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might not be available. To solve these problems, we propose a
framework for modular robots that determines their structure
and program based on human demonstrations.

Programming by Demonstration (PbD) [1], [2] aims at
programming robots solely based on demonstrations. Quick
and user-friendly, PbD can replace teach pendants or text-
based command interfaces, which are currently common in
industry. It is a user-friendly method for skill transfer because
it leverages a learning strategy natural to humamstation.

Just as PbD offers accessibility and exibility in terms of
programming, modular robots offer these benets in terms
of robot assembly and control. Although anthropomorphic
manipulators seem an obvious choice to mimic human demon-
strations, a single manipulator is not likely to be capable of
performing the large variety of tasks found in industry. For
example, while demonstrating the task, the human may need
to step (in order to reach) or use several redundant degrees of
freedom in their body; these DOFs may not be necessary in a
robot optimized for the task. Our approach constructs a task-
speci ¢ serial kinematic manipulator with the required degrees
of freedom: this will have the required range of motion, but
Fig. 1: Modular robot setup used in the experiment. ~ cost less than full-sized humanoids.

However, it is neither trivial to nd the optimal module
assembly, nor to control the resulting robot robustly and pre-

|. RECONFIGURABLE AND AUTOMATICALLY cisely. The large design space makes modular robot synthesis

PROGRAMMABLE ROBOTS complex and time-consuming. To tackle this, both exhaustive
search-based and sampling-based methods have been used
ﬁ]—[G]; the former give consistent results but the latter are
mputationally more ef cient. Our framework generates the
st suitable robot assembly for the demonstrated task (e.qg.

How do | automate this taskPhis is a crucial question for
production engineers. In classical industrial automation—thirg
of a car factory—robots perform a small set of tasks for lon
periods of time. They were selected because their kinema iQ ) .
structure and strength suited the task requirements, and tfigff MOst energy ef cient), based on Icet al. [4] using an

motions were pre-programmed by a skilled programmer. gxhaustive yet _ef cient hierarchical composition synthe5|s._
The modularity of our approach makes the control design

exible manufacturing environments, tasks may change dail | . h bl hibits diff Ki
or hourly. The classical approach to automation is less suitalg\l;é)re complex since each assemoly exn Its different kinemat-
IS and dynamics. Most control approaches for modular robots

here: Buying a dedicated robot for each set of tasks ) . o
uneconomical and coding each task is too time consumi e decentralized and are either model-free (limiting perfor-

Further, quali ed programmers with the requisite knowledg ance) or mo_del-based (involving communication between
modules). In this paper, however, we use a simple approach for
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Fig. 2. Overview of the method: A demonstrator rst demonstrates a task with a demonstrator tool. The trajectory generator
converts this into a trajectory, which is used by the robot generator to nd the optimal robot assembly from the available
modules. Finally, the controller is generated and the task is automated.

from a task demonstrated by an operator. To program 2
different task, the operator simply demonstrates it, reasseml:9
the robot in the most suitable assembly suggested, and runs é
newly generated controller: reassembly and reprogrammw)
are achieved in one go. This approach provides several (ccg
saving) advantages over anthropomorphic robots for small aid
medium enterprises: the ability to recon gure makes a sing'~
system applicable to a wider range of tasks ( exibility); the
amount of expert knowledge required to program, assemt
and control a robot is low compared to conventional af
proaches (ease of use); the task-speci ¢ optimization reduc
the number of moving parts (reduced maintenance); modu_.
robots are easier to maintain as their parts are designed to:a
replaced (less down time). 2

We next detail the complete approach and demonstrate
in two different applications using the modular robot setup i
Fig. 1.

Il. A UNIFIED APPROACH TO FLEXIBLE AUTOMATION

Figure. 2 illustrates our concept. A human operator h:
a task to automate, dedicated tools to demonstrate the ti
(see e.g. Fig. 5), and a set of robot modules. First, the us
performs the task using the demonstrator tool to provide 12
system with demonstration data. Next, she places all ta<—
relevant objects into their intended positions for product|01:>
The object locations are sensed and delivered together with
demonstration data to th&ajectory GeneratarAs detailed in
Section II-A, the data are encoded in a task model from whic
the desired task-space trajectory is generated. This traject
is fed to theRobot Generatowhich nds the most suitable
module assembly as described in Section II-B. Finally, aft
assembly, the low-level motion contraCéntroller Generatoy
executes the demonstrated task as detailed in Section II-C.
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A. User-Friendly Task Transfer

coordinate  system, th
conditional distribution
P Xf1;X¢2jt is

O computed at each tim
step, yielding a tube o
Gaussians.

(a) The peg-in-hole task is demon-
strated in different contexts. Here,
we demonstrate a point-to-point
movement from the green to the
purple hole. At each demonstration,
the end-effector trajectory (gray),
and peg position and orientation are
recorded.

(b) To create a context inc
dependent representation
the end-effector data, wp
project them into the (local
coordinate systems that afe
linked to the green and pur-
ple holes.

(c) The projected data are
encoded using a Gaussi
Mixture Model (GMM),
which approximates the
joint probability density!
function P (X 1; X¢ 2;t).

(d) To generate the most
likely trajectory in eacl

,
=}
J \ J U
N r N\

(e) Given new positions of the two
holes, these results are projected i
the global coordinate system. They
are then fused using the product of
Gaussians to obtain the desired tra
jectory for the current situation (the
yellow tube represents the trajectory
distribution).

U

Fig. 3: lllustration of the task-parameterized model.

while manually controlling the robot through teleoperation,

Demonstration data are core to our approach. They candreby physically interacting with it (kinesthetic teaching).
obtained in various ways: Users can record the robot statiernatively, they can record themselves performing the task



and transfer these data to the robot. Since the robot is tBtMP) [10] and Probabilistic Movement Primitives (ProMP)
assembled at the time of demonstration (as its structure is[1d]. Whereas DMP only adapts to changes in goal position,
be determined) we choose the latter method. TP-GMM encodes relations to landmarks anywhere along the
To let PbD surpass simple record-and-replay behavior, thetion trajectory. Furthermore, as TP-GMM encodes spatial
robot must understand the objective underlying the demomlations, it also extracts soft motion constraints from the
stration data; it must comprehenthat to imitate as such demonstration data. Fig. 3 shows how this allows the motion
insight lets it generalize skills to new situations. For exampl& adapt to different orientations of start and goal landmarks.
while it may not understand “slice” a “pancake” in “half”, itLike TP-GMM, a ProMP allows adaptation of the trajectory
understands that it should move its end-effector above a certainile respecting movement constraints. However, its structure
object, align the end-effector plane perpendicular to the plarse inherently Euclidean, and therefore not well-suited for
of this object, and move it downwards until a certain point oarientation data.
the object. Given this, the robot must use its body to achieve4) Context-dependent movement adaptatiddovement
imitation. This requires the robot to kndwow to imitate Any  adaptation in DMP or ProMP requires the speci cation of a
method for PbD must address these core questions, whidw end-effector (goal) position explicitly. In the peg-in-hole
typically involves pre-structuring the task models. example, one must specify the exact center of the hole to
1) What to imitate: We use a Riemannian Task-allow the DMP or ProMP to reach it. In contrast, TP-GMM
Parameterized Gaussian Mixture Model (TP-GMM) to modelnly requires location and orientation of a coordinate system
the task [9]. This model can adapt a demonstrated task to niwked to the hole. These coordinate systems adapt not only
contexts, and allows the robot to handle both position and otite end-point, but also the direction of the movement for the
entation data. Context adaptation is achieved by representagproaching phase. They can be arbitrarily set without prior
the task in different (local) coordinate systems, as illustratésowledge of the task at hand, making TP-GMM more generic
in Fig. 3. These coordinate systems are linked to task-relevéimin DMP or ProMP. For the peg-in-hole example, the origin
objects or landmarks (the task context), and related to a glolo&lthe coordinate system linked to the hole does not need to
coordinate system. lie at its center; the required relation between end-effector and
By considering the demonstration data from different pehole is inferred from demonstration data.
spectives, the context-related robot motions and their impor-
tance in task execution can be determined. When demonsita-
tions are given in different task contexts (Fig. 3(a)), variarit’ Robot Assembly
and invariant regions appear in the local coordinate systemsrhe set of modules in our setup comprises a base, three joint
(Fig. 3(b, c)). The observed variance relates to the importan@@dules, ve link modules and one end-effector (see Fig. 4a).
of an object or landmark during task execution: invariancehe number of possible assemblies from a set of modules
indicates that the end-effector moved consistently with respgtows rapidly with the size of the set, making selection of
to an object, and variance indicates that the object state viag optimal assembly for a task challenging. To solve this
irrelevant to the end-effector motion. These local motions aw@mbinatorial problem, we eliminate assemblies hierarchically
their (co)variance are captured in the TP-GMM: this modé#]. We perform a series of increasingly computationally
represents the robot's understanding of the taskwleat to expensive tests on all assemblies and eliminate unfeasible ones
imitate at each step, as early as possible. From the remaining feasible
2) How to imitate: Having modelled the task, we obtainassemblies, we pick the best (in our case, that which can
a trajectory—how to imitate—as follows. We detect objectsachieve the task fastest).
and their coordinate systems in task space, and transform th©ur rst test eliminates all assemblies which do not have
TP-GMM into task-space coordinates (Fig. 3(d)). Using thie required Degrees of Freedom (DOFs). Next, we sample
product of Gaussians, we obtain a distribution of trajectories émd-effector poses from the trajectory given by the Trajectory
the task space, whose mean is the desired trajectory (Fig. 3(€@nerator in Section IlI-A, and rst eliminate assemblies
Furthermore, the robot must know how to relate the demowhose total length is less than the distance from the base to
strated data to its kinematic structure: a mapping is requirdtese poses, then assemblies that cannot achieve the poses
to relate the demonstrator state to the robot state. This clagiematically and statically are removed, and nally those
sical problem is called theorrespondence probleif2]. We assemblies that generate self-collision are discounted. For
resolve it practically, by working in task space using dedicatéolverse kinematics we use an iterative solver initialized from
demonstrator tools (see Section. IlI). several points to improve the chances of nding a valid
3) Encoding Orientation:The use of task space requiresolution. Self-collision is detected as in [4]: enclosing module
us to cope with the non-Euclidean space of orientation dageometry in spheres or cylinders, and determining collision
Unlike position data, statistical operations on orientation dafl@m pairwise distance checks.
are not straightforward as they do not allow Euclidean oper-From the remaining set of feasible assemblies, we generate
ations (e.g. the sum of two rotation matrices is not a rotatighe trajectory in joint space using the inverse kinematics
matrix). Riemannian geometry and statistics provide a way sesheme of Section |I-C and scale speed such that joint po-
perform PbD on orientation data [9]. sitions and torque limits are respected. The optimal assembly
Riemannian TP-GMM has several of advantages over othierthat which can perform the task fastest. Other optimality
well-known models such as Dynamic Movement Primitivesriteria may be considered (e.g. minimal energy consumption).
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Fig. 4. (a) The given modules and (b) a set of possible assemblies. The sketches of the robot components have been derive
using CAD data which has been downloaded from the website of the robot manufacturer (Schunk GmbH).

If no robot is found at the assembly selection stage, the pdltte vector of Coriolis and centrifugal terms and the vector of
is considered unfeasible for the available set of modules. Thigtion and gravity terms, this algorithm ef ciently provides
time required for obtaining this result depends on the number
of modules available, their geometry, and the actual path. M ()8 + C(d;d)da + n(q;d) =

NE mnod (0; G &:@;ModRob );

C. Robot Control whereq 2 RN is the vector of joint positions. Then, the

Once the assembly is selected and the user has assemBfstplVity-pased control commands are computed as:

the robot, the controller should make the arm perform the task U= NE o4 (0; G G;@ a;ModRob )+ Kr ;
without additional user intervention, which would otherwise
limit the swift recon gurability of the overall system. Thewhere
realization of such a controller is nontrivial, particularly since | _ A .
the kinematics and dynamics of the assemrk))led robo¥ depen =G+ Kv(@a @) r=(de @+ Ky(da @)
on the modules and their con guration. and whereK and Ky are positive de nite matrices of

To solve this challenge, we automatically generate ceproper dimension. Note: for each new assembly, the structure
tralized model-based controllers from kinematic and dynamModRob changes accordingly, so that the low-level control
parameters of the modules [7], [8]. Each module has a unigigealways computed with the correct model and thus always
ID and a set of characterizing parameters (module dat&)sures global tracking.
stored either in the module or in a database. The moduleTo track the encoded trajectories in task-space and pro-
data are based on an extension of the Denavit-Hartenbeide the proper referencgq to the passivity-based tracker
(D-H) convention as in [7], which is necessary to resolv@entioned above, we solving the inverse kinematic problem
the typical non-uniqueness of the standard D-H notation foumerically online [13]. By denoting witlp, 2 R® the
certain relative joint axis orientations. After assembly, théesired end-effector trajectory for the translation, wath=
module data are collected by the central control unit whidhr; ]" 2 R* the orientation unit quaternion, and with
generates a kinematic and dynamic model of the robot, frdie Jacobian pseudo-inverse (or damped least-squares inverse
which the controller is derived directly [8]. [14] near the kinematic singularities), the following kinematic

We denote the array of structures created by the cegpntrol scheme is employ&d
tral control unit byModRob . It contains the module data
and order of assembly. For an assembled robot with 4¢ = J%(0q) 4(qd; da)qd I 3%(q4)I(da) da;
degrees of freedom, we wish to track sufciently smooth 1)
joint-space trajectories|y 2 RN and automatically deploy with
a classical passivity-based tracking controller. We denote _ ®, + Ky(pr  Jp(0d)da) + Kp(pr Pk (dd))
by NE, . ( ;ModRob ) the algorithm that synthesizes Lo+ Ko Py 31 (gg)da) + Koeo(qq)
ModRob into a description of the assembled robot as in (2
[8] and performs the modi ed recursive Newton-Euler (N-E) | ) ) . .

When moving the robot from its rest position to the initial pose of the

methOd_ for pgssivity-based control as in [12] _By den_OtinQajectory, we wait until the inverse kinematic solution converges before
respectively withM (q), C(q;a)d, n(q; @) the inertia matrix, moving with a point-to-point motion in joint-space.



Our modular robot comprises the Schunk LWA-4P arm and
additional modules we manufactured to enhance its recon g-
urability (see Fig. 4). The low-level control is implemented
using Simulink Real-Time and a Speedgoat Real-Time target
machine equipped with a CAN-bus communication module.
The sampling rate used for control 390Hz.

) ) B. Experimental Results
(a) Spring loaded pen (b) Pickup Tool

. . . . Our industrial parther BMW provided a typical scenario
Fig. 5: Demonstrator tools used in the experimental evaluatlcmey would automate on their shop oors: xing insulation
material onto a car door. This skill requires pressing a previ-
ously mounted piece of fabric along a speci c trajectory. An
[gverview of the experimental setup and the results obtained are
provided in Fig. 6. The skill is transferred usiBglemonstra-
tions. To attain the required pressure, we used a spring-loaded
€= t(dd) r r k(qa) S(r) t (da) pen tool (Fig. 5a). By pressing the tool rmly against the

is the quaternion-based orientation error feedback vectorqﬂOr frame while tracking the desired trajectory, the required

which S( ) is the common skew symmetric matrix operatorpressmg force can be achieved. Following the procedures laid
out in sections II-A and 11-B, we obtain the skill model from

tk (0q) and  (gq) are the components of the unit quater- :
nion for orientation computed with the forward kinematicst.he demons_tra'uon _data, and the module _assembly. _The task
del in Fig. 6 displays the demonstration data (in red),

Since the assembled robot may be kinematically redundant, e . ) :
add damping in the null space to prevent oating null-spa Qe resulting skill model (green colored ellipses), and the

motions as in [15]. We emphasize that, given the automaticall r(_)d_uctlon (in blue_). As _the tracking t_ask requires '?‘rge
generated D-H table from ModRob, no user intervention ecision, the Gaussians display low variance perpendicular
required after reassembling the robc;t to its trajectory. The generated trajectory mimics all essential

motion features for proper pro le tracking.

The procedure for nding the optimal robot assembly starts
) _ with the search for all assemblies that could ful Il the task.
Two common types of automation tasks ar@JECtOry it the given modules, more th&h8 million module com-

tracking where a robot end effector must follow a particulag;yations “can be generated. Based on the assumptions that:
trajectory, andpick and place task@&P), where a robot must ;

) o i . i) all assemblies start with a base-module and end with an
grasp an object and deposit it at another location. Welding Hd-effector module, andi) two joint modules cannot be

gluing are examples of trajectory tracking, while bin pickingssempled consecutively: onB8 assemblies remain. From
is an example of P&P. In this section, we demonstraté Offase e eliminated assemblies that could not perform the
approach on both types of task. task kinematically or statically7Q), or encountered collision
(9). From the remaining four assemblies we selected the one
A. Experimental Setup that could perform the task fastest without exceeding the joint
The skill transfer uses a Vicon infrared motion trackingimits. The optimal robot assembly is displayed in the center
system. Though unconventional in industry, the system @ Fig. 6.
easy to set up and provides accurate tracking of any objectfter the robot is assembled, the controller is automatically
equipped with markers. The different tasks are demonstrageherated as described in Section II-C. Finally, the task is
with demonstrator tools(see Fig. 5), each relating to areplicated using the learned skill model and the robot con-
speci ¢ end-effector module. The known kinematic relatiotroller. Snapshots of a reproduction are displayed at the bottom
between the demonstrator tool and the corresponding ewd-Fig. 6.
effector module enables accurate transfer of end-effector posdo demonstrate the exibility of the approach, we use the
trajectories. same experimental setup to transfer a P&P task, as shown
During demonstration, we record poses of both the deman- Fig. 7. As in the door task, a dedicated demonstrator
strator tool and of objects that are relevant to the task (etgol (Fig. 5b) is used to capture the data. The task is to
door pose, P&P locations). Irrelevant data at the start atrdnsport an object from the repick location to the green
end of each demonstration are manually cut using a graphipédce location (see e.g. top of Fig. 7). Additionally, we wish
user interface, and the temporal signals are rescaled linedaHg robot to replicate the learned skill for previously unseen
to the interval[0; 1]. For reproduction, we optimize the ve-combinations of pick and place locations. To achieve this,
locity prole along the trajectory to improve performancewve demonstrate the task @ndifferent combinations of pick
and respect joint limits. Although the optimization mightind place locations. The demonstrations allow the robot to
alter the demonstrated motion dynamics, in many industridétermine the importance of the pick and place locations in
applications, including our examples, successful task executidifferent sections of the trajectory. This is re ected in the
does not depend on this. Gaussian Mixture Model (GMM) tting the data set, as shown

In (1) and (2), , Ky, Kp, K1, K, are positive gaingk (dad)
is the position of the end effector computed with the forwa
kinematics and nally

I11. APPLICATION



in Fig. 7, by the colored ellipsoids. The algorithm clearly Certainly, an interesting extension of the motion con-

distinguishes the variant and invariant regions required twller would be the inclusion of automatic generation of an

reproduce the task; low variant regions appear in the pick amdpedance control scheme starting from the automatically gen-

place frames at pick and place actions, respectively. erated robot description from [7], [8], which could potentially
The optimal assemblies of the robot are determined badegl combined with the demonstration-driven encoding of the

on the demonstration data, and on the desired pick and plawgedance target parameters as in [17], [18]. In addition,

locations. The approach for selecting the optimal assemigpproaches to optimize the redundancy resolution, instead of

follows the same steps of the previous task. In this cas#mply adding damping for the null-space motions, could be

the total time required for nding the optimal assembly waslso considered.

under5 minutes. At the bottom of Fig. 7 are two successful

replications of the pick and place task in previously unseen V. CONCLUSION

situations. As the task con guration changes, the ability of

the robot assembly to execute the task needs to be assess otivated by the increasing need for easy implementation of

This is achieved by applying the inverse kinematics solver ﬁjutomanon in small and m_edlum-5|zed enterprises, we present
advance. a scheme whereby a task is demonstrated by a human, and the

optimal modular robot assembly as well as the control for this
task is automatically generated. Despite tremendous progress
IV. DISCussION in PbD in recent years, the ability to reproduce demonstrated

Our proposed approach has three fundamental steps: trafls may be limited by the structural capability of classi-
tory generation, assembly selection and automatic controlfé xed-structure robots. With the proposed framework, we
generation. Here, we discuss open challenges and possffPlve such hardware limitations by making the physical
improvements for each step. structure fully adjustable: we assemble a robot from modules,

The number of demonstrations required very much depenfgich are selected to optimally t the task programmed by
on the task to be transferred (namely, if there are possitqgmonstratlon. We also remove limitations to modular robot
variations), and on the teaching propensity of the demonstrafefnology by performing trajectory planning using PbD and
(namely, if the user shows useful variations of the same tal3 9enerating robust motion control automatically.
to the robot learner). Then, the amount and quality of the OUr framework, for the rst time, combines recent develop-
demonstrations will in uence the generalization capability of?€nts in PbD, assembly selection, and controller synthesis of
the approach, meaning that the number of demonstratigR@dular robots. It enables the exploitation of modular robot
also depends on the generalization capability that is expect§§0n gurability and paves the way for exible automation.
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Fig. 6: Overview of experimental results for trajectory tracking task.



Fig. 7: Overview of experimental results for the P&P task.
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