspond to actual duration and columns correspond
to predicted duration. The overall classification accuracy is 0.56.

these two categories are rather different. Figure 10(bottom)
shows that the relative error for long visits are significantly
lower than the one for short visits (0.254 vs. 0.420), which
means that most prediction errors come from short visits. To
provide a more common evaluation measure, we consider a
classification task where the predicted durations and the ac-
tual durations are mapped into the above 5 categories and re-
port the confusion matrix (see Table 5). Interestingly, while
having high relative error, short visits of less than 1 hour
have a classification accuracy rate of 63%, only lower than
the recognition rate of the longest category (77%).
Algorithmic complexity of our framework
The computational cost of the framework consists of learn-
ing the combination weights, updating the user behavior model
and making predictions. Learning the combination weights
is the most expensive part, which is done on a dedicated data
set for calibrating the weights of single predictors (e.g., the
objective function in Eq. (5) involves 480,000 hinge loss
terms in our experiment). However, the weight w is esti-
mated just once, before the actual use of the predictive mod-
ule. This computation would not represent a load to a mobile
device running the prediction application.

For next place prediction, the output space is discrete, there-
fore the cost for updating parameters (basically, updating
the counts of destination for a given context) and the cost
for making predictions (combining conditional distributions,
Eq. 4) are low. In the case of duration prediction, both
parameter updating and predicting require more computa-
tions. Note that as we use 1-D mixture model to represent
the conditional distribution on the continuous output vari-
able, the basic models are to be estimated with EM (in prac-
tice, less than 10 iterations). For predicting duration, recall
that we relied on a step approximation of the continuous out-
put distribution since an analytic solution is not available.
The cost for building the approximation and making predic-
tions is then O(K×L) where K is the number of predictors



(K = 36 for duration prediction experiments) and L is the
number of steps in the approximation (in practice, we set
L = 500, corresponding to roughly 1% of relative error on
the duration). Hence, the overall on-device computational
cost are relative low, and can be handled by most modern
mobile devices.

CONCLUSION
In this paper, we developed a general framework for pre-
dicting human mobility behavior and applied it to two spe-
cific tasks. Our approach can be viewed as an ensemble
method that combines a set of models which learn various
mobility patterns from past observations. Considering a dif-
ficult real-life data set, we demonstrated the potential of our
approach on predicting human mobility in real world con-
ditions. While human mobility is not always predictable,
repetitive routines can be learned and predicted from con-
textual cues sensed by smartphones. The set of contextual
cues can be efficiently exploited in a principled way using
ensemble methods, leading to improved performance.

One issue that we encountered is the low rate of trusted ob-
servations, this can be solved by improving the sensing tech-
nique and/or exploiting untrusted/missing observation in the
learning framework. Among many other directions to ex-
plore, we would like to consider more types of contextual
variables and other mobility patterns for improving predic-
tive performance. This would increase both the number of
contextual variables and the number of basic models for cap-
turing different types of mobility patterns. Since our ap-
proach is general, we are also interested in applied it to other
prediction tasks including human behavior beyond mobility.
This paper considers the prediction of user mobility when
they arrive to or leave a place. In practice, it could be rele-
vant to predict user behavior at any time the context changes.
Finally, while this work considers only discrete contextual
variables to simplify the estimation of basic models, we also
plan to study other types of contextual variables or to use
non-parametric methods for basic models.
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