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Abstract
Starting from a strong Lattice-Free Maximum Mutual Informa-
tion (LF-MMI) baseline system, we explore different autoen-
coder configurations to enhance Mel-Frequency Cepstral Coef-
ficients (MFCC) features. Autoencoders are expected to gener-
ate new MFCC features that can be used in our LF-MMI based
baseline system (with or without retraining) towards speech
recognition improvements. Starting from shallow undercom-
plete autoencoders, and their known equivalence with Princi-
pal Component Analysis (PCA), we go to deeper or sparser ar-
chitectures. In the spirit of kernel-based learning methods, we
explore alternatives where the autoencoder first goes overcom-
plete (i.e., expand the representation space) in a nonlinear way,
and then we restrict the autoencoder by means of a sequent bot-
tleneck layer. Finally, as a third solution, we use sparse over-
complete autoencoders where a sparsity constraint is imposed
on the higher-dimensional encoding layer. Experimental results
are provided on the Augmented Multiparty Interaction (AMI)
dataset, where we show that all aforementioned architectures
improve speech recognition performance, although with a clear
advantage on sparse overcomplete autoencoders for both close-
talk and far-field speech sets.
Index Terms: pca, bottleneck, sparse overcomplete autoen-
coder, chain models, speech recognition

1. Introduction
Automatic Speech Recognition (ASR) is the process of con-

verting the speech signal into its corresponding sequence of
words or other linguistic components. With the advances in big
data and computing power, ASR technologies have inevitably
evolved and adopted for many applications. For instance,
consumer-centric applications which involve voice search and
interactions with mobile devices and home entertainment sys-
tems have emerged. These everyday life applications require
ASR systems to be robust to full-range of real-world noise and
other acoustic distortions. Therefore, maintaining robustness
remains to be an important research direction in ASR field.

To reach noise robust ASR, a number of techniques have
been proposed. These methods mainly differ based on their fo-
cus on different components in the speech recognition pipeline.
For instance, the main goal of the method can be enhancing the
speech feature extraction stage or robust modeling of the recog-
nizer. Techniques like Linear Discriminant Analysis (LDA) [1],
Heteroscedastic Linear Discriminant Analysis (HLDA) [2] have
been proposed to improve the discriminating capabilities of
the original features. Similarly, Principal Component Analy-
sis (PCA) [3, 4] and Kernel PCA [5, 6] have been found use-
ful for producing features with better recognition performance.
With the advances in deep learning for ASR, speech feature

enhancement by means of Denoising Autoencoders (DAE) has
been widely investigated [7, 8, 9, 10, 11]. Thanks to their ease
of use, the enhanced denoised features from DAEs can then be
propagated to the back-end acoustic model [12].

In this paper, we aim to present a comparative study on
the use of autoencoders for robust speech recognition with LF-
MMI systems. We examine and compare the potential of differ-
ent autoencoders for producing new MFCC features with bet-
ter recognition performance. Starting from shallow undercom-
plete autoencoders, and their known equivalence with PCA, we
go to deeper or sparser architectures. In the spirit of kernel-
based learning methods, we explore alternatives where the au-
toencoder representation space is first expanded in a nonlinear
way and then restricted by means of a sequent bottleneck layer.
Finally, as a third solution, we use sparse overcomplete autoen-
coders where a sparsity constraint (based on ℓ1 norm penalty)
is imposed on the higher-dimensional encoding layer.

Our experimental results on Augmented Multiparty In-
teraction (AMI) dataset show that all architectures improve
speech recognition perfrormance. However, sparse overcom-
plete autoencoder, where a sparsity constraint (based on ℓ1
norm minimisation) is imposed on the higher-dimensional en-
coding layer, is the best performer on both close-talk and far-
field speech. These findings underlines that our new MFCC
features are indeed better features compared to their original
counterparts for discriminating speech classes.

This paper is organized as follows; after we elaborate on the
background information about autoencoders in Section 2, we
present the proposed approach and baseline system in Section 3,
the experimental setup and results in Section 4, and finally the
conclusion in Section 5.

2. Autoencoders
Autoencoder (AE) [13] is a neural network whose goal is to re-
construct d-dimensional input feature vectors as d-dimensional
output vectors. An AE consists of two main components: en-
coder and decoder. Encoder produces the code (i.e., encoding,
embedding) given the input. Decoder takes this code and tries
to reconstruct the original input at the output layer. AE gener-
ally aims to minimize Mean Square Error (MSE) between the
original input and reconstructions.

Based on the model configurations, AEs can be categorized.
For instance, if the encoding layer has lower dimensionality
than the input, the model is called undercomplete autoencoder.
However, if the encoding layer has higher dimensionality, then
the model is called overcomplete autoencoder. If the model has
only one hidden layer, it is called shallow autoencoder. Op-
positely, if the model has more than one hidden layers (while
still preserving the symmetry of the network), it is called deep
autoencoder.



Since the objective of AE is to reconstruct its input, for the
sake of perfect reconstruction, it can simply copy the input to
the output layer instead of learning meaningful encodings. This
undesired phenomenon (i.e., identity mapping) happens when
the modeling capacity of AE is high. Here, by modeling capac-
ity, we mean the complexity of the relationships in the data (i.e.,
patterns) that the model can express. A rough estimate for the
capacity of a model can be made by simply counting the number
of its parameters. More parameters indicate higher capacity. In
other words, given the data, if the model tends to overfit thanks
to its high modeling capacity, it learns identity mapping.

In the case of identity mapping, different constraints can
be enforced on the model to regularize its modeling capacity.
These constraints can be in the form of restricting the encod-
ing layer dimension of the model (e.g. undercomplete autoen-
coders). Also, additional regularization term(s) can be intro-
duced to the AE loss function to force AE to learn meaningful
encodings (e.g. sparse overcomplete autoencoders).

In the following subsections, we provide background infor-
mation about the autoencoder configurations that we used in our
experiments.

2.1. Undercomplete autoencoder

Shallow undercomplete autoencoder learns to span the same
subspace as PCA under certain conditions such as linear de-
coder, MSE as loss function and real-valued input data, as
shown in [14]. Having smaller code dimension than the input
dimension (depicted as d >> p in Figure 1) forces the autoen-
coder to learn the salient features in the training data.

Figure 1: Shallow undercomplete autoencoder where the code
dimension p is smaller than the input dimension d.

2.2. Deep undercomplete autoencoder with nonlinear space
expansion

As the composition of linear operations yields another linear
operation at the end, stacking linear layers for the sake of build-
ing a deep autoencoder is actually pointless. Hence, for our
research, in the spirit of Support Vector Machines (SVM) and
other kernel-based learning methods [15, 16], we first expand
the space (depicted as d << q in Fig. 2) in a nonlinear fashion
so that the input features are projected into a high-dimensional
space where the relational latent factors in the input are easier
to model. Then, we apply compression with a bottleneck layer
(d >> p) so that we can extract the salient features of the pro-
jected input data.

Figure 2: Deep undercomplete autoencoder with space expan-
sion where q and p stand for the expanded space dimension and
the the bottleneck code dimension respectively.

2.3. Sparse overcomplete autoencoder

Unless some constraint is applied on the modeling capacity, the
shallow overcomplete autoencoder can simply learn the identity
mapping (i.e., copying inputs to outputs for perfect reconstruc-
tion). To avoid this, sparsity is enforced by constraining the hid-
den unit activations (i.e., encodings). The sparsity constraints is
in the form of additional penalty term (i.e., regularizer term) in
the loss function. The hyperparameter λ weights the penalty
term for learning meaningful representations, with respect to
the reconstruction loss.

Figure 3: Shallow sparse overcomplete autoencoder with ℓ1
norm penalty enforced on encodings (i.e., encoding layer ac-
tivations).

Sparse autoencoders with ℓ1 norm penalty on encodings
(Figure 3) seems to be the most natural choice, and is also used
in sparse coding [17]. Hence, we use this configuration for our
experiments.

3. Proposed Approach and Baseline System
3.1. Proposed approach

In this paper, we aim to reinforce our understanding of autoen-
coders in the context of speech feature enhancement for LF-
MMI system. Despite their known limitations, Mel-Frequency
Cepstral Coefficients (MFCC) are often in use due to their low
correlation and their compact, computationally efficient nature.

Following our proposed approach (Fig. 4), we feed new
MFCC features (i.e., autoencoder reconstructions) to the LF-
MMI acoustic model. Therefore, we examine the potential of a



Figure 4: Rough illustration for our proposed approach. In-
stead of the original MFCCs, the reconstructions from the au-
toencoder is fed to the acoustic model. The autoencoders used
in experiments are introduced in Section 2. Further details
about the acoustic model can be examined in Fig. 5.

group of autoencoders for producing better MFCC features for
robust recognition.

In addition, we investigate the impact of using the new
MFCCs with three scenarios: (1) only for decoding (i.e., keep-
ing the acoustic model parameters frozen), (2) adapting the
acoustic model on the new features and (3) training a new
acoustic model from scratch with the new features. Adaptation
of the acoustic model does not yield performance improvement
for any of the configurations in Section 2. Therefore, we present
the results for the only decoding and training from scratch sce-
narios in Section 4.

3.2. Baseline system

The experiments are conducted on AMI corpus [18] which con-
tains recordings of spontaneous conversations in meeting sce-
narios in English. The corpus provides audio recordings from
close-talk (stated as IHM) and far-field (stated as SDM) micro-
phones. Both close-talk and far-field speech streams have been
recorded in parallel. The dataset is available at 16 kHz sam-
pling rate with nearly 100 hours of meeting recordings divided
approximately as 81 hours train set, 9 hours development and 9
hours evaluation set.

Table 1: The recognition performance (in WER%) for the base-
line LF-MMI systems on close-talk IHM and far-field SDM eval-
uation sets.

Architecture IHM SDM
LF-MMI acoustic model 19.7 41.7

The configuration for the IHM acoustic model is presented
in Fig. 5. The model configuration for SDM is same, except it
does not contain the CNN and LSTM layers.

Two acoustic models are trained using IHM and SDM
dataset with the LF-MMI criteria [19] following the standard
chain model recipe in Kaldi speech recognition toolkit [20]. The
input is high resolution MFCC features with d =40. The output
of the systems is the pseudo-log-likelihoods with dimension of
176. The Word Error Rate (WER) for IHM and SDM are 19.7%
and 41.7% respectively, as shown in Table 1.

4. Experimental Setup and Results
4.1. Undercomplete autoencoder

The undercomplete autoencoder takes MFCC features with d =
40 as input, encodes it into compact, low-rank encodings and
then outputs the reconstructions as new MFCC features to be
use in the rest of the speech recognition pipeline as shown in
Figure 4. The low-rank encoding dimension p is 30. The au-
toencoders are implemented in Pytorch [21] and trained with
MSE using stochastic gradient descent with batch size 256 and
learning rate scheduler (initial learning rate set as 0.1).

Figure 5: The model configuration for IHM baseline. The green
blocks represent CNN layers. The blue blocks represent TDNN
layers with RELU activation function. The orange blocks de-
note LSTM layers. The xent-output layer is used for regulariza-
tion purpose only.

Table 2: The recognition performance (in WER%) when the
acoustic model parameters are kept fixed.

IHM AE SDM AE
data= IHM 21.6 20.5
data= SDM 48.5 43.2

To clarify notation used in Table 2, it is worth to mention
that data=IHM indicates that the acoustic model is previously
trained on IHM and the streaming data for decoding task is
also IHM (eval set). SDM AE indicates that AE is previously
trained on SDM data. Hence, from Table 2, we can state the
using SDM AE for projecting IHM data before passing to the
acoustic model which is previously trained on IHM results in
WER=20.5%.

Table 3: The recognition performance (in WER%) when a new
acoustic model is trained from scratch with the new MFCC fea-
tures. Note that the same model configuration and training pro-
cedure for the baseline acoustic model is used for training the
new LF-MMI based acoustic model from scratch.

IHM AE SDM AE
data= IHM 19.4 19.3
data= SDM 41.9 41.2

Before commenting on the results, we want to clarify some
of the notations used in Table 3. For instance, data=IHM de-
notes that the original streaming data is IHM. SDM AE indi-
cates that the AE is previously trained on SDM data. Hence,
we say that using new features (obtained by projecting the
IHM MFCC original features with SDM AE) for training a
new acoustic model improves the recognition performance for
IHM (0.4% absolute improvement, from 19.7% to 19.3%). The
column-wise comparison of the results in Table 3 shows that
SDM AE has better generalization power, probably because far-
field SDM data has more acoustic variation compared to close-
talk IHM.



4.2. Deep undercomplete autoencoder with nonlinear space
expansion

The deep undercomplete autoencoder takes MFCC feature vec-
tors with dimension d=40 as input. First, it projects these fea-
tures into a higher-dimensional space q=1760 in a nonlinear
fashion so that the relational latent factors in the input are easier
to model. Then, it applies compression with a bottleneck layer
(p=30). Finally, it outputs the reconstructed MFCCs as new
feature set. Except for the undercomplete (bottleneck) encod-
ing layer and output layer, Sigmoid activation function is used
for introducing nonlinearity to the model.

Table 4: The recognition performance (in WER%) when acous-
tic model parameters are frozen.

IHM AE SDM AE
data= IHM 51.0 50.2
data= SDM 70.0 79.7

Table 4 presents the recognition results while the acoustic
model parameters are kept fixed. For both datasets, we observe
serious degradation in the performance. The fact that the base-
line system obtains 19.7% WER for data=IHM case (as shown
in Table 1) shows that the LF-MMI based baseline acoustic
model is indeed strong. However, the results in Table 4 for
data=IHM display that baseline acoustic model is tuned finely to
the original MFCC features, and hence sensitive to the changes
in the input data.

Table 5: The recognition performance (in WER%) when a new
acoustic model is trained from scratch with the new MFCC fea-
tures.

IHM AE SDM AE
data= IHM 19.6 19.5
data= SDM 41.6 41.5

Table 5 presents the recognition results for training a new
LF-MMI based acoustic model from scratch with new MFCC
features. It is important that the same model configuration and
training procedure for the baseline acoustic model is used for
training the new model. For both data=IHM and data=SDM
cases, we obtain improvements in WER, compared to the base-
line system. This indicates that our proposed approach indeed
extracts better features for recognition. The best results (19.5%
for IHM and 41.5% for SDM) are obtained when off-the-shelf
SDM AE is used for projecting the original MFCC features.
This is due to the generalization power of the SDM AE. This
behaviour is also observed for the undercomplete autoencoders
as shown in in Table 3.

4.3. Sparse overcomplete autoencoder

The sparse overcomplete autoencoder takes MFCC feature vec-
tors with dimension d=40 as input, encodes them into high-
dimensional sparse encodings with dimension q=1760 and then
outputs the reconstructions as new MFCC features to be use
in the rest of the speech recognition pipeline as shown in Fig-
ure 4. The autoencoders are implemented in Pytorch [21] and
trained with MSE using stochastic gradient descent with batch
size 256 and learning rate scheduler (initial learning rate 0.1).
In addition, as an early-stopping mechanism, autoencoder train-
ing is terminated when the loss on the development set is not

improved for 10 consecutive epochs. For λ, grid search is per-
formed on [100, 10−6]. The model with the optimal λ is deter-
mined based on the WER on the development set.

Table 6: The recognition performance only decoding (in
WER%) when the acoustic model parameters are kept fixed.

IHM AE SDM AE
data= IHM 23.3 22.5
data= SDM 42.3 46.4

In Table 6, similar to Table 4, we observe degradation stem-
ming from the baseline acoustic model finely tuned to the orig-
inal MFCC features.

It is important to note that all the results (data=IHM and
data=SDM) in Table 7 are better than baseline performance, but
also other systems with different autoencoder configurations.
This highlights the importance of the presence of sparsity for
robustness.

Table 7: The recognition performance only decoding (in
WER%) when a new acoustic model is trained from scratch with
the new MFCC features. Note that the same model configura-
tion and training procedure for the baseline acoustic model is
used for training the new LF-MMI based acoustic model from
scratch.

IHM AE SDM AE
data= IHM 19.6 19.3
data= SDM 41.5 41.3

5. Conclusion
In this paper, we aim to explore the potential of different autoen-
coder configurations to improve MFCC features for LF-MMI
based speech recognition system. Starting from shallow under-
complete autoencoders, and their known equivalence with PCA,
we go to deeper or sparser architectures. In the spirit of kernel-
based learning methods, we explore alternatives where the au-
toencoder first goes overcomplete (i.e., expand the representa-
tion space) in a nonlinear way and then restrict the autoencoder
by means of a sequent bottleneck layer. Finally, as a third solu-
tion, we use sparse overcomplete autoencoders where a sparsity
constraint (based on L1 norm minimisation) is imposed on the
higher-dimensional encoding layer.

Our experiments on AMI dataset shows that when the new
features are used only for decoding (i.e., keeping the baseline
acoustic model parameters fixed), the performance degrades.
This is due to the fact that baseline LF-MMI acoustic model
is finely tuned to the original MFCC features. Similarly, when
the baseline acoustic model is further trained on the new MFCC
features, we again observe performance degradation. This hints
that the original and new MFCC features have different data
characteristics. And finally, when a new LF-MMI based acous-
tic model is trained from scratch on the new MFCC features, we
observe improvements on WER.
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