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Abstract

Speaker diarization of a collection of recordings with uniquely

identified speakers is a challenging task. A system addressing

such task must account for the inter-session variability present

from recording to recording and it is asked to scale well to mas-

sive amounts of data. In this paper we use a two-stage approach

to corpus-wide speaker diarization involving speaker diariza-

tion and speaker linking stages. The speaker linking system

agglomeratively clusters speaker factor posterior distributions

obtained via Joint Factor Analysis using the Ward method and

the Hotteling t-square statistic as distance measure. We extend

this framework to link speakers based on both speech and visual

modalities to improve the robustness of the system. The system

is evaluated using the data collected for the Augmented Mul-

tiparty Interaction (AMI) project, involving over one hundred

meetings. We provide results in terms of within-recording and

across-recording diarization error rates (DER) to support the ef-

fectiveness of multi-modal speaker linking to enable large scale

speaker diarization.

Index Terms: Multi-modal speaker linking, hierarchical clus-

tering, Ward method, speaker diarization, meeting corpus

1. Introduction

The explosion of video and audio content available in recent

years has challenged current technologies to index and anal-

yse huge amounts of data in addition to archiving them. On

one side, large multimedia corpora can sample several dimen-

sions of interest, such as multiple sources of variability, that can

extend modeling possibilities. These corpora typically involve

speech in a variety of scenarios including multiple speakers,

multiple and variable acoustic conditions, multiple languages

and even emotion or vocal effort variation. Video data poses

similar challenges especially in terms of light variation, mul-

tiple participant tracking or simple but relevant issues such as

processing small face sizes and low resolution images. On the

other side, many of the algorithms used nowadays do not scale

well to large data sets or are simply prohibitive to use in such

conditions. This is the case of speaker diarization, a technology

that is quite mature for reasonable sized recordings but it is not

directly applicable to long recordings or processing many files

at once. It also has some modeling flaws, such as performance

being highly dependent on the recording conditions.

It is more and more common that recordings involve mul-

tiple modalities, typically video and audio. In the context of
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speaker diarization, the speaker’s voice and face characteristics

can be used together to improve the speaker segmentation of

a recording. Multi-modal processing assumes that certain con-

ditions are met, such as audio and video focusing on the same

person at the same time instant or only frames with frontal faces

being used for the video modality.

In this paper we aim at diarizing a large data set using

speech and video recordings of meetings. This translates into

finding unique speaker identifiers across the database as well as

the start and end times for each of the speaker segments. A

straight approach to solve this task, such as audio-visual di-

arization of the concatenated recordings, is currently feasible

for a few hours of data only. As proposed in [1], we opt for a

two-stage hierarchical approach using local and global speaker

representations. A speaker diarization system finds a small set

of speaker clusters, along with start and end times and a speaker

identifier local to each recording. In the second stage, we further

cluster the speaker clusters using a global reference to struc-

ture the speaker/face space of the whole data set. Each speaker

cluster is represented as a speaker factor posterior distribution

obtained using Joint Factor Analysis (JFA) [2, 3]. The result-

ing speaker clusters are then given a unique speaker identifier

across the data set.

Large scale speaker diarization has been addressed in pre-

vious works. A speaker attribution system performing speaker

linking after speaker diarization was proposed in [4]. This

system uses a variety of linking methods and the Normalized

Cross Likelihood Ratio (NCLR) as the distance measure. An-

other multi-stage approach [5] targetting large scale diariza-

tion diarizes chunks of speech data whose clusters are linked

later. This system scales particurlarly well on large data sets

but still offers variable performance depending on the chunk

size. A system using a variational Bayes approach to diariza-

tion presented in [6] used speaker factor posterior distributions

to perform soft clustering. All these studies focus on telephone

speech conversations between two people or broadcasted data.

In our work, we focus on meetings recorded using far-field mi-

crophones on multiple meeting rooms on the audio side, and

video cameras recording each of the participants on the video

side.

This paper is a multimodal extension to the speaker diariza-

tion and linking work in [1]. The paper is organized as follows:

Section 2 describes the speaker diarization system we used in

this work. Section 3 describes the features used for linking, fo-

cusing on the visual modality. Section 4 gives an overview of

how speaker clusters are modeled prior to linking. Section 5 de-

scribes how speaker clusters are linked and the labeling process

across the dataset. In Section 6 the data sets used for experi-

mental evaluation as well as the details about the implemented



systems are presented. Section 7 provides results that validate

the proposed techniques and Section 8 gives some conclusions.

2. Speaker Diarization

Speaker diarization systems are asked to to partition a recording

into acoustically homogeneous regions that were spoken by the

same speaker while determining the actual number of speak-

ers. In this work, we use a system based on the Information

Bottleneck (IB) principle. This system uniformly splits an au-

dio recording into short 1-2 second long segments that are then

clustered using a greedy optimization of the IB objective func-

tion. The reader can refer to [7] for detailed discussion about

this approach.

The final diarization solution is asked to maximize the IB

objective function,

F = I(Y,C)−
1

β
I(C,X) , (1)

to preserve a set of relevance variables Y , Gaussian posterior

probabilities of the initial segments w.r.t. a Universal Back-

ground Model (UBM), that represent the information to be pre-

served during clustering. A compressed representation C of the

initial segments X is seeked such that as much mutual infor-

mation with Y is preserved while keeping the representation as

compact as possible. The parameter β balances the amount of

information preserved versus the amount of compression in the

representation.

We use the agglomerative IB (aIB) algorithm, a greedy ap-

proach to optimize Eq. 1 where the initial segments are itera-

tively merged by pairs so that the decrease in the objective func-

tion is minimum at each merging step. The normalized mutual

information, NMI = I(Y,C)/I(X,Y ), measuring the frac-

tion of original mutual information captured by the clustering

partition C, is used to infer the number of speakers. The op-

timal number of speakers is found after thresholding the NMI

measure value across multiple partitions.

The boundaries of the clusters are finally refined using an

ergodic HMM with a minimum duration constraint.

3. Feature Extraction

In this work we use speech and visual features to perform

speaker linking. For the speech modality, the linking system is

using spectral envelope features as in [1]. In this paper, we use

slightly different features, including energy and longer temporal

context (see Section 6 for details) as compared to our previous

work.

The visual features are obtained in two steps. First, a face

detection algorithm is run to detect frontal faces over which lo-

cal features are extracted later. We use the Shore library [8],

that applies the modified census transform to each input video

frame prior to a cascade of classifiers trained using AdaBoost.

The algorithm provides the position, size and rating, a measure

of how likely the image is to be a frontal face. Face detection

was run every 2 frames to retain a maximum amount of data

and low-likelihood faces were discarded to minimize the false

alarm error rate.

The most widespread algorithms for feature extraction are

Principal Component Analysis, so-called eigenfaces method

[9], Linear Discriminant Analysis [10], Elastic Graph Bunch

Matching [11] and Local Binary Patterns (LBP) [12]. In the

last years, Discrete Cosine Transform (DCT) features used to-

gether with generative modeling [13] allowing for inter-session

variability compensation have obtained state-of-the-art perfor-

mance on the face authentication task. After informal face

recognition experiments using a nearest neighbour classifier, we

limited the choice to LBP and DCT features, offering the best

compromise in terms of performance, efficiency and extendibil-

ity.

LBP feature extraction assumes a face image to be a com-

position of micro-patterns that are invariant to monotonic gray

scale transformations. A global description of the image is then

obtained by combining these micro-patterns. The pixels of an

image are labeled by thresholding the neighbourhood of each

pixel with the centre value and considering the result as a bi-

nary number. After applying this operator on every pixel, the

resulting image is divided into M different non-overlapping re-

gions and the histogram of each region is then computed. A

variant of the basic method using a larger neighbourhood size

and uniform patterns only for histogram computation was used

in this work. For speaker linking purposes, each of these his-

tograms is used as a feature vector, ensuring that data are dense

enough to be modeled by a generative model.

Regarding DCT features, each face image is split into the

same number of regions of the same size as in the LBP case.

For each region, we compute the DCT transform and we use

as many coefficients as the histogram size in LBP feature ex-

traction, so that the comparison across both approaches is fair.

The low-frequency to high-frequency zig-zag scanning used for

JPEG compression was used.

4. Speaker modeling

Each of the speaker clusters found during the diarization pro-

cess is modeled using Joint Factor Analysis (JFA) [2, 3]. JFA

adapts a Gaussian Mixture Model (GMM) to the features of a

speaker cluster while disentagling speaker/face and session ef-

fects. The speaker factors provide a compact representation of

speakers/faces that disregards session variability components.

We use the simplified JFA model

m̂ = m+Vy +Ux , (2)

where m̂ and m are the speaker-adapted and speaker-

independent Gaussian mean supervectors of a GMM, i.e. the

concatenation of the mean vectors into a single vector. The

speaker-independent supervector m is formed by the mean vec-

tors of a UBM, trained with data from many speakers. Vy is

a speaker-dependent low-rank term assumed to model speaker

variation. Ux is a session-dependent low-rank term model-

ing session variation. The factor loading matrices V and U

are speaker-independent and they are trained off-line using data

from many speakers and several session per speaker [3]. y and

x are the so-called speaker and session factors, assumed to be a

priori i.i.d following a normal distribution with zero mean and

unit variance. The number of speaker and session factors af-

fects the quality of the adaptation, the more factors the higher

the dimensionality of the adapted subspaces.

Training a JFA model consists of fitting the factor load-

ing matrices V and U and the latent variables y and x to the

speech of a database in the maximum-likelihood sense. The

factor loading matrices are retained and they are used for adap-

tation, where only the latent variables y and x are fit to the data.

During this process, JFA provides the posterior mean and co-

variance matrix of the multivariate Gaussian random variable y,

fully characterized by a mean vector y and covariance matrix

C. Please refer to [2, 1] for more details on how these parame-

ters are estimated.



5. Speaker Linking

The speaker linking module is the second clustering stage that

structures the speaker clusters of the database hierarchically.

The speech data of each speaker cluster output by the diariza-

tion system is modeled as a single multivariate Gaussian with

full covariance matrix, i.e. the speaker factor posterior distri-

bution estimated via JFA. We use an agglomerative clustering

approach as follows:

1. Compute the distance matrix for all pairs of initial

speaker clusters.

2. Merge the two closest clusters.

3. Update the distance matrix, from the merged cluster to

all other clusters.

4. Go to 2. If only one cluster remains, stop.

We apply the Ward method [14] to merge the most com-

pact clusters, i.e. with minimum within-cluster variance, at

each merging step. Besides the merging criterion, Ward cluster-

ing also allows for a fast implementation, the so-called Lance-

Williams recursion [15], enabling the distances between cluster

pairs to be computed recursively from the initial distance ma-

trix. In [1] we found that using the two-way Hotteling t-square

statistic

dttest(pi, pj) =
ninj

ni + nj

(yi − yj)
T
C

−1

pool(yi − yj) (3)

with Cpool =
(ni − 1)Ci + (nj − 1)Cj

ni + nj − 2
(4)

as the distance measure is especially well suited for this task

while still being derived from the square Euclidean distance.

The expression in (3) is used to test whether the means of two

multivariate Gaussian distributions pi ∼ N (yi,Ci) and pj ∼

N (yj ,Cj) are the same when the variances are assumed to be

different. This is the multivariate equivalent of the two-way

Student t statistic.

We assume that the speaker clusters can be found by thresh-

olding the distance values in the clustering dendrogram. For

parent node p and child node c in the dendrogram, if dp > th
and dc < th, all descendants including node c are assigned the

same global speaker identifer.

A full block diagram of the speaker diarization and linking

system is depicted in Figure 1.
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Figure 1: Block diagram of the speaker diarization and linking
system.

6. Experimental Setup

The proposed speaker diarization and linking system was eval-

uated on the meeting data collected for the Augmented Multi-

party Interaction (AMI) project. We compared the performance

of speaker diarization alone versus the speaker diarization and

linking approach with either speech or visual features, and also

with a multi-modal fusion approach.

We used 19 Mel-Frequency Cepstral Coefficients (MFCC)

extracted every 10ms using a 30ms window for the speaker di-

arization system. The initial segments were 2.5s long and the

IB trade-off arameter was set to 10. The maximum number of

speakers was 10 to encourage the system to undercluster, and

the linking system can recluster to find a better partition. The

NMI threshold was 0.3. All of these settings were optimized

for the NIST RT’06 evaluation.

For the linking system using speech features, we used Per-

ceptual Linear Prediction (PLP) features extracted every 10ms

over 30ms windows, along with log energy and their delta and

double delta coefficients (60 features). 50 hours of far-field

AMI data were used to train a GMM-UBM with 512 Gaussian

components as well as the JFA hyperparameters, using maxi-

mum likelihood estimation. The JFA factor loading matrices

were trained using speech data involving 132 speakers from 4

far-field microphone channels per meeting, using the ES, IS and

TS meetings. These meetings are recorded in different rooms

using different microphones, with a total of 24 different chan-

nels. We used decoupled estimation and 10 iterations of ML

training to estimate the factor loading matrices. For adaptation

we used joint estimation of speaker and session factors. All the

available speaker factors, i.e. 132, and 50 session factors were

used after informal optimization on preliminary experiments.

For the visual linking system we compute features on 80x80

pixel faces over 16 regions of 20x20 pixels. We extract either

59 LBP features or 59 DCT coefficients using the same number

of regions and sizes. The individual-speaker video recordings

were used for extracting the features alogn with the ground truth

speaker segmentation. We used 128 Gaussians for the visual

UBM to cope with the sparsity of visual data. All other settings

for UBM and factor analysis hyperparameter training were kept

the same as for speech features.

To prune the linking dendrogram we used a simple thresh-

old optimizing the arDER on a development set and used on

the linking tree of a evaluation set. Table 1 summarizes the

data included in each of these data stes. For speech, only one

recording per meeting was included using a microphone chan-

nel randomly chosen.

Combining speech and visual modalities consisted in fus-

ing the corresponding distance matrices. Since clustering is un-

supervised and no labels are available to perform calibration,

min-max rescaling of the score ranges are performed prior to

linearly combining pairs of scores. We used weights 0.7 and

0.3, optimized on the development set, if both modalities have

scores available, otherwise only the available score was used.

6.1. Performance measures

We use the Diarization Error Rate (DER) as the main measure

to evaluate the performance of the proposed systems. The DER

assesses the impact of speaker linking on the diarization sys-

tems, using the references obtained by forced alignment of ASR

transcripts with speakers labeled with unique identifiers within

the recording. The within-recording DER (wrDER) assesses

the effect of linking speakers within the recording. We use the

across-recording DER (arDER) to assess the DER for the data



Data set # meetings # spk # segments DER (%)

Dev set 39 96 285 25.2
Eval set 88 130 667 24.7

Table 1: Details of the AMI data sets used for system devel-
opment and evaluation. Only one single distant microphone
channel was included for each meeting. The columns show the
number of meetings, number of speakers, the number of speaker
segments after per-recording speaker diarization.

set as a whole. We concatenated the references of all recordings

in the data set with the within-recording speaker identifiers re-

placed by unique speaker identifiers across the data set. For all

DER computations we use a collar of 250ms.

We also compute cluster purity and cluster coverage mea-

sures for systems using speaker linking. Given a particular clus-

ter, the cluster purity is defined as the ratio of the number of

frames assigned to the dominant speaker over the total num-

ber of frames of the cluster. Conversely, for a given speaker,

the cluster coverage is computed as the ratio of the number of

frames of the dominant cluster to the total number of frames of

that speaker. We give average values over the data set for both

measures.

7. Experiments and Results

We first ran experiments comparing the speaker diarization per-

formance of systems using speech and visual speaker linking.

Table 2 shows the results for the dev and eval data sets. The

speech system using PLP features outperformed the visual sys-

tems in both wrDER and arDER, although systems using DCT

and LBP features still obtain reasonably small DER, given the

complexity of the task. In absolute terms, all systems are able

to diarize the whole data set at a DER comparable to single-

recording DER, i.e. 25.8%, 29.7% and 32.3% versus 25.2%

for the dev set. These results also confirm the effectiveness

of the linking approach when compared to those obtained in

[1]. The AMI data sets in this work involve all of the speak-

ers in the database and a randomly chosen single-distant micro-

phone recording per meeting, i.e. the most adverse scenario in

terms of speaker and channel variability possible with the AMI

data. Still, the arDER can be kept as low as those obtained for

single-recording diarization. Regarding cluster purity and cov-

erage, they are in the same range across all individual systems.

Note that the initial DER obtained by the speaker diarization

system is limiting the final DER, since the linking system is

able to join speaker clusters but not to split them. This also

translates into reducing linking performance as speaker repre-

sentations are corrupted with around 25%, the DER, of feature

vectors from wrong speakers in average. The number of esti-

mated speakers is relatively accurate for the PLP system (78 vs.

96, 125 vs. 130) whereas it is slightly off for the DCT system,

and not accurate for the LBP system. A non-negligeable frac-

tion of the speaker clusters, 11% and 14% for the dev and eval

sets respectively, are empty and they have no visual features

available due to dropping non frontal faces. Although this is a

structural limitation for the visual processing, it definitely has

a negative effect on the DER of systems using visual features

as well as the estimation of the number of speakers, as empty

samples are kept as singleton clusters.

Table 3 shows results for experiments on the fusion of

speaker linking systems. We explored fusing speech and vi-

sual systems using PLP+DCT or PLP+LBP features. For the

Dev set
System #Spk wr/ar DER(%) Cp/Cc(%)

PLP 78 24.5/25.8 64.2/74.1
DCT 95 26.0/29.7 66.3/73.6
LBP 130 24.7/32.3 67.0/70.1

Eval set
System #Spk wr/ar DER(%) Cp/Cc(%)

PLP 125 24.0/26.2 64.2/71.3
DCT 187 25.3/33.8 68.7/64.4
LBP 263 25.1/35.1 69.7/62.3

Table 2: Diarization error rates after speaker linking experi-
ments using speech (PLP) and face (DCT,LBP) features for the
development and evaluation data sets. The remaining columns
show the detected number of speakers, the DER, the within-
recording and across-recording DERs and cluster purity and
cluster coverage measures. The best results use bold typeface.

development set, the fused systems obtain minor gains both

in wrDER and arDER compared to the most performing indi-

vidual system using PLP features. For the evaluation set, the

fused systems keep the wrDER as low as for the PLP system

but they slightly increase the arDER. These results suggest that

the performances of the visual linking systems may not be good

enough to provide gains after fusion. On the other side, fus-

ing with the speech system is clearly effective in reducing DER

from visual systems. The wrDER and arDER of the fused sys-

tems reduced largely after fusion, especially for the PLP+LBP

over LBP systems, from 35.1% to 26.8%, ranking better that

the PLP+DCT system. The estimated total number of speakers

improves after fusion for the dev set, whereas the PLP system

gave the closest number for the evaluation set.

Dev set
System #Spk wr/ar DER(%) Cp/Cc(%)

PLP+DCT 91 24.2/25.3 61.9/73.6
PLP+LBP 88 24.3/25.4 62.6/73.8

Eval set
System #Spk wr/ar DER(%) Cp/Cc(%)

PLP+DCT 164 24.0/27.2 62.3/70.4
PLP+LBP 147 23.9/26.8 63.0/71.0

Table 3: Diarization error rates for speaker linking experi-
ments using the score-level fusion of speech (PLP) and face
(DCT,LBP) modalities for the development and evaluation data
sets. The remaining columns show the detected number of
speakers, the within-recording and across-recording DER and
cluster purity and cluster coverage measures. The best results
use bold typeface.

8. Conclusion

We have presented a multi-modal speaker linking approach that

is able to diarize a whole database of highly interactive meetings

with error rates as low as those obtained when diarizing a single

meeting. This system aims at removing audio and visual inter-

session variation in the linking phase. The linking system us-

ing speech features outperformed systems using visual features.

This performance gap can be accounted for by the relative large

amount of time, from 11% to 15% of the speech time, where

visual features are not available. This has an negative impact

in the visual and fused systems, the latter still obtaining gains

in both within- and across-recording DER terms and especially

for the development set.
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