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ABSTRACT
The use of smartphone sensing for public health studies is appealing
to understand routines. We present an approach to learn nightlife
routines in a smartphone sensing dataset volunteered by 184 young
people (1586 weekend nights with location data captured between
8PM and 4AM.) Human activity is represented at two levels, namely
as the types of places visited and as the areas of the city where those
places are. Routines extracted with two topic models (Latent Dirich-
let Allocation and Hierarchical Dirichlet Process) are semantically
meaningful and represent different moments of the weekend night,
depicting activities such as pub crawling. The inference capacity of
the routine representation is demonstrated with two classification
tasks of value for alcohol research (alcohol consumption through-
out the night, and heavy alcohol consumption.) The results suggest
that nightlife routine mining could be used as a complementary tool
to traditional survey-based methods in public health studies, and
also inform other institutional actors interested in understanding
and supporting youth well-being.
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1 INTRODUCTION
There is growing interest in the use of smartphone sensing for pub-
lic health studies, as these devices enable the collection of everyday
life sensor data that allow to reason about people’s activities and
their connection to health and well-being variables. Mobile data
has been used to estimate mood and stress levels [1, 11], to assess
possible alcohol consumption [3, 32, 55, 59], or smoking [45].

Routines are used by people to arrange their everyday life. As
defined in health research, routines are regularities in activities and
the spatial, temporal and social contexts in which these activities
unfold [29]. The extraction of human routines from mobile data
has gathered substantial attention [19–21, 28, 39, 49, 60]. Routines
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describe people’s regular activities in a summarized manner, and
highlight deviations from these trends. In addition, routines can be
used for inference tasks, such as understanding the typical activities
that a person may perform [4, 6].

While previous research in routine discovery has made signifi-
cant progress [19–21, 28, 39, 49, 60], open questions remain regard-
ing the use of methods for specific time periods and populations of
interest. We investigate the use of location data to model young peo-
ple nightlife habits. We specifically address two open issues. First,
unlike most previous works, which have largely focused on daytime
habits, our objective is to study routines of youth in the nightlife
setting. Nightlife activities on weekends tend to have a higher de-
gree of flexibility than on weekdays. Yet these leisure activities
do not have the same regularity and have fewer frequent patterns
than daytime routines do [12]. The data we analyze comes from
a mobile crowdsensing experience capturing nightlife behaviour
of 200+ young people [54], in which sensor data was collected be-
tween 8PM and 4AM on Friday and Saturday nights. As a second
open issue, most previous works rely on manual labelling to obtain
semantic information for routines [5, 8, 20, 22, 28, 60]. In contrast
to this, we follow an approach to automatically represent places in
two ways, namely by adding semantic information to raw location
traces via place matching, and by associating location traces to
regions of the city that function as mid-level descriptors of human
activity.

First, our pipeline uses existing methods to extract stay points
from location traces [41], and creates two place representations:
one based on matching stay points to semantic venues adopting
a Hidden Markov Model [7]; and another one that assigns stay
points to urban areas called stay regions. In the second stage of the
pipeline, these representation are fed as input to two topic mod-
els, namely Latent Dirichlet Allocation (LDA) [9] and Hierarchical
Dirichlet Process (HDP) [61], employed in the past to model human
behaviours [20, 28, 60], to extract nightlife routines. We show the
inference capacity of the routines discovered in two classification
tasks of interest for public health: consuming alcohol in a given
night; and engaging in heavy drinking in a given night.

The contributions of this work are two-fold:
1. Our framework extracts routines that characterize youth nightlife

behavior using real-life mobility data of over 200 study participants.
Two place representations (semantic individual places and stay
regions) and two topic models (LDA and HDP) are studied and
compared. The discovered routines represent different periods of
the night, and characterize typical behaviours, like pub crawling or
going out for dinner.

2. We assess the value of routines on two classification tasks
relevant to alcohol research that infer whether users drink on a
given night and if so, if users engage in heavy drinking. Our method
infers both tasks with 72% accuracy. For the two classification tasks,
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we analyse what routines and features are more discriminant, and
demonstrate that the routine representation is valuable.

The paper is organized as follows. Section 2 introduces related
work. Section 3 provides a description of the datasets we employed.
Section 4 describes the methods for place representation. Section 5
introduces the topic model approach for routine mining. Section 6
describes the inference tasks. Section 7 presents and discusses the
results. Finally, conclusions are drawn in Section 8.

2 BACKGROUND AND RELATEDWORK
2.1 Basic Definitions
A routine is a spatio-temporal regularity that is semantically mean-
ingful, characterized by frequent stays during concrete time periods
in places with the same semantic meaning. This could involve stay-
ing at the same exact place with the same location or going to
different places with the same connotations.

A location point is a single estimate of user location. It is char-
acterized by its coordinates, timestamp, and accuracy.

A stay point is a group of consecutive location points spatially
close where the user spent a period of time [41]. It is defined by the
center coordinates, the timestamps when the user arrived and left,
the worst accuracy of all location points forming the stay point,
and the distance between its two farthest location points.

Finally, a stay region is a cluster of spatially close stay points
that characterizes an area of a city or town.

2.2 Semantic enrichment of trajectories
One frequent step in mobility-related tasks is to enrich raw location
traces with semantic information, often manually [4, 5, 8, 20, 22,
26, 28, 60], but also in an unsupervised manner [2, 23, 40, 42, 51,
65, 66, 68] . With the latter approach, traces are first divided into
move or stay points. This segmentation is performed using grid-
cells [2, 66], density-based clustering [38, 64], or spatio-temporal
clustering [23, 40, 42, 51, 65]. In our work, we use the algorithm
proposed in [42] with some changes. This algorithm uses a time-
based clustering technique that detects a stay point if the user stays
in a small geographic region for a period of time.

The next step is to match each point to a place. In general, an
external place database is used as reference. The main approaches
can be divided into geometry-based [2, 66] or probability-based
[7, 8, 23, 25, 40, 65]. Geometry-based approaches associate a location
point with the places it intersects with. These approaches suffer
from their inability to perform place disambiguation if one point
intersects with more than one place. Probabilistic-based matching
addressed this problem known as place ambiguity [7], by choosing
the most probable venue among the candidates of a location point,
e.g. using Hidden Markov Models (HMM) [7, 8, 40, 51, 65]. In this
case, the problem of matching is finding the most likely sequence
of places, represented as HMM states. In our work, we adopt the
place matching algorithm proposed in [7] to enrich our sequence
of stay points with semantic information.

2.3 Routine discovery
There has been extensive work regarding the use of sensor data
for both low-level activity discovery [43, 44, 56, 57, 69] and to ex-
tract routines [8, 19, 20, 27, 28, 39, 49, 60, 67]. Early approaches

used Principal Component Analysis [19, 24, 30]. More recent work
[13] used a neural network based on the Continuous Bag-of-Words
model to handle the semantics of a point of interest at different
intervals of the day, clustering these representations to derive dif-
ferent weekday and weekend habits. Lv et al. [39] define location
matrices per day (each entry indicating how long each user stays
in a concrete place during that day), and cluster them to generate
routine activities that show the probability of a user being in each
place over time. Likewise, Xu et al. [64] define matrices indicating
where each user was at different timeslots, finding similarity stay
patterns.

Topic models, primarily Latent Dirichlet Allocation (LDA) [8,
14, 20, 22, 28, 67], but also Hierarchical Dirichlet Process (HDP)
[44, 60, 69] and others [21, 27, 49, 50, 63] have been used to discover
user activities and routines. Farrahi et al. [20] represented a user’s
day as a sequence of cell tower labels indicating whether the user is
at home, work, or elsewhere. Words are generated by concatenating
locations and attaching a time label, and fed into LDA. Huynh et
al. [28] feed accelerometer data into LDA to find low-level activi-
ties such as “sitting”. Sun et al. [60] employed HDP on raw sensor
data to discover routines. While our work takes inspiration of the
bag-of-words model of [20], there are four differences. First, we
study nightlife weekend routines, compared to most previous work.
Second, we study both HDP and LDA to overcome the need to
pre-specify the number of topics. Third, we add the semantic infor-
mation in a fully unsupervised way using twelve place categories
and also the regions of the city. Finally, we used the mined routine
representations for two nightlife-related classification tasks.

2.4 Ubicomp and alcohol consumption
Several works have explored the relation between alcohol consump-
tion and young people behaviours and location using self-reported
data [16, 17, 34–36]. These papers found that heavy drinking takes
place both in private places and in nightlife venues (bars, pubs,
nightclubs). Other work [16, 17] found that heavy drinking nights
started mainly at private places (62%) and nightlife venues (22%),
finding a relation between heavier drinking and the duration of
those nights. Mobile phones have also been employed to collect data
about drinking behaviours via SMS [33]. Santani et al. [54] proposed
to investigate nightlife in Switzerland in the Youth@Night mobile
crowdsourcing study, which recorded different types of smartphone
sensor data in the background and asked users to report drinking
events using short surveys to described consumed drinks, social
companions, visited places, and their ambiance.

As novelty, our work uses nightlife routines as a representation
of a night period to infer alcohol consumption and heavy drinking.
Compared to previous work [55], we also use the Youth@Night
dataset (see Section 3), but only the location sensor data is used here.
No additional logs, like Bluetooth, applications, or accelerometer,
are employed. Our features use solely mobility data, explored in
other works only in terms of statistics about stay points (number,
accuracy, duration), traveled distance, and raw speed. In our case,
more complex mobility information is used in the form of routines.
These routines are then used as input to infer relevant information
for public health studies on alcohol consumption.
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Figure 1: Distribution of the percentage of
time with location information available
across user nights.
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Figure 2: Place category distribution in
Youth@Night and Foursquare data.

3 DATASETS
3.1 Youth@Night dataset
The Youth@Night study [54] investigated nightlife behaviour of
young people in Switzerland, focusing on two cities: Zurich and
Lausanne. Between September and December 2014, this study col-
lected smartphone data from volunteers about their activities on
Friday and Saturday nights from 8PM to 4AM. The study was ap-
proved by the ethical boards of the cantons of Zurich and Vaud.
For the rest of this paper, we will refer to these weekend nights as
user nights. All participants were young people between 16 and 25
years old. Using an Android application, participants reported drink
surveys in-situ, indicating the drinks they consumed (name, size,
alcoholic or not), where they did so (city and place category), and
who they were with. In total, this campaign collected 2531 drink
surveys from 241 participants during 2867 user nights.

In parallel, smartphone sensor data was collected in the back-
ground. Complete details on the list of sensors can be found in [54].
We focus on the location data, estimated using both GPS and GSM,
and captured at high frequency for one minute, every two minutes.
Every location point includes coordinates (latitude and longitude),
radio of accuracy in meters (higher values indicate more uncer-
tainty about users’ location) and timestamp. Participants could use
their devices freely, and thus turn off their GPS or wireless sensor.
This implies that location is sparse and with frequent gaps. Fig.
1 shows the distribution of the percentage of time when location
was available per user night. It is clear that the dataset comprises
both user nights with a high percentage of location data, and user
nights with little data. In total, there is location for 1586 user-nights
coming from 184 unique participants.

3.2 Foursquare dataset
The database used to semantically enrich location traces consists of
Foursquare (4SQ) venues in Switzerland [47], as 169K 4sq venues
retrieved in 2016. Each venue is assigned to a category according
to a hierarchy tree1. The list includes Arts & Entertainment (A&E);
College & University (C&U); Event (E); Food (F); Nightlife Spot (N);
Outdoors & Recreation (O&R); Professional & Other Places (P&O);
Residence (R); Shop & Service (S&S); Travel & Transport (T&T); and
Unknown (U). Note that Foursquare considers college residences to
be under the College & University category, and hotels to be under
Travel & Transport. We use such categories to label our venues,
and if we do not have a category for a venue, we categorize it as
Unknown. We filter this dataset to remove venues non-related to
nightlife, with 128K venues remaining after filtering.

Fig. 2 show the distribution of venues across categories for the
Foursquare data. Compared to the distribution of places reported
by users in the surveys it is clear that there is a significant differ-
ence. This is especially important for the Residence venues, which
represent over 50% of the places in Youth@Night surveys and are
less than 5% of the Foursquare data. Information about the users’
home was directly retrieved from the mobile survey, rather than
using temporal statistics [7, 8, 65].

We also use data from Google Places to obtain semantic labels
for particular cases, according to the following procedure:

1. Propagation from surveys: We intersect the places where users
reported to be in surveys and the extracted stay points. For each
drinking event occurring during a stay point, we add a venue to
our place dataset. The location of the venue is the stay point area,
whereas the category is the one reported by the participant. On the
surveys, users could match their location to a Foursquare venue, or
simply indicate the type of place. Whenever the Foursquare venue
was available, we query the Foursquare API2 to obtain the venue
information. If this was not available, we use the manual tagged
type. With this approach, we added 1117 places to the database.

2. Adding Google Places: Since 4sq tends to have more informa-
tion about cities than for rural areas, it was found that several stay
points tended to remain unmatched. To reduce this, we queried
Google Places API3 to find additional nightlife related venues. Be-
cause the location dataset is from 2014, and this matching was
performed in 2019, we analysed how much nightlife related places
actually changed since the time when the Foursquare venue data-
base was collected. We concluded that the differences are not signifi-
cant enough, and thus we assume that the venues are mostly similar.
It is important to notice that we are not interested in specific venues
and rather focus on venue categories, i.e., a food-related place that
changed names but continued to be a food place remains the same
in terms of category. We query Google Places API with a radius of
150m around stay points that do not have any possible candidates.
We only consider nightlife related places, ignoring shops or other
daytime venues. With this approach we find 1065 places. We con-
vert Google types to 4SQ categories using a correspondence table
(not shown for space reasons). With this, the final place dataset has
130k venues.

1https://developer.foursquare.com/docs/resources/categories
2https://developer.foursquare.com/docs/api
3https://developers.google.com/places/web-service/intro
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4 SEMANTIC PLACE REPRESENTATION
4.1 Stay Point Extraction
This is the first step to process the location data. We use the method
in [42], with slight changes. This algorithm uses spatio-temporal
clustering to obtain stay points given a list of consecutive location
points. The algorithm finds a stay point when three constraints are
met:

1. The maximum distance between any two location points is
not larger than a distance threshold Dmax . This value limits how
big the areas covered by stay points can be. A large threshold will
tend to merge different places, whereas a smaller one risks dividing
a place visit into several small visits.

2. The time difference between the first and the last location
points is larger than a minimum time threshold Tmin . In other
words, the user stays at least Tmin in the stay point.

3. The time difference between consecutive location points is
smaller than Tmax . This ensures that the location points under
consideration are close in time. This is particularly important for
the dataset at hand, since it is frequent to find gaps in the location
information. Thus, we need to ensure that no stay points are found
using location points with great separation in time. For example,
users may turn the GPS on when they leave a bar and turn it off
when they reach their destination (e.g. a club). A stay point should
not be found if users turn the GPS back on again several hours later
when they want to move somewhere else, since we cannot know if
they stayed there the whole time.

A stay point is defined by its center coordinates, the timestamps
when the user arrived and left, the worst accuracy of all points
forming the stay point, and its radius (distance between its two
farthest location points.)

4.2 Place Representation 1: Place Matching
Extracted stay points are then matched to concrete venues. This
is a difficult task due to the inherent ambiguity of stay points to
indicate that users could be associated to several candidate places.
To mitigate this, we adopt the algorithm in [7] for place matching,
based on two steps: candidate place generation and place matching.

Candidate place generation. For each stay point, we obtain a list
of candidate places where the user may have been. We consider
all places within a radius r of the center of the stay point. If r is
larger, we have more candidates and more stay points are matched.
However, the larger the radius, the less likely the user was really
there. Therefore, a small r results in more unmatched venues but
more confident matching.

Place matching using HMMs. We then match a stay point to
the best candidate. To deal with place ambiguity, the work in [7]
proposed an HMM, describing a series of hidden states (candidate
places) that emit observations (in our case, stay points). An HMM
is defined by the initial, transition, and emission probabilities. The
initial probabilities for a user to start a night in one of the possible
places is computed as the fraction of candidate places with each
4SQ category. Transition probabilities of moving between each 4SQ
category are computed between consecutive candidates. Finally, for
the emission probabilities of 4SQ registering some coordinates if the
user was in that place, each candidate place has its own emission
probability, favoring venues overlapping with the accuracy radius

of the location point, with the maximum emission given when the
stay point or the place area are contained in one another.

Once the the HMM is learned, the Viterbi algorithm is used to
find the most likely sequence of places [62]. Given the probabilistic
nature of HMMs, if one of the stay points has no candidates, none
of the following stay points of the night can be matched either.
We address this issue by resetting the Viterbi algorithm when a
place has no candidates and starting again in the next stay point.
This does not add much noise to the matching process, as location
information is already missing throughout the night.

4.3 Place Representation 2: Stay Regions
Given the inherent ambiguity of place matching, mistakes occur
in the process, e.g., considering that a user was in a bar instead
of on the street next to the bar. This matters for our task as we
focus on both nightlife and the particular demographics of young
people, for whom the places they go to might not always match the
venues found in Foursquare or Google Places. Tomitigate the effects
produced by inaccurate place labeling, we also investigate the use
of stay regions to describe a city. Our alternative is to define user-
visited regions that have semantic meaning, e.g. lakeside, residential
area, etc. This representation reduces the ambiguity of concrete
matched venues where the user is, while providing an idea of the
types of places users visit. We implement this task in two steps:

Cluster stay points into stay regions. We use hierarchical clus-
tering to derive stay regions from stay points. We use stay points
instead of 4SQ venues since they represent better the areas of in-
terest of the studied population. We employ average linkage and
the spatial distance between the centre of stay points as distance
measure. A stay region is created among stay points with a distance
smaller than 500 m. Note that although the centre of the stay points
is considered for the distance, stay regions are defined using the
area covered by the stay points with their radius. Therefore, they
may overlap with one another.

Obtain stay region type. This assigns a semantic label that repre-
sents the type of a region. For this purpose, we consider the 4SQ
categories associated with the stay points inside the cluster. We
count the number of stay points per category and then apply TF-
IDF to consider infrequent categories as more relevant. To do this,
we make an analogy and consider each cluster as a document and
the categories as the vocabulary. Finally, we choose the categories
that constitute 70% of the stay points in our cluster as the type of
that cluster. This results in clusters typically represented by 1 to
3 4SQ categories. They are denoted as 4SQ_Cat1 + ... + 4SQ_Catn ,
where each 4SQ_Cat is an abbreviation of a 4SQ category.

We implement the stay region extraction using Python’s library
"scipy" hierarchical clustering [31] and "scikit-learn" TF-IDF [46].

5 TOPIC MODELS FOR ROUTINES
With user nights represented as either sequences of places (Repre-
sentation 1) or regions within the city (Representation 2), we aim to
discover routines that describe these nights using topic modelling.
Topic models have been successfully used to characterize text collec-
tions through unsupervised learning. Each document is described
as a mixture of topics and in turn, each topic is also described as
a mixture of words from a fixed vocabulary. Topic models assume
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Figure 3: Example of a user night and BOW representation,
using place representation 1 (place matching).

that a document is generated by first selecting a topic from the topic
distribution and then choosing a word from the word distribution
of that topic. Using this procedure, topic models have been used to
discover activity and routine patterns [8, 20, 28, 60]. In our case, an
analogy is made where a document is a night of user data, words
are sequences of locations, and topics represent routines.

We first recall the two methods we used, namely Latent Dirichlet
Allocation (LDA) and Hierarchical Dirichlet Process (HDP), and
then describe how documents and words are created.

5.1 Latent Dirichlet Allocation (LDA)
LDA samples documents and words from Dirichlet distributions
[9]. Each document has its own mixture of topics. The number of
topics is known and has to be fixed beforehand. In our work, we use
the topic coherence Cv to select the number of topics [53]. Topic
coherence is a measure of the interpretability of the topics. We use
Gibbs sampling for inference, with Mallet’s wrapper implementa-
tion in Python [52]. The two hyperparameters αLDA and β are set
to αLDA = K/50 and β = 0.01, where K is the number of topics. A
lower value of αLDA implies that fewer topics are used to model
documents. Likewise, the lower the value of β , the fewer words per
topic.

5.2 Hierarchical Dirichlet Process (HDP)
One key issue with LDA is that the number of topics has to be de-
fined beforehand. HDPs solve this problem by allowing the number
of topics to be infinite a priori through sampling from Dirichlet
Processes [61] . During inference, the appropriate number of topics
for the current documents is found. Thus, it can be considered a
nonparametric generalization of LDA, where the number of topics
is inferred by the model. We use Want et al.’s C++ implementation
with Gibbs sampling [10]. Concentration parameters γ and αHDP
are both set to 1, the default values. γ takes the role of αLDA in
LDA, whereas αHDP has a similar role as β .

5.3 Bag-of-word representation (BOW)
We represent each user night as a document. Following the BOW
model of [20], we represent words as a sequence of locations with a
time label. To construct words, we first create a vector per night with
the location of the user every 15 minutes, when that information
is available. If a user was in more than one type of place in that
period, the place where he spent the longest time is used. The two
place representations described in the previous section can be used
for this purpose. Then, we use a sliding window over each night

Table 1: Ground truth proportions for classification tasks.
The number of user nights in each class and the correspond-
ing percentage (in parenthesis) are shown.

Drinking alcohol Heavy drinking

Yes 629 (53%) 412 (39%)
No 538 (47%) 649 (61%)

that concatenates each three consecutive location symbols. A time
label is attached to preserve the sequence of locations . We divide
the night in 8 timeslots of 1 hour each and attach the corresponding
time label to the sequence of places. Despite topic models ignoring
word order, this allows to keep track of when the events happen
while at the same time avoiding vocabulary explosion, due to a
too-fine-grained representation. The final word representation has
one time label and at most three location labels with the format
Time-Loc1-> Loc2->Loc3. An example of the word creation process
using place Representation 1 (place matching) is depicted in Fig.
3: consider a user who at 20:15 is home and then goes out to a
Food venue from 20:45 until 21:45. This interval of the night is
represented as RRFFFF and the corresponding words would be
20-R->R->F, 20-R->F->F, 20-F->F->F, 21-F->F->F.

6 INFERENCE TASKS AND FEATURES
This section defines the tasks used to assess the inference power
of the extracted routines, and the manually engineered features
related to mobility used in conjunction with such routines.

6.1 Definition of Tasks
We study whether the routine representation is informative in
inference tasks relevant for public health.We investigate two binary
classification tasks, namely whether the user consumes alcohol on
a given night, and whether that consumption is heavy. Table 1
shows the ground truth proportions for each task. Due to missing
information, we have a different number of samples in each task.

Alcohol Drinking. This binary task infers whether the user
drank alcohol on a given night, as in [55]. As mentioned in Sec-
tion 3.1, users reported the drinks consumed using “in-situ” drink
surveys and “retrospective” forgotten drink surveys. We consider
the surveys related to alcoholic beverages and label a user night as
"drink alcohol" if people consumed at least one alcoholic drink.

Heavy drinking. This binary task infers whether the night
involved heavy drinking, as recently proposed in [48]. From es-
tablished alcohol research, users are said to have drunk heavily in
a night if a man drank more than 5 standard drinks, or a woman
consumed more than 4 standard drinks [15]. A standard drink is
an alcoholic beverage containing more than 10 grams of pure alco-
hol. The number of grams in the alcohol consumed is computed as
number−o f −дrams = size [ml]∗content [%]∗0.793 [g/ml], where
size is the size of the drink, content is the alcoholic percentage of
the drink, and 0.793 denotes the density of alcohol. Both the size and
the type of drink were obtained using the Youth@Night surveys.
Both tasks have potential relevance in public health studies [58].
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6.2 Features
The primary features we use for classification are the topic distri-
butions across user nights. We consider the 2 place representations:
the 4SQ categories associated with stay points (representation 1,
referred to as SP), and the type of stay region each stay point is
in (representation 2, referred to as SR). We use the topics obtained
with LDA (30 topics) and HDP (48 topics for SP, 58 for SR).

In addition, we extract handcrafted features at the user-night
level to improve the performance and show other aspects ofmobility
not reflected by routines:
1–16 5-bin histograms of the time between stay points, duration

and accuracy of the user night.
17–18 Times of the first and the last stay points of the night.
19–20 Number of unique venues and stay regions visited during

the night.
20–21 Number of unique 4SQ categories and stay region types

visited during the night.
22 Percentage of time when users are stationary, i.e. their speed

is smaller than 1 km/h.
23 Percentage of time when location data is available.
24 Distance travelled during the night.
These features add complementary information to the topic rep-

resentation. For example, the number of stay regions and venues
indicate whether the user was static or moved frequently. When
we use these features (referred to as handcrafted) we standardize
all of them to the [−1, 1] range.

7 RESULTS AND DISCUSSION
We first present the results of semantic place representation on the
nightlife data. Then, experiments are conducted on the routines ex-
tracted with LDA and HDP. The routine classification performance
is presented for the two classification tasks. Finally, we discuss the
results and limitations of our work.

7.1 Semantic place representation
Stay point extraction. We set the minimum duration of a stay point
to Tmin = 5 minutes, the maximum time between stay points to
Tmax = 4 hours and the maximum distance from the center of the
stay point to any other point to Dmax = 100m. [18]. As preprocess-
ing steps, we remove location points outside Switzerland and all
location points with poor accuracy. This keeps the majority (83%)
of the location data. Table 2 presents statistics of the extracted stay
points. People tend to visit 1-5 places per night, staying between
1 and 2 hours. This is in line with previous work that found that
people typically visit 1 to 4 places when they go out and on normal
days [17, 18, 36].

Place representation 1: place matching. As mentioned in Section
4, setting the parameter r for candidate place search is a trade-
off between places that cannot be matched and confidence in the
matching results. We use a two-step approach to minimize the
number of unmatched places. Initially, we set r = 100 m., which is
the maximum area of our stay points. Then, for the places with no
candidates we do a second candidate search with r = 150 m.

To verify place matching performance, we use the venues prop-
agated from the drink surveys as ground truth and evaluate the
performance using 4-Fold Cross-Validation (CV). For each fold, we
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Figure 4: Distribution of the proportion of stay points
matched to 4SQ categories across venues. Switzerland refers
to allmatched stay points, Lausanne and Zurich refer to stay
points inside the limits of each city.

include 75% of the propagated places in the places dataset, and
the other 25% for verification. The obtained weighted average of
F1-Score across all 4sq categories is F1 = 0.42. The best performing
category was Residence, with F1 = 0.59. This is probably due to
having more samples of this category on average for each fold. The
overall place matching performance is explained by the difficulty of
the task, which is an unresolved issue in the literature [7, 40]. Most
previous works rely on large datasets to alleviate it [7, 23, 40, 51]. In
our case, we use real-life nightlife data that has not been studied in
the past in as much depth as daytime, and is thus less represented
in place datasets as we show here for the Swiss context.

Finally, we run the algorithm with all the propagated venues.
Only 121 (2%) stay points remain unmatched to any venue. In Fig.
4, the label "Switzerland" depicts the distribution of 4SQ categories
across thematched stay points. As expectedwith the places reported
in surveys (Fig. 2), Residence is the most frequent label, followed
by Food and Nightlife Spot. A random data sample shows a large
variation of missing data across nights.

Place representation 2: Stay regions. SRs allow a description of
the city that gives a more general idea of where people are. This
approach loses some of the semantics associated to knowing the
venue type where the participant goes to, but in return it offers
other information that may indicate, for example, whether the user
is in the city centre or the suburbs, in a going out area or in a quieter
region, etc.

The clusters found in the areas of Lausanne and Zurich, where
our study on nightlife is based, can be summarized as follows. Lau-
sanne is a small city that has onemain area to go out, Lausanne-Flon,
covered mostly by stay region #1 (not shown). As a consequence,
young crowds mostly move around this area and the clusters tend
to overlap there. Stay region #2 shows one of the characteristics
of Swiss cities: on the lower floors of buildings there is commerce,
whereas on the upper floors there are flats where people live. Stay
region #3 covers the main train station and the surrounding area,
filled with cafés. Lastly, stay region #4 is a cluster depicting a resi-
dential neighborhood of high density. On the other hand, Zurich
is a bigger city. Thus, one can find more clusters where people go
out, each with a different activity. As in Lausanne, we have a stay
region #1 covering the main train station, which characterizes the
activities in the cluster with its public transport and many restau-
rants. Stay region #2 covers the old town, and a pedestrian area
that mostly has bars. It also covers the front part of the technical
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Table 2: Statistics of extracted stay points.

Average Total #Stay Points / User night Stay point duration
#Users #User Nights #Nights / User # Stay points Mean Std Median Mean Std Median
184 1586 8.61 4747 2.99 2.64 2.0 1h. 22 min. 1h. 44 min. 36 min.

university, where there are open spaces to gather. Another area of
interest is stay region #3, which is by the lake and where typically
young people drink. Stay region #4 is normally a commercial and
financial district, but that also has bars and restaurants open in the
evening. Finally, stay region #5 covers what once was the red-light
district of Zurich. This area is now a popular zone where young
people often go out.

7.2 Routine extraction with topic models
This section presents the routines obtained using LDA and HDP,
where each user night is described as a document and the locations
at different times are the words. For the rest of this paper, we will
refer to the models that use the stay points and their matched
places as words with SP, and to models that use the sequence of
stay regions with SR.

SP Representation. The routines for both LDA and HDP can
be summarized as follows.

LDA Routines.We use topic coherence to select the optimal num-
ber of latent topics with the LDA model. Using the Elbow method,
a value of K = 30 topics is selected.

Some of the topics found are:

• Topic 5 and 7 represent being on a Nightlife Spot around
20:00-23:00 and 23:00-01:00, respectively.

• Topic 28 models going out for dinner around 20:00-22:00.
• Topic 11 and 6 model being at a Residential venue at 01:00-
03:00 and 21:00-23:00, respectively.

• Topic 2 models being at a Professional & Other Places venue
(e.g. parking lot) at any point during the night.

• Topic 23 models being at a Travel & Transport place through-
out the night, mostly in its first half until midnight.

• Topic 29 models being around outdoor places towards the
second half of the night (22:00-03:00).

Latent topics found by LDA are able to capture low-level routines
that represent different parts of the user nights, despite the noise
present on the semantic labels. This shows that a user night is in
general described as a mixture of topics that captures the overall
trends. They are defined in general by around 2-3 words, indicat-
ing they are quite polarized. Furthermore, the time intervals that
routines refer to are clearly marked. Venues that are more frequent
(Residence, Nightlife Spot, etc.) have different routines referring to
them at distinct times, while less frequent venues, such as Travel &
Transport are more spread out during the night.

HDP Routines. Next, we find routines using HDP. This model
finds 48 topics:

• Topics 0 and 3 model being at a residence in the first and
second half of the night, respectively.

• Topic 1 models being out in a food-related place, especially
around 21:00-22:00 (e.g. going out for dinner.)

• Topic 5 models being in an outdoors place in the first half of
the night and until 01:00, with less strength after.

• Topic 4 models activities in the second half of the night,
either on a transport related venue or in a nightlife venue.

• Topic 6 models being at any hour at night around a Profes-
sional & Other Places venue, e.g. a parking lot.

• Topic 7 represents the routine being in a College&University-
related place early (20:00) and late at night (01:00-03:00).

• Topic 34 models the routine being at a Travel & Transport
place in the first hours of the night (20:00-22:00).

Similar to LDA topics, the topics found by HDP are interpretable
and represent low-level routines capturing different parts of the
night. Nevertheless, the topics are less polarized, needing at least
7 words to describe them. Consequently, topics tend to be more
spread out in time.

SR Representation. The routines for both LDA and HDP for
the SR representation can be summarized as follows.

LDA Routines. As before, we use topic coherence to choose the
correct number of topics with LDA. K = 40 topics is chosen using
the Elbow method.

Topics found tend to be quite spread out over time although stay
regions types are correctly grouped together:

• Topic 0 shows the routine of being in a region composed of
Outdoors & Recreation and Residence venues around 21:00-
00:00. It also represents, although less strongly, being in the
same area in the second half of the night.

• Topic 5 represents the routine of being in a mixed region
composed of Food, Professional &Other Places, and Nightlife
Spot places in the second half of the night.

• Topic 7 represents the routines of being in a residential area
from 23:00 to 01:00.

• Topic 30 represents the routine of being in a nightlife and
food-related area in the second half of the night (23:00-02:00).

Compared to the stay point level (SP) the routines found tend to
be quite less polarized in terms of time, spanning more hours. This
might be because the vocabulary is sparser, but also because fewer
stay regions are visited each night in comparison to individual
venues. Topics also seem to be representative of fewer user nights,
but when they are, it is just as strongly as before.

HDP Routines. HDP finds 58 topics with documents at the SR
level. This is an increase of 10 topics with respect to the SP level,
and is explained by the lower concentration of user nights due to
the bigger vocabulary. Some of the found topics are:

• Topic 0 represents the routine of being in a residential area
at any point through the night.

• Topic 11 represents the routine of being in a mixed region
composed of Nightlife Spot, Outdoors & Recreation, and
Unknown venues in the second half of the night.



MUM 2020, November 22–25, 2020, Essen, Germany Ada Pozo, Thanh-Trung Phan, and Daniel Gatica-Perez

• Topic 14 represents the routine of being in a region composed
mostly by Residence and Nightlife Spot venues around 21:00-
01:00.

• Topic 17 represents the routine of being in a region composed
of Nightlife Spot and Food-related venues between 21:00 and
until 01:00.

In this case, the biggest difference that can be observed with respect
to stay point level is in terms of Topic 0. Whereas before we had
different topics related to being early or late in residences, now
there is only one routine covering the whole night in a residential
area.

7.3 Results of classification tasks
In this section, we present the results of user-night-level classifica-
tion of (1) alcohol consumption, and (2) heavy drinking.

All user nights with ground-truth information for each task are
used, with no filtering of cases where we have almost no location
information. This implies that we make inferences both on nights
with sufficient amount of location information and on nights with
significantly less data (see Fig. 1). Concretely, considering our BOW
model, the maximum number of words per document is 16. 25%
of nights have 4 words or less and 25% have 13 or more, which
illustrates how varied the data is.

We use 90% of the data to train and the remaining 10% as test
set. To tune the parameters for each model we use 5-fold Cross-
Validation (CV) on the train set. As explained in Section 6, each
user night is represented in two ways: with the topic proportions
only (Routines), and with the topic proportions and the handcrafted
mobility features (Routines + HC). Routines are mined either de-
scribing the user night as a sequence of stay points (SP) or stay
regions (SR) with both LDA and HDP, which gives a total of four
possible combinations. It is worth reminding that features from SP
indicate the concrete type of venues but give no indication of the
area of the city, whereas SR indicate the area of the city with no
information on the concrete place and its semantics. In addition,
HDP tends to obtain more general routines that span several hours,
while LDA tends to give routines happening on specific hours.

We evaluate the performance of the routine features to infer the
correct class using three different classifiers:

• Logistic regression (LR), with L2 regularization ranging from
10−3 to 103.

• Support Vector Machines (SVM), with regularization ranging
from 10−3 to 103, either RBF or linear kernel, and with RBF
kernel coefficient in the range from 0.1 to 1.

• Random Forests (RF), with the number of trees ranging from
10 to 500.

Accuracy is used as the performance measure to report results
and its maximum value is used to choose the best parameters with 5-
fold CV. Since in some cases the datasets are imbalanced (see Table
1), subsampling of the majority class is used during training to ob-
tain a balanced dataset. In this section, only the best result is shown
for each combination of features. All classifiers are implemented in
Python using "scikit-learn" [46].

Routines. The first row for each task in Table 3 (Routines) presents
the results using only the topic proportions of routines as features.
It can be seen that for the two classification tasks, the baseline

majority-class classifier is outperformed. It is worth noting that the
best model for the binary inference of alcohol consumption uses SR
with HDP routines, that is, the indicators of a user drinking seem to
be more related to the areas of the city and general routines. On the
contrary, SP with LDA is preferred for binary classification of heavy
drinking. This suggests that heavy drinking might be associated
with being in concrete types of venues at more specific hours, which
matches previous findings in the alcohol resaerch literature [17, 36].
In addition, it should be mentioned that, only with the routines,
the results of inferring heavy drinking are slightly better than the
inference of drinking or not on a given night.

To analyse in more depth what routines are actually capturing,
we plot the most important features for the classifiers. The feature
importance with SVM using RBF kernel cannot be directly obtained.
Hence, we focus on the best achieving models with Random Forest
and Logistic Regression. Regarding Random Forest, we obtain the
Gini impurity score, which is a measure of the total decrease in node
impurity weighted by the probability of reaching that node and
averaged over all trees of the ensemble. With Logistic regression,
we use the feature weights in the model.

The first row of Fig. 5 represents the top 5 features for the best
performing classifier of each task. One can see that with heavy
drinking, all routines refer to being in a Residence venue around
the beginning and middle of the night. This is similar to other
studies in alcohol research that found that heavy drinking nights
tend to start in private places and that most heavy drinking nights
take place there as well, at least partially [16, 17, 34, 36]. Regarding
drinking alcohol or not, results suggest that being in a region where
there is only nightlife (Topic 21) is related to alcohol consumption,
whereas the rest of the topics among the top 5 indicate the opposite.
It is especially noticeable, considering the heavy drinking results,
that this happens with routines related to being in an area that is
only residential all night (Topic 0) or early (Topic 43).

Routines and handcrafted features. The last row of each task
(Routines + HC) in Table 3 shows the classification performance
by training the models on both routines and handcrafted features.
Overall, there is an improvement in performance when adding the
handcrafted (HC) features, particularly for alcohol consumption,
which achieves 72% accuracy with all classifiers. The binary infer-
ence of drinking alcohol is again better when focusing on the areas
of the city (SR) with more general routines extracted with HDP,
whereas heavy drinking classification is again better with specific
places (SP) and routines extracted with LDA.

The second row of Fig. 5 shows the top 5 features for these
models. It is clear that routines lose importance after adding the
hand-crafted features, with only one or two in the top 5 for all
models. For the two classification tasks, the time of the first stay
point of the night seems to be a good indicator. This is likely that this
is related to an early start of the night, which has been associated
with drinking in the specialized literature [16]. Both classification
tasks also have the number of different venues and 4SQ categories
of such venues as pointers of drinking. In the literature, there are
similar findings suggesting that the number of drinks consumed
increase with the number of venues visited [16], and that there is
a connection between the number of venues visited and drinking
[17, 36]. It is interesting that the classifiers seem to capture this.
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Table 3: Classification accuracy on the test set with different tasks for the best achieving combination of topics. Model refers
to place representation used to generate routines (sequence of stay points - SP or stay regions - SR) and the topic model (HDP
or LDA). Best performance in each task across all experiments shown in italics. LR - Logistic Regression, SVM - Support Vector
Machines, RF - Random Forest Classifier, Majority - Baseline naive classifier that always infers the majority class.

Features Model LR SVM RF Majority

Drink Alcohol Routines SR - HDP 0.658 0.667 0.590 0.53Routines + HC SR - HDP 0.718 0.718 0.718

Heavy Drinking Routines SP - LDA 0.664 0.673 0.682 0.61Routines + HC SP - LDA 0.720 0.673 0.664
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1 0 1
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(c) Heavy Drinking (Routines+HC):
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Topic 6 F+N+P&O (00-03) Topic 47 N+R (20), C&U+F (20)

N (21)Topic 14 R + N (21-01)

Figure 5: Feature importance for the classification tasks. The model used to obtain the importance is shown in each case. (a),
and (b) depict the results using only the topic proportions as features. (c), and (d) depict the results with topic proportions and
handcrafted features. The description of the topics is shown over this caption. The numbers in parentheses correspond to time
intervals according to hour of the day, from 00 (midnight) to 23 (11PM). With heavy drinking, both kinds of features prefer SP
and LDA topics, while for the other task SR and HDP perform better. The relative importance with Logistic Regression refers
to the weight of each feature and with Random Forest to the Gini impurity score.

7.4 Discussion
We finish this section by discussing the results and their implica-
tions, as well as the limitations of our work.

Place representation.We first enriched the location traces with
information about the type of venues likely visited by people and in
which area of the city they were. This only considered the locations
where people stayed for a certain time as relevant, disregarding
periods when they were moving. This unused information could
indicate important aspects such as transportation means (walking,

car, train) or short- vs. long-term travel. Integrating this information
to describe a trajectory remains an open research problem [37].

After stay point segmentation, we were able to match almost all
stay points to venues. We evaluated this matching both by manual
inspection and with an experiment. The results indicated that exact
matching is a difficult task. In addition to the difficulty of unsuper-
vised matching in general, the performance can be explained by the
nature of the data. Study participants were fully free to turn off the
location sensors and their full device, which frequently resulted in
gaps in the location signal. This implies shorter sequences and less
accuracy, known to be difficult conditions for matching [23, 51]. In
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addition, it was not possible to find a place dataset that matched
the distribution of venues visited by the studied population. This
is also known to complicate the place matching task, as results
are related to the availability of places around stay points [23]. A
way to improve matching could use the typical time of stay [40].
Nevertheless, since large-scale temporal information is needed to
generalize well, a study of this possibility is left for future work.
Finally, we studied an alternative to this problem with the use of
stay regions to represent user nights. Despite the loss of more pre-
cise information, with the stay region approach we bypassed the
noise introduced by erroneous place matching and kept semantic
information about likely activities performed by the user. Stay re-
gions showed a different trend in each city: concentrated for the
small-city case of Lausanne, and more spread for the case of Zurich,
where stay regions captured the larger dimensions associated to a
larger metropolitan area. Importantly, both the stay point and the
stay region representations were useful to produce useful inputs
for routine mining and thus for classification.

Routine mining. We showed that some of the extracted routines
correspond to bar hopping, late-night going out (e.g. for clubbing),
or staying at home, all of which are practices reported in the social
science literature of youth and nightlife [16, 17, 34, 36]. The routine
representation is thus relevant in and of itself, but also useful for
further inference tasks. While the method discovers meaningful
nightlife routines, some limitations can be discussed. First, the
extracted nightlife routines are not representative of the whole
society, but only of a limited demographic: young people willing
to participate in a study of this kind. Even though this limits the
generality of the results, we argue that these routines still represent
the trends of a population of interest for public health studies.
Second, from the modeling perspective, the routines sometimes
captured trends such as being in a place at a concrete time. This
is partly due to the basic assumption of topic models. A possible
direction would be to cluster the topic proportions across nights
[60]. Finally, the routine analysis could be enriched by studying
deviations from routine trends.

Classification tasks. The results in the two binary classification
tasks proved that the discovered routines, despite using only lo-
cation data, were discriminant to some extent. The majority class
classifiers were outperformed in the two cases. Regarding the rou-
tine mining model, LDA and HDP showed to be the best performing
model depending on the inference task. Regarding night-level alco-
hol consumption binary classification, the results matched several
findings in the literature about the relation between the duration of
nights and the number and types of visited places, on one hand, and
the consumption of alcohol on the other hand [16, 17, 34, 36]. Re-
garding night-level heavy drinking binary classification, we found
that specific types of places are an indicator of heavy drinking,
which agrees with the findings of alcohol research studies in other
world regions [17, 36, 36]. Moreover, we found that the number of
stay regions and places visited is related to higher consumption of
alcohol, in the same line of other alcohol research [16]. In contrast
to such previous results, which were all based on retrospective sur-
veys, in this study phone sensing data was captured automatically
and in situ (which can be seen as an alternative to address some of
the recall problems associated with self-reports) and modeled as
routines. Furthermore, we achieved an accuracy comparable to [55]

on alcohol/no-alcohol drinking classification, and to [48] on heavy
drinking classification, while using only automatically extracted
mobility features.

Applications. We identify two possible applications for our work.
First and foremost, our goal is the development of computational
methods that can support research in public health. We showed that
the discovered routines have connections with previous findings
based on survey-based studies [16, 17, 34, 36]. From this perspective,
our work combining smartphone sensing and topic models can be
seen as bringing methodological novelty to established methods of
data collection and analysis in alcohol research. In the second place,
the connection of routines with the urban space also makes our
work potentially useful to city offices interested in supporting both
youth and a vibrant use of the public space. City stakeholders could
contextualize and use the results given their understanding of the
local circumstances (e.g., in Switzerland, alcohol consumption in
the public space is allowed, and drinking of wine and beer is legal
from the age of 16). In these applications, citizens need guarantees
to trust institutions with privacy and ethical frameworks given the
sensitive nature of location data.

8 CONCLUSIONS
We investigated a framework for the discovery of nightlife routines.
Location traces were represented with two approaches, which re-
sulted in the description of a night as a sequence of either venue
types or of city areas. Then, the corresponding trajectories ex-
tracted from 1586 user-nights were used to mine routines repre-
senting nightlife activity patterns. Two topic models (LDA and
HDP) used to extract routines were analysed and compared. The
obtained routines represent different parts of a night, and model
the particularities of youth activities in each time period. Each topic
model extracted slightly different routine aspects, and we found
that neither can be said to outperform the other. With public health
applications in mind, we showed how routines can be used for two
specific tasks related to alcohol intake at the night level: a binary
consumption task (alcohol drinking or not), and a heavy drinking
task. Comparable accuracy to more complex methods that use a
combination of sensor data was reached using routine informa-
tion in combination with other handcrafted features. Future work
includes the use of information about moving episodes between
stay points to compute means of transport like walking or taking
public transport. Additionally, we would like to study higher level
routines by building on top of the topic representations developed
in this work.
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