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Abstract

Development of countermeasures to detect attacks per-
formed on speaker verification systems through presenta-
tion of forged or altered speech samples is a challenging
and open research problem. Typically, this problem is ap-
proached by extracting features through conventional short-
term speech processing and feeding them to a binary clas-
sifier. In this article, we develop a convolutional neural
network-based approach that learns in an end-to-end man-
ner both the features and the binary classifier from the raw
signal. Through investigations on two publicly available
databases, namely, ASVspoof and AVspoof, we show that
it yields systems comparable to or better than the state-of-
the-art approaches for both physical access attacks and log-
ical access attacks. Furthermore, the approach is shown to
be complementary to a spectral statistics-based approach,
which, similarly to the proposed approach, does not use
prior assumptions related to speech signals.

1. Introduction

Speaker verification (SV) systems aim to verify an iden-
tity claim based on an individual’s voice. One of the po-
tential applications of SV systems lies in the area of access
control through user authentication. While current state-of-
the-art SV systems are robust to zero-effort impostors, they
are vulnerable to more sophisticated attacks, called presen-
tation or spoofing attacks, consisting in presenting forged
or altered speech samples as input to the system [5, 24].
The forged speech samples can be obtained by recording
the target speaker’s voice; synthesizing speech that carries
the target speaker characteristics; or applying voice conver-
sion methods to convert an impostor speech into the target

speaker speech. Depending upon how the forged samples
are presented to the SV system, there are two types of at-
tacks: (a) physical access attacks, where the sample is fed
as input to the SV system through the sensor, i.e., the mi-
crophone and (b) logical access attacks, where the sample
is injected into the SV system software process, bypassing
the sensor. Development of countermeasures to detect such
presentation attacks is of paramount interest.

In the literature, the research has mainly focused on log-
ical access attacks, where different approaches have been
proposed to build binary classifiers that can detect attacks
generated via speech synthesis and voice conversion sys-
tems. These approaches mainly differ in terms of the fea-
tures and the type of classifiers used. More precisely,
different magnitude spectrum based features [15, 20, 21],
phase spectrum based features [15, 17, 20] and modula-
tion spectrum based features [26], which are all computed
on short-term spectrum, have been investigated in con-
junction with classifiers such as Gaussian mixture mod-
els [15, 17, 21, 26], support vector machines [15] and artifi-
cial neural networks [20]. While these approaches have led
to advancements in detecting attacks, there is an open issue.
Standard feature extraction methods typically incorporate
task specific prior speech production and speech perception
knowledge on the short-term Fourier spectrum. However,
unlike tasks such as speech recognition and speaker recog-
nition, there is little or no prior knowledge about the charac-
teristics of the signal that differentiates a forged signal from
a genuine signal. Furthermore, standard speech related as-
sumptions, such as the source filter modeling and the au-
ditory filtering may hold well for both genuine and forged
signals.

A potential approach would be to make minimum as-
sumptions, i.e., not to rely on prior knowledge related to
speech production and perception. In that direction, lever-



aging from recent findings in machine learning, deep ar-
chitectures are being employed to learn automatically the
features by using short-term processing based intermedi-
ate representations as input, such as log-scale spectro-
grams [29] or filter-banks [2, 14, 23]. More recently, an
approach was proposed in [7], which simply uses spectral
statistics estimated from the Fourier magnitude spectrum of
the signal to detect presentation attacks, making thus mini-
mum prior assumptions about the signal. Investigations on
both physical access attacks and logical access attacks have
shown that such an approach yields comparable or better
systems than the conventional short-term speech processing
based systems.

In this paper, we go one step further where, rather than
transforming the speech signal from time domain to fre-
quency domain through Fourier transform and then build-
ing classifiers, the transformation of the speech signal, the
features and the classifier are learned jointly from the raw
speech signal. The approach is fundamentally motivated by
recent advances in deep learning-based speech processing,
where both the features and the classifiers are jointly learned
from the raw speech signal [9, 16, 22, 28]. Specifically, in
the proposed approach the suitable segmental processing of
the input signal is determined during training and the fea-
tures and classifier are learned in a data- and task-driven
manner for presentation attack detection (PAD). Through
experimental studies on two databases, namely, AVspoof
and ASVspoof databases, we show that the proposed ap-
proach with a single convolution layer is able to detect both
physical access attacks and logical access attacks well, and
yields performance comparable to or better than the ap-
proaches proposed in the literature.

Section 2 presents the CNN-based approach. Section 3
and Section 4 presents the experimental setup and the re-
sults on the two databases, respectively. Section 5 presents
an analysis of the information learned by the CNN and Sec-
tion 6 concludes the paper.

2. Proposed approach

We follow the CNN-based end-to-end acoustic modeling
approach originally proposed for automatic speech recog-
nition in [9] and developed further in [10, 11]. In this ap-
proach, as illustrated in Fig. 1, the CNN consists of a feature
stage modeled by N convolution layers followed by a clas-
sification stage modeled by a multilayer perceptron (MLP).
In our studies, the feature stage consists of one convolu-
tion layer (N = 1) and the classifier stage consists of an
MLP with a single hidden layer or a single layer perceptron
(SLP), i.e., no hidden layer. The motivation behind such
a simple architecture choice comes from the work in [7],
where the speech is transformed once through Fourier trans-
form and the first order and second order statistics of the
magnitude spectrum estimated over the utterance are classi-
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Figure 1: Diagram of a Convolutional Neural Network.

fied using a linear discriminant analysis classifier or a MLP
with a single hidden layer. In comparison to that, we could
interpret the convolution layer as a transformation of the
signal that is learned from the data in a task driven manner,
as opposed to the Fourier transform, and the classification
stage as a linear classifier in the case of SLP and as a non-
linear classifier in the case of MLP. Furthermore, we do not
perform any max-pooling as we experimentally observed
that it did not improve the performance of the system.

Each speech sample is split into blocks of length w., ms
and shifted by w,; r4 ms. Each block is fed successively to
the CNN, i.e., the CNN outputs one score per block. Fig. 2
shows the processing carried out in the convolution layer.
Specifically, the convolution layer consisting of n; filters
processes a block of signal of length w., ms in short seg-
ments based on the length of the filters kW (kernel width)
and shift dW. The output of the filters are fed to an activa-
tion function, which is a hard hyperbolic tangent function
in this case, i.e.,

1, ifx>1
fl@y=¢-1, ifz < -1
x, otherwise.

The output of the activation function is subsequently fed
to the classifier stage, which in the case of MLP has a hid-
den layer composed of ny,, hidden units followed by hard
hyperbolic tangent activation function. The output layer of
the MLP is a softmax layer composed of two units corre-
sponding to the genuine class and the attack class. The pa-
rameters of the classifier and feature stages are randomly
initialized and trained via the stochastic gradient descent al-
gorithm using a cross entropy optimization criterion. The
hyper parameters wspife, Wseq, KW, dW, ny and ny,, are
determined based on the frame-level error rate computed
over a development set.

3. Experimental setup
3.1. Databases and protocols

We validate the proposed approach on two databases: the
Audio-Visual Spoofing (AVspoof) database, which contains
both logical and physical attacks and the Automatic Speaker
Verification Spoofing (ASVspoof) database, which contains
only logical attacks. In the remainder of this section, we de-
scribe these databases as well as their evaluation protocols.



Wse

Figure 2: Illustration of the convolution layer processing.
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3.1.1 AVspoof

The AVspoof database! contains replay attacks, as well as
speech synthesis and voice conversion attacks both pro-
duced via logical and physical access. In the remainder of
the paper, we call “AVspoof-LA” the subset containing gen-
uine samples and logical access attacks and “AVspoof-PA”
the subset containing genuine samples and physical access
attacks. This database contains the recording of 31 male and
13 female participants divided into four sessions. Each ses-
sion is recorded in different environments and different se-
tups. The attacks are played with four different loudspeak-
ers. For the replay attacks, the original samples are recorded
with four different microphones.

3.1.2 ASVspoof

The ASVspoof? database contains genuine and spoofed
samples from 45 male and 61 female speakers. This
database contains only speech synthesis and voice conver-
sion attacks produced via logical access, i.e., directly in-
jected in the system. The attacks in this database were gen-
erated with 10 different speech synthesis and voice conver-
sion algorithms. Only 5 types of attacks are in the training
and development set (S1 to S5), while 10 types are in the
evaluation set (S1 to S10). This allows to evaluate the sys-
tems on known and unknown attacks. The full description
of the database and the evaluation protocol are given in [25].
This database was used for the ASVspoof 2015 Challenge
and is a good basis for system comparison as several sys-
tems have already been tested on it.

3.1.3 Evaluation protocols

Both databases are divided into three subsets, each contain-
ing a set of non-overlapping speakers: the training, devel-
opment and evaluation set, presented in Table 1. However,
we do not use the same evaluation protocol for the two
databases. On the AVspoof database, the development set

Uhttps://www.idiap.ch/dataset/avspoof
Zhttp://dx.doi.org/10.7488/ds/298

Table 1: Number of speakers and utterances for each set of
AVspoof and ASVspoof databases: training, development,
evaluation.

Database | set speakers utterances
male | female | genuine | LA attacks | PA attacks
train | 10 4 4973 17890 38580
AVspoof | dev 10 4 4995 17890 38580
eval 11 5 5576 20060 43320
train | 10 15 3750 12625 -
ASVspoof | dev 15 20 3497 49875 -
eval | 20 26 9404 184000 -

Table 2: Hyper-parameters of the CNN trained on the three
datasets: AVspoof-PA, AVspoof-LA and ASVspoof.

Wehift | Wseq kW dW ny Nhu
(ms) (ms) | (samples) | (samples)

AVspoof-PA 10 310 300 100 20 -
10 310 300 10 20 100

AVspoof-LA 10 310 300 100 100 -

10 310 300 100 20 20

ASVspoof 10 310 300 100 100 -

10 310 300 100 20 | 2000

is used to choose the threshold as to obtain an Equal Er-
ror Rate (EER), i.e., the false alarm rate and the miss rate
are equal. Then, the performance is evaluated by comput-
ing the Half Total Error Rate (HTER) on the evaluation set.
On the other hand, to evaluate our system on the ASVspoof
database, we follow the evaluation protocol used during the
ASVspoof 2015 Challenge to be able to compare to other
systems. In both the development and evaluation set, the
threshold is fixed independently for each type of attack with
the EER criterion. Then, the performance of the system
is evaluated by averaging the EER over the known attacks
(S1-S5), the unknown attacks (S6-S10) and all the attacks
(S1-S10).

3.2. Systems

Before feeding the raw speech signal to the CNN, we
(a) perform an energy-based voice activity detection to re-
move the silence parts at the beginning and end of the ut-
terances and (b) normalize the signal in each segment of
the kernel width kW by its mean and variance, as done in
the earlier work on speech recognition [9, 11]. As detailed
in Section 2, there are six hyper-parameters that need to be
set: Wshift, Wseq> KW, dW, ny and np,. These hyper-
parameters are chosen based on the frame-level accuracy
achieved on the development set during the training phase.
Table 2 presents the values of these hyper-parameters for
each dataset: AVspoof-LA, AVspoof-PA and ASVspoof,
found through a coarse grid search. In the case of SLPs,
there is no 1.

In addition to studying the proposed CNN-based ap-
proach as a stand alone system, we also study the score



Table 3: HTER (%) of PAD systems on AVspoof, separately
trained for the detection of Physical Access (PA) and Logi-
cal Access (LA) attacks. Evaluation set.

LFCC | RFCC | LTSS | CNN | CNN | Comb | Comb
[4] [4] [6] SLP | MLP X +

LA | 0.00 0.03 0.04 | 0.07 | 0.02 | 0.00 0.00

PA | 5.00 2.70 0.18 | 0.11 | 0.09 | 0.09 0.09

level combination of the CNN-based system with off-the-
shelf long term spectral statistics (LTSS)-based system de-
veloped in [7] and further investigated in [6]. More pre-
cisely, we combine the probabilities of genuine and attack
classes estimated by the two systems through the product
and the sum combination rule [19].

The development of the CNN-based system was done
using Torch7 toolkit [3]. All the experiments are repro-
ducible’.

4. Results

In this section, we present the results obtained on the
three datasets: AVspoof-PA, AVspoof-LA and ASVspoof.

4.1. AVspoof database

Table 3 presents the results of the proposed approach
compared to the best systems reported in [4] and [6].
These systems correspond respectively to standard spec-
tral features-based approaches using GMMs (denoted as
LFCC and RFCC) and a spectral statistics-based approach
using LDA classifier (denoted as LTSS) on AVspoof-PA and
AVspoof-LA. LFCC and RFCC stand respectively for Lin-
ear and Rectangular Frequency Cesptral Coefficients and
refer to cepstral features estimated by placing triangular
shaped filters and rectangular shaped filters on a linear
scale [15]. Comb (x) and Comb (+) denote the combina-
tion of the LTSS system and the CNN MLP system based on
the product rule combination and the sum rule combination,
respectively.

We can observe that the CNN-based approach yields per-
formance comparable to or better than systems reported in
the literature. The CNN MLP system performs slightly bet-
ter than the CNN SLP system on both physical and logical
access attacks. The combination with LTSS leads to a slight
improvement for logical access attacks.

4.2. ASVspoof database

Table 4 presents the results per type of attack, over the
known attacks (S1-S5), the unknown attacks (S6-S10) and
all the attacks, and compares the performance achieved
with the proposed end-to-end CNN-based approach with
the performances reported in the literature. Systems A-E

3https://gitlab.idiap.ch/hmuckenhirn/CNN-voice-PAD

correspond to the five better performing systems of Inter-
speech 2015 ASVspoof challenge. LFCC features resulted
in the best system in [4]. Constant Q Cepstral Coefficients
(CQCC)-based system resulted in the best overall system
in [21]. {DNN,RNN} corresponds to the best system ob-
tained in [14], which is a score-level fusion of features
learned with a Deep Neural Network (DNN) and classified
with a LDA and features learned with a Recurrent Neural
Network (RNN) and classified with a support vector ma-
chine. In both cases the features are learned from filter bank
energies. The system {CNN,RNN,CNN+RNN} was devel-
oped in [29] and is a score-level fusion of a CNN, a RNN
and a combined CNN and RNN, all trained on the log-scale
spectrogram of the speech utterances. In the LTSS-based
approach, the LDA based system yielded the best system
for the known attacks condition and the MLP-based system
performed the best on the unknown attacks condition [6].
Thus, we present the two LTSS-based systems.

On S1-S9 conditions, the CNN SLP system yields a per-
formance comparable to the systems reported in the litera-
ture. On S10 condition, the performance is worse than the
systems compared. With CNN MLP, i.e., with the use of
a hidden layer, the S10 performance improves but is still
significantly high. Overall, CNN SLP system performs
comparable to or better than CNN MLP system, except for
S10. A classifier fusion of CNN SLP and LTSS MLP using
product combination rule, denoted as {CNN SLP x LTSS
MLP}, and sum combination rule, denoted as { CNN SLP +
LTSS MLP}, yields one of the best systems on both known
and unknown attacks. Together with the investigations on
AVspoof database, this indicates that the proposed CNN-
based approach is complementary to the LTSS-based ap-
proach.

5. Analysis and discussion

In this section, we first analyze the frequency response of
the filters learned by the CNN on the three datasets. We then
compare our system to the one developed in [9] for speech
recognition. Finally, we compare our approach to PAD sys-
tems using deep architectures as a feature stage classifier.

5.1. Analysis of convolution filters

The proposed CNN-based approach performs well on
AVspoof-PA, AVspoof-LA and ASVspoof (except for S10).
One of the question that arises is: what is being learned by
the filters in the convolution layer? In the earlier work on
automatic speech recognition, it was found that the filters
in the first convolution layer model the spectrum “in-parts”.
One way to understand the manner in which different parts
of the spectrum are modeled is to observe the cumulative
frequency response of the learned filters [10, 11]. Thus,
we analyzed the filters by computing the 512-points FFT
of each filter in the CNN-based system and calculating the



Table 4: EER (%) per type of attack computed on the ASVspoof database. Evaluation set.

System | S1 [ S2 | S3 | S4 [ S5 [ S6 | S7T | S8 [ S9 | S10 [ known | unknown | all |
ATl12] 0.10 0.86 [ 0.00 [ 0.00 [ 1.08 | 0.85 [ 024 0.14 [ 035 [ 849 [ 0.408 2013 [ 1.211
B [8] 000 002 | 000 | 0.00 | 0.01 | 0.02 | 0.00 002 | 0.00 | 19.57 || 0.008 3922 | 1.965
C[2] - - - - - - - - - - 0.058 | 4998 | 2.528
D [27] 00 00 | 00 | 00 | 000 | 001 | 00 00 | 00 | 261 | 0.003 5231 | 2.617
E[1] 0.024 0.105 | 0.025 | 0.017 | 0.033 | 0.093 | 0.011 0.236 | 0.000 | 26.393 | 0.041 5347 | 5.69%4
LFCC [4] 0.032  0.500 | 0.000 | 0.000 | 0.126 | 0.151 | 0.011 0.234 | 0.032 | 5.561 || 0.132 1.198 | 0.665
CQCC [21] 0.005 0.106 | 0.000 | 0.000 | 0.130 | 0.098 | 0.064 1.033 | 0.053 | 1.065 || 0.048 | 0463 | 0.256
{DNN,RNN} [14] 00 00 | 00 | 00 | 00 [ 0. | 00 00 | 00 | 107 0.0 2.2 11
{CNN,RNN,CNN+RNN} [29] | 0.09 029 | 0.00 | 0.00 | 099 | 0.64 | 0.71 0.00 | 029 | 11.67 || 0.27 2.66 1.47
LTSS, LDA [6] 0.000 0.043 | 0.000 | 0.000 | 0.086 | 0.086 | 0.022 0.086 | 0.032 | 10.218 | 0.026 | 2.089 | 1.058
LTSS, MLP [6] 0.011 0.151 | 0.000 | 0.000 | 0.352 | 0.288 | 0.054 0.043 | 0.065 | 1.564 || 0.103 | 0403 | 0.253
CNN SLP 0.011 0.032 [ 0.032 [ 0.032 | 0.032 [ 0.032 [ 0.032 0.032 | 0.032 | 30.276 || 0.028 6.081 | 3.054
CNN MLP 0.011 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 0.054 | 0.043 | 28.572 || 0.037 5751 | 2.894
{CNN SLP x LTSS MLP} | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.011 | 0.000 0.000 | 0.008 | 1.553 | 0.000 | 0314 | 0.157
{CNNSLP + LTSSMLP} | 0.000 0.022 | 0.000 | 0.000 | 0.032 | 0.022 | 0.011 0.008 | 0.022 | 1.540 || 0.011 0.320 | 0.166
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Figure 3: Cumulative frequency response of the convolution filters learned on the ASVspoof, AVspoof-LA and AVspoof-PA

databases.

cumulative frequency response by summing the magnitude
spectra.

Fig. 3a and 3b shows the gain normalized cumulative fre-
quency response of CNN MLP systems for ASVspoof and
AVspoof-LA, which contain both logical access attacks. It
can be observed that in both cases the filters lay emphasis
on very low frequencies, with the maximum response lying
at 0 Hz. This contradicts the work in [13, 18], in which the
authors observed on the ASVspoof database that high fre-
quency regions were more discriminative. However, this is
consistent with observations made in earlier works [6, 21].
Specifically, in [6] the analysis of the LDA weights of the
LTSS-based system showed that more importance is given
to very low frequency regions than high frequency regions.
Furthermore, in [6] and [21] it was found that high fre-
quency resolution is needed to generalize the system to the
unseen S10 attack condition, which is based on concate-
native speech synthesis as opposed to statistical parametric
speech synthesis systems used in seen conditions. So one
plausible reasoning for our CNN-based approach to perform

worse on S10 condition is that the filters that model about
20ms signal (kW = 300 samples) are not able to capture
the highly localized discriminative information for the S10
condition in the frequency domain. The CNN-MLP studies
indicate that the generalization may not be improved by just
increasing the classifier stage complexity. A potential solu-
tion would be to find alternative CNN architectures, e.g.,
longer kernel widths, more convolution layers, or to com-
bine with complementary approaches, as demonstrated in
this article.

Fig. 3c shows the gain normalized cumulative frequency
response of the filters in the CNN MLP system for AVspoof-
PA. In comparison to AVspoof-LA, AVspoof-PA training
mainly differs on two aspects: (a) training with replay at-
tacks in addition to synthetic speech and voice conversion
attacks and (b) the speech is input through the sensor, which
can have an additional channel effect. As it can be seen
from Table 2, in the case of both AVspoof-PA and AVspoof-
LA, kW = 300 and ny = 20. As a consequence, there
are similarities between cumulative frequency response of



AVspoof-PA and AVspoof-LA, see Fig. 3 (b), with subtle
differences at low frequencies and high frequencies. In par-
ticular, the maximum response lies at a non-zero frequency
(= 60 Hz). Taken together, these observations indicate that
the CNN is capturing somewhat different discriminative in-
formation in the frequency domain for physical access at-
tacks and logical access attacks. Understanding these differ-
ences together with the role of dW and kW and the output
of the filters is part of our future work.

5.2. Comparison to deep learning based approaches

The proposed end-to-end PAD approach is inspired from
the works of Palaz et al. [9, 11], originally developed for
automatic speech recognition. So a fundamental question
that arises is: are there any differences? At the architec-
tural level, there are several differences. Firstly, for PAD
we observe that the kernel width kW is longer than the
kW for speech recognition. Palaz et al. found that using
kW = 30 samples, corresponding to ~ 2ms, at the first
convolution layer was optimal for speech recognition while
for our task the optimal value is kW = 300 samples, corre-
sponding to ~ 20ms, which is in the order of the frame size
conventionally used to derive short-term spectral features.
This indicates that the speech signal needs to be processed
differently for PAD and speech recognition in the time do-
main. Secondly, the architecture employed in this paper is
much simpler: only one convolution layer, no max-pooling
while for speech recognition Palaz et al. found that at least
three convolution layers along with max-pooling at each
layer was needed. We performed experiments by adding
more convolution layers and employing max-pooling at the
output of each convolution layer, we did not observe any
gains. This suggests that an architecture with low complex-
ity is sufficient for PAD.

Another point of comparison is the information captured
by the convolution filters. As presented in Section 5.1, the
filters for PAD are modeling highly localized frequency in-
formation. On the other hand, Palaz et al. found that the
filters learned at the first convolution layer give empha-
sis to the telephone bandwidth and frequencies above 6000
Hz [11]. This indicates that, even though the end-to-end
methodology is inspired from speech recognition, what is
learned by the CNN is indeed task specific.

The approaches proposed in [2, 14, 23, 29] employ deep
learning methods for PAD. The main difference with our ap-
proach is that all these approaches use an intermediate rep-
resentation of the speech signal as input: log-scale spectro-
grams or filter-banks output. Furthermore, these approaches
employ deep architectures with multiple hidden or convo-
lution layers to extract and model the information suitable
from the intermediate representations for PAD. In contrast,
our system contains only 1 convolution layer, with 20 or
100 filters that directly operates on the raw speech signal

and has at the maximum one hidden layer. Table 4 presents
the results of [2, 14, 29]. It is interesting to observe that
our approach with a SLP (in the classifier stage) performs
comparable or better than these systems, except on the S10
attack. This indicates that learning feature and classifier di-
rectly from the raw speech signal in an end-to-end manner
for PAD is beneficial and is worth pursuing.

6. Conclusions

In this paper, we proposed an approach that makes min-
imal assumptions, and learns the relevant features and clas-
sifier from the raw speech signal in an end-to-end manner
for PAD using CNNs. Our investigations showed that with a
simple architecture, a single convolution layer in the feature
stage and a SLP or a MLP with one hidden layer in the clas-
sifier stage, the approach performs well for both physical
access and logical access attacks and yields systems compa-
rable to or better than the state-of-the-art approaches, which
are largely based on standard short-term speech processing.
Furthermore, the proposed approach is complementary to
the LTSS-based approach. In the present study our analysis
was limited to filter frequency responses. Our future work
will focus on analyzing how these filters respond together to
the input speech signal to gain better understanding about
the signal characteristics that differentiate genuine speech
from attacks.
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