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Mood inference with mobile sensing data has been studied in ubicomp literature over the last decade. This inference enables
context-aware and personalized user experiences in general mobile apps and valuable feedback and interventions in mobile
health apps. However, even though model generalization issues have been highlighted in many studies, the focus has always
been on improving the accuracies of models using different sensing modalities and machine learning techniques, with datasets
collected in homogeneous populations. In contrast, less attention has been given to studying the performance of mood
inference models to assess whether models generalize to new countries. In this study, we collected a mobile sensing dataset
with 329K self-reports from 678 participants in eight countries (China, Denmark, India, Italy, Mexico, Mongolia, Paraguay, UK)
to assess the effect of geographical diversity on mood inference models. We define and evaluate country-specific (trained and
tested within a country), continent-specific (trained and tested within a continent), country-agnostic (tested on a country not
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seen on training data), and multi-country (trained and tested with multiple countries) approaches trained on sensor data for
two mood inference tasks with population-level (non-personalized) and hybrid (partially personalized) models. We show that
partially personalized country-specific models perform the best yielding area under the receiver operating characteristic curve
(AUROC) scores of the range 0.78-0.98 for two-class (negative vs. positive valence) and 0.76-0.94 for three-class (negative vs.
neutral vs. positive valence) inference. Further, with the country-agnostic approach, we show that models do not perform
well compared to country-specific settings, even when models are partially personalized. We also show that continent-specific
models outperform multi-country models in the case of Europe. Overall, we uncover generalization issues of mood inference
models to new countries and how the geographical similarity of countries might impact mood inference.

CCS Concepts: • Human-centered computing → Empirical studies in HCI; Empirical studies in ubiquitous and
mobile computing; Smartphones;Mobile phones;Mobile devices; Empirical studies in collaborative and social computing;
• Computer systems organization→ Sensors and actuators; •Applied computing→ Consumer health; Health informatics;
Sociology; Psychology.

Additional KeyWords and Phrases: passive sensing, smartphone sensing, mood, valence, affect, mood tracking, mood inference,
personalization, generalization, distributional shift, domain shift
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1 INTRODUCTION
Mental well-being related issues are common among young adults due to a plethora of personal and societal
reasons such as leaving home, study workload, poor financial stability, and complex social relationships [79, 87].
These issues are even more prominent in the post-pandemic world, where social relationships have taken a toll
due to more emphasis on remote work/study settings. Some studies have shown that this emerging lifestyle
has affected phone usage behavior as well [56, 85, 91, 102, 122]. Further, declining mental well-being conditions
could lead to adverse outcomes such as substance abuse and suicidal thoughts [23, 32, 89]. In this context, prior
research has discussed the potential of timely and accurate mood tracking for both personal and clinical care
[29, 63, 101, 111]. Ecological momentary assessments (EMAs) and survey questionnaires are commonly used for
mood tracking. However, such techniques are burdensome to users, and prior work has shown that it is difficult
to sustain the practice of reporting for long periods unless there is a strong motivation [6, 84, 96]. As a possible
alternative, multi-modal sensors in smartphones could be used to infer mood unobtrusively with reasonable
accuracies [57, 82, 98].

According to prior work in psychology and social sciences, physiological aspects, including mood, are perceived
and expressed differently in different countries, cultures, and societies [60] 1. According to a cross-country study
by Becht et al. [7], mood and related behaviors could vary based on a person’s culture, and perceptions and
beliefs regarding different moods stemming from one’s culture. However, prior work in mobile sensing does not
study the effect of the geographical diversity of users (e.g., country of residence) on smartphone sensing-based
mood inference models.
Issues of generalization and fairness with regard to the geographical diversity of data sources have been

discussed extensively in domains such as computer vision, speech, and natural language processing [16, 41,
1For pragmatic reasons, we are equating the geographical location (country) of our participants with a specific culture that is distinct to this
particular country. We acknowledge that cultures can be multidimensional and exist in tension with each other and in plurality within the
same geographic boundary [119]. However, throughout the paper, we use country, culture, and geographic region interchangeably.
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61, 113, 124]. For example, gender classification models trained with data predominantly from the USA have
performed poorly on people of African and Asian descent [16]. Many geographical-related biases (e.g., Indian
brides being recognized as dancers, etc.) have been shown in models trained with the imagenet dataset, in which a
majority of data is from western countries [124]. Such findings have uncovered issues in data collection practices
and helped shape research directions to address issues related to diversity and biases. In this context, many prior
mobile sensing studies that attempt inferences regarding well-being related aspects highlighted that models
are trained in specific countries, and the generalization of techniques for other countries or regions should be
explored further [20, 65, 67, 73]. However, mood inference studies have focused on only one or two countries for
data collection [57] or have not considered the diversity of data sources in terms of the country, even when data
were collected from multiple countries [98].

Bardram et al. [5] emphasized the need for generalization and reproducibility of sensing-based models for
mental well-being-related outcomes. However, even though examining gender, age, and occupation-related
diversity is feasible even within the same country, examining geographical diversity requires a considerable
effort in conducting the same study, with the same protocol, in several geographic regions because studies are
time-consuming and expensive; and logistical difficulties in conducting experiments such as language barriers,
technology barriers, differences in motivating use cases and required incentives. Hence, studies that examine the
geographical diversity of mobile sensing-based inferences are rare [50, 81]. In this paper, we study and compare
the performance of country-specific, country-agnostic, and multi-country approaches for mood inference. In
addition, we also examine the effects of model personalization and generalization to new geographically diverse
countries. To our knowledge, this is one of the first studies to examine the effect of geographical diversity of
users on smartphone sensing-based mood inference models, hence shedding light on distributional shift related
issues. Considering these aspects, we ask three research questions.
RQ1: What behavioral and contextual characteristics around mood reports of college students (from eight
countries spanning Europe, Asia, and Latin America) can be extracted from the analysis of smartphone sensing
and self-report data?
RQ2: Howdo smartphone sensing-basedmood inferencemodels perform in different countries (country-specific)?
Can a model trained in one/more countries be deployed in another country not seen on training data to achieve
reasonable accuracies, hence generalizing well (country-agnostic)?
RQ3: How do country-specific or continent-specific models perform as compared to a multi-country model?
By addressing the above research questions, this paper provides the following contributions:

Contribution 1: We conducted a new smartphone-based data collection campaign among 678 participants in
eight countries (China, Denmark, India, Italy, Mexico, Mongolia, Paraguay, UK) representing Europe, Asia, and
Latin America to study their everyday mood and behavior. During the study, we collected 329,974 fully complete
self-reports. In addition, we also collected rich passive sensing data with continuous sensing (activity type, step
count, location, cellular, wifi, bluetooth, proximity, etc.) and interaction sensing (app usage, touch events, user
presence, screen-on/off episodes, notifications, etc.) throughout the deployment. First, we found that negative
mood reports in all countries would increase from morning to night. Moreover, with statistical analysis, we found
that the features that help infer mood are different across countries. However, the best features included both
continuous and interaction sensing modalities in all countries.
Contribution 2: We found that the country-specific approach performs reasonably for both two-class and
three-class mood inferences with AUROC scores in the range of 0.76-0.98 with hybrid (i.e., partially personalized)
models. However, we noticed that across both two-class and three-class inferences, models do not generalize well
to other countries, where AUROC scores drop to the range of 0.46-0.55 on average in the population-level (i.e.,
non-personalized) setting and 0.66-0.73 in the hybrid setting. These findings raise the significance of discussing
issues of generalization of mobile sensing-based models to different world regions.
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Contribution 3: In the hybrid setting, we found that multi-country models do not perform as well as country-
specific models even though they achieved an AUROC of 0.81. However, they performed better than continent-
specific models built for Asia and worse than the one built for Europe. Even though the performance differences
were not high, this again highlights that building a model within European countries leads to higher performance
and better generalization for those countries than using multi-country or even some country-specific models.
A possible explanation is that the European countries under study (Italy, Denmark, UK) might share some
daily behavioral patterns. In contrast, the three countries in Asia under study (China, India, Mongolia) have
less similarity regarding daily patterns. Hence, these findings point toward the benefit of considering the
geographical/cultural diversity of data collection on smartphone sensing-based mood inference models.

The study is organized as follows. In Section 2, we describe the background and related work. Then we describe
the data collection procedure in eight countries and how we came up with features in Section 3. Section 4
provides a descriptive and a statistical analysis of data. In Section 5, we define the analysis strategy and evaluate
two-class and three-class mood inference with population-level and hybrid models with approaches: country-
specific, continent-specific, country-agnostic, and multi-country. We discuss the main findings and implications
in Section 6, and conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Definitions and Terminology
2.1.1 What is Mood? There is no single way to define mood [25]. However, in prior work in mobile sensing,
some operationalizations have been commonly used. Positive Negative Affect Schedule (PANAS) is a widely used
validated questionnaire that can be used to capture the positive and negative affect of individuals [47]. In addition,
the Patient Health Questionnaire (PHQ-9) has been used in the past to quantify depressive mood with mobile
sensing [109]. However, these questionnaires are long and could be cumbersome to users [57]. Further, they can
capture mood over the past week (or two), and might not be suitable to measure the in-situ mood for long time
periods. Hence, prior work has also used an affect grid based on the circumplex mood model [57, 98] that would
capture the valence and arousal. As described in later sections, due to pragmatic reasons, the data collection in
this study does not focus on arousal because positive and negative affects of the circumplex model are important
in determining negative moods that could be useful for adverse mental well-being related outcome detection,
feedback, and interventions [6, 96]. Hence, only valence has been captured in a five-point scale: very positive ( ),
positive ( ), neutral ( ), negative ( ), very negative ( ). This five-point scale is similar to LiKamwa et al. [57]
and Horlings et al. [44]. For inference, we reduce the five-point scale to two-point and three-point scales similar
to prior work [14, 25, 110]. This is usually done based on the idea that in mood inference, the more important
aspect is to detect extreme moods (i.e., negative, positive) rather than to identify all fine-grained intermediate
mood levels in the middle of the spectrum [44]. First, obtaining a three-point scale using the five-point scale was
obvious by combining very positive and positive to positive; neutral as it is; and negative and very negative to
negative, hence having three classes [100, 110]. However, for two-class inference, the categorization is not as
obvious. Some prior studies have removed the class in the middle (i.e., neutral), hence obtaining positive and
negative labels [44, 120]. Even though it is possible to do it with the available classes in the dataset, we believe it
would lead to a biased classifier that would not perform reasonably well when exposed to data corresponding to
neutral mood labels. Hence, we followed prior work that binned very positive, positive, and neutral moods as
positive; and negative and very negative moods as negative [14, 120]. This two-class inference also allows for
detecting negative moods, which is useful in mobile health apps for feedback and interventions [6, 96] because it
is such negative moods, along with other aspects like stress that could be harmful to individuals on the long term.
Hence, in the scope of this paper, mood can be defined as the instantaneous valence reported by study participants
on a five-point scale (from very positive ( ) to very negative ( )), reduced to either a two-point scale corresponding
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Table 1. Terminology and description regarding different model types and approaches.

Terminology Description
Population-
Level Model
(PLM)

Training and Testing splits have a disjoint set of users. Represents a case where a machine learning model
trained with a population is deployed to a mobile app that is used by a new user. Hence, end user data are
not used in model training leading to non-personalized and generic one-size-fits-all models.

Hybrid Model
(HM)

Training and testing splits do not have a disjoint set of users. Represent a case where a machine learning
model is used by a mobile app user for some time, and data from the user is used in re-training models.
Hence, this approach leads to partially personalized models.

Country-
Specific

This approach uses training and testing data from the same country. Each country has its own model,
without leveraging data from other countries. As the name indicates, these models are specific to each
country (e.g., a model trained in Italy and tested in Italy). Both population-level and hybrid model types
can be trained in the country-specific approach.

Continent-
Specific

This approach uses training and testing data from the same continent. Each continent has its own model,
without leveraging data from other continents. As the name indicates, these models are specific to each
continent (e.g., a model trained in Europe and tested in Europe). Continent specific approach can be trained
with population-level and hybrid models.

Country-
Agnostic

This approach assumes that data and models are agnostic to the country. Hence, a trained model can be
deployed to any geographical region regardless of the country of training. Country-agnostic approach too
can be trained with population-level and hybrid models. There are two types of country-agnostic settings:
(1) Country-Agnostic I: The first setting uses training data from one country, and testing data from another
country. This corresponds to the scenario where a model trained a in country already exists, and we need to
understand how it would generalize to a new country (e.g. a model trained in Italy and tested in Mongolia).
(2) Country-Agnostic II: The second setting uses training data from four countries, and testing data from
the remaining country. This corresponds to a scenario where the model was already trained with data
from several countries, and we need to understand how it would generalize to a new country (e.g. a model
trained with data from Italy, Denmark, UK, and Paraguay, and tested in Mongolia).

Multi-
Country

This one-size-fits-all approach uses training data from all eight countries and tests the learned model in all
countries. This corresponds to the setting in which multi-country data is aggregated to build a single model.
However, this is also how models are typically built without considering aspects such as geographical
diversity. Multi-Country models too can be trained with population-level and hybrid approaches.

to positive and negative classes or a three-point scale corresponding to positive, neutral, and negative classes, for
inference using smartphone sensing data.

2.1.2 Model Types and Approaches. This section introduces the definitions and terminology used in this paper,
as summarized in Table 1. In terms of model types, we use population-level (subject-independent) and hybrid
models [4, 31, 57]. While population-level models are not personalized, hybrid models are partially personalized.
The operationalization of models is described in Section 5. Second, in terms of approaches, we consider the
country-specific approach that is trained and tested within each country; the continent-specific approach that is
trained and tested within each continent; the country-agnostic approach in which models are trained in one or
more countries, and tested in an unseen country; and the multi-country approach that would ignore the diversity
in terms of countries, and train a one-size-fits-all model considering data from all countries. As an important
note, all these approaches can be evaluated with both population-level and hybrid model types. For example, in a
country-specific setting, imagine a model trained with a certain population in Italy and tested with some new
users in Italy, hence examining the model performance on new users from the same country. This is equivalent to
a population-level model of the country-specific approach. Then, imagine the set of unseen users producing data
for model training after using a mobile app for some time, and these data points being used to update the model.
This would then lead to a hybrid model of the country-specific approach. Similarly, for the country-agnostic
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approach, a model trained in Italy deployed to unseen users in Paraguay is similar to evaluating a population-level
model. Then, imagine the users in Paraguay providing some data for model personalization. This leads to a hybrid
model created with a mix of data from Italy and Paraguay that can be evaluated on new data points from users in
Paraguay, whose data were used in model training. While this model too can be called a multi-country model, for
ease of understanding in the scope of this paper, we would still call it a hybrid model with the country-agnostic
approach. Using the combination of model types and approaches, we can examine the effect of personalization
(with model types) and model generalization to new countries (with the four approaches), hence uncovering
distributional shift-related issues of multi-modal mobile sensing datasets for mood inference.

2.2 Considerations for Research in Mobile Sensing Involving Geographic Diversity
2.2.1 Mood and Geographical Diversity. Across different geographical regions and cultures, behavior is mediated
by inherent beliefs, presses, and affordances of physical and/or socio-cultural environments [81]. Even for
behaviors that are similar across cultures, the psychological meaning of those behaviors might not be the same
due to [81]: (a) Certain behaviors that are acceptable in certain countries/cultures are not perceived as normative
or appropriate in other countries [106]; (b) The same behavior might be indicative of different outcomes/functions.
For example, while cycling is everyday behavior in certain regions (e.g., Aalborg, Denmark), it might only be used
for exercise in other areas (e.g., Ulanbatoor, Mongolia); and (c) Different behaviors might be indicative of a similar
outcome/function. For example, while people in some countries might perform cycling for exercise, people in
other countries might prefer going to the gym for exercise. Why people cycle will depend on many contextual
and cultural factors such as road safety, availability of public transport, alternative exercise options, weather
conditions, and perceptions about cycling in a specific geographical region. Given that smartphone sensors can
capture such physical activities (e.g., Google Activity Recognition API [38] and other activity engines built by
researchers [112]) and are used to infer more complex variables [15, 112], invariably, such behavioral differences
across geographical areas could affect mood inference models that leverage activity data from accelerometers
and location [81]. In addition, device-mediated behavior or phone usage behavior could also vary between
geographical areas depending on cultural norms, weather conditions (e.g., the phone usage behavior while
walking outside in a cold vs. a hot country), network coverage, and subscription plans (e.g., people in countries
where internet plans are expensive might turn off internet frequently, people in countries where the used phones
are old might turn off Wifi and location sensors often to save battery of the phone, etc.), and availability of
alternative equipment that could serve similar functionality (e.g., using a laptop for zoom calls instead of the
phone, hence showing differences in the sensed app usage behavior). Given that mood inference models in
prior work have used both continuous (activity types, step counts, location, proximity, wifi, etc.) and interaction
(typing and touch events, user presence, application usage, screen on and off events, etc.) sensing modalities to
examine/infer mood and related psychological constructs, how behaviors and contexts captured with smartphones
affect mood inference in different countries is worth investigating.

2.2.2 Studies about Psychological Constructs and Geographical Diversity. According to Khwaja et al. [50], psy-
chological mobile sensing research aims to quantify and measure constructs related to mood, stress, depression,
and user personality over the last decade due to the advancement of sensing technologies. Even though there
is a myriad of studies about such psychological aspects, ranging from clinical to non-clinical studies, many
have focused on a population within a single country [81]. In addition, even when the construct of analysis
used in studies is the same (e.g., circumplex mood model, positive-negative affect schedule, etc.), comparing
different studies across countries is complicated because data have been collected using different protocols and
sensing modalities [1]. Furthermore, Phan et al. [81] have discussed how prior psychology studies in mobile
sensing have collected data focusing onWEIRD samples (Western, Educated, Industrialized, Rich, and Democratic)
and paid less attention to the global south. This has also been highlighted in a review study on smartphone
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sensing by Meegahapola et al. [66]. For these reasons, prior work has emphasized the need for studies that exam-
ine the generalization of models across countries/cultures by building diversity-aware approaches to machine
learning-based modeling of sensor data [5, 64]. According to a recent review by Phan et al. [81], only Khwaja et
al. [50] have considered the cultural diversity of smartphone sensing-based models on psychological aspects,
where they studied personality traits based on Big-Five model. In that study, the authors collected data from 166
participants from five countries (UK, Spain, Colombia, Peru, and Chile). They showed that country-specific models
perform the best, regardless of the gender or age balance, for the prediction of Extraversion, Agreeableness, and
Conscientiousness. Compared to that study, we also collected data from multiple countries. However, our primary
focus is on studying mood inference models that could vary from time to time, even within the same person
(more dynamic), instead of stable personality traits. In addition, Muller et al. [73] used mobile GPS data to predict
depression in socio-demographically homogeneous sub-samples within the USA. They trained algorithms for the
whole sample and homogeneous sub-samples (e.g., highly educated men, women residing in rural regions, etc.)
and tested within and across sub-samples. They found that the technique that led to high AUROC scores for
student populations (0.82), did not generalize well to the USA-wide population-level model (AUROC of 0.57).
In contrast, our work focuses on valence instead of depressive mood. In addition, rather than concentrating on
socio-demographic differences within a particular country, we focus on cross-country differences.

2.3 Mood and Smartphone Technologies
2.3.1 Mood Tracking with Self-Reports. In the early days, mobile phone-based mood charts were used to track
the mood of individuals. These are based on self-reported questionnaires and ecological momentary assessment
(EMA) responses [17, 64]. Similar to how mobile food diaries were designed for people who wanted to control
their diet [67], mood charts were designed to support people who wanted to control negative moods and increase
self-awareness, allowing for monitoring and feedback [6, 96]. With randomized controlled trials, some studies
explored the usefulness and efficacy of self-report-based mood tracking and showed that engaging in mood
tracking tools increases self-awareness, hence reducing the possibility of having anxiety, even within clinically
depressed populations [3, 11]. Going beyond applications related to health and well-being, Glasgow et al. discussed
how aspects like destinations, travel choices, and social ambiance are related to mood [35]. Further, in this context,
prior work that uses mood tracking has focused on different populations such as college students [55, 112],
adolescents [49] and clinically diagnosed, high-risk populations with mental well-being related issues [29, 63, 111].
Hence, most prior studies relied on user engagement to keep track of mood. This could be a burden to users in the
long run, and it is known that apps that require many self-reports do not have high adoption rates. In our work,
even though we captured self-reports about mood, they were captured as ground-truth labels to train classifiers
with sensor data for mood inference. Such inferences could be used to update mood-tracking applications that
could be used to provide context-aware interventions, and feedback to users, with less user burden [98].

2.3.2 Mood Tracking with Sensing. Mobile phone sensors allowed researchers to build context-aware systems
that could infer various aspects regarding the health and well-being of people [53]. Most of such studies rely
on using features captured from sensors in smartphones as proxies to personal attributes (mood, stress, etc.),
behavior (eating, drinking, running, walking, etc.), and context (social context, semantic location, ambiance, etc.)
[64]. Hence, there are studies that infer aspects like mood [57, 98], stress [58, 92], depression [15, 30], eating
behavior [10, 67], drinking behavior [93], activity types [71], and social contexts [65, 66], among many others. If
we specifically focus on mood-related studies, LiKamwa et al. [57] showed that the mood of individuals captured
with the circumplex mood model could be inferred with an accuracy of 66% with all user models (population-level),
which can be increased up to 93% using personalization (user-level) with a dataset collected from 32 individuals.
They suggested that building hybrid models (partially personalized) would help overcome the drawbacks of
both population-level and user-level models. Servia-Rodríguez et al. [98] collected a large-scale dataset of mood
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Fig. 1. High-level overview of the study.

self-reports and passive sensing data from multiple countries. They also showed that binary mood captured
with the circumplex mood model could be inferred with an accuracy of 70% with population-level models. Some
studies examined mood instability derived using mood reports, with phone sensor data [72, 121]. In our work, we
look into inferring mood valence with population-level and hybrid models. However, we are more interested in
examining (a) the similarities and differences in mood models for different countries; and (b) the generalization
of models to unseen countries, both of which have not been examined in prior work. Further, as Bardram et al.
[5] highlighted, there is a lack of reproducibility and generalization of machine learning models across studies
in this domain. We believe the results presented in this study would be a step in the right direction for better
awareness of these issues in examining the characteristics and generalization of smartphone sensing-based mood
inference models across different geographical regions.

3 STUDY DESIGN, DATA COLLECTION, AND FEATURE EXTRACTION
With a team representing computer science, social sciences, user experience design, and ethics from institutions in
over ten countries, we designed an exploratory study and developed a mobile sensing application to collect passive
smartphone sensing and self-report data from participants about their everyday life behavior and well-being.
The ultimate goal of this deployment was to study their behavior, including aspects such as activity, social
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context, location, mood, and sleep quality from a mobile sensing standpoint and also to consider various diversity
aspects that could potentially affect sensing-based inferences (ranging from geographical region and gender to
personality and values). The study is summarized in Figure 1. The study design consisted of two main components:
(a) LimeSurvey component to collect survey responses during pre and mid-study phases; and (b) Mobile sensing
app to collect sensor data and self-reports. A technical report regarding the study procedure and future plans for
dataset access is available in [34].

3.1 SurveyQuestionnaires
Survey responses were captured from participants with three questionnaires sent to them before and during the
pilot at three different times. This was done to ensure that the burden on participants was reasonable. These
questionnaires were administered through the LimeSurvey platform [28].

3.1.1 Pre-Study Diversity Questionnaire. The primary objective of this questionnaire was to capture diversity
attributes of participants from different perspectives. As the first step, basic demographic information was
captured, including gender, age, sex, degree program, and socioeconomic status. Then, in an attempt to capture
the psychosocial profile, the 20-item Big Five Inventory (BFI) [26] and Basic Value Survey (BVS) [39] were
administered. Finally, there were several questions regarding social relationships (virtual and real) and cultural
consumption that they were interested in.

3.1.2 Mid-Study Questionnaire I and II. The objective of the first questionnaire was to gather more detailed
information about personality using the Jungian Scale on Personality Types [46] and Human Values Survey [97]. In
addition, questions regarding physical activity and sports, cooking and shopping habits, transport methodologies,
and cultural activities were captured. The second questionnaire consisted of the Multiple Intelligences Profiling
Questionnaire [105]. This also contained several open-ended questionnaires about the mobile app user experience.

3.2 Mobile Application
An Android mobile application was used to capture the everyday behavior of participants using short in-situ
self-report questions. The app was developed such that data would be stored in an SQLite database on the phone,
and later when the phone is connected to a Wifi network, data would be uploaded to the main server and free
up the local phone storage. In addition, the app could send push notifications by using Google Firebase as a
notification broker. Hence, the three main components of the application are: (1) a push notification system
that would send periodical reminders to participants to fill in self-reports; (2) mobile time diaries to capture
self-reports; and (3) a smartphone sensing component to collect passive sensing data from multiple modalities.

3.2.1 Push Notifications. Given the nature of the study and the requirement to capture behavioral and situational
data in a particular moment, the app sent reminders for participants to fill in in-situ self-reports regarding their
everyday life behavior around 20 times throughout the day. In addition, start-of-the-day and end-of-the-day
questionnaires were administered at the beginning and end of the day. When a notification was not clicked and a
participant did not complete the self-report within two hours, the notification expired, and a new notification
would be sent later. This allowed to keep track of participant compliance (e.g., how many self-reports were
answered from the total number of notifications sent).

3.2.2 Time Diaries and Start/End-of-the-Day Questionnaires. The start-of-the-day questionnaire was sent to
participants at 8 am each day. It only had two questions with five-point likert scales (very good to very bad): (i)
sleep quality; and (ii) expectations about the day. The end-of-the-day questionnaire was sent to participants at 10
pm and asked them (a) to rate their day (five-point likert scale; very good to very bad); (b) if they had any problems
during the day (open response), and (c) how did they solve them (open response). The time diary was sent to
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users once every 30-60 minutes. While this allowed capturing longitudinal behavior granularly, it also introduced
user burden. Therefore, the time diary was designed to minimize user burden and reduce completion time. Hence,
after several iterations of discussions, only four questions were included in this component: (i) current activity: 34
activities including eating, working, attending a lecture, etc.; (ii) semantic location: 26 categories including home,
workplace, university, restaurant, etc.; (iii) social context: 8 categories including alone, with the partner, family
member/s, friends, etc.; and (iv) current mood: five-point likert scale to capture the valence of the circumplex
mood model [90] similar to LiKamwa et al. [57], with an emoji-scale. As explained in Section 2, this is the variable
we chose as this paper’s primary focus.

3.2.3 Sensor Data and Features. The app collected sensor data from a range of sensors passively. Hence, sensor
data included continuous sensing modalities such as accelerometer, gyroscope, ambient light, location, magnetic
field, pressure, activity labels generated by the google activity recognition API, step count, proximity, and available
Wi-Fi and bluetooth devices. Interaction sensing modalities included application usage, typing and touch events,
on/off screen events, user presence, and battery charging events. The modalities and features crafted from each
modality are summarized in Table 2. In feature engineering, interpretability was a key factor as all the features
were defined in a meaningful manner. Similar to prior work in ubicomp, we used a time window-based approach
for matching sensor data to self-reports [57, 67, 98]. While different time windows can be chosen based on
the application scenario, this paper presents results with a dataset created using a time window of 10 minutes.
Hence, if the self-report regarding mood occurred at time𝑇 , sensor data would be considered from𝑇 − 5 minutes
to 𝑇 + 5 minutes. However, we also considered other time windows, such as 2, 4, 15, and 20 minutes. Results
showed that the 10-minute time window performed better for this task. This could be because shorter time
windows do not capture enough behaviors and contexts around self-reports to make a meaningful prediction
regarding mood. Prior work has shown that larger time windows can capture a high amount of information
about user behaviors [2]. However, we can not use very large windows above 20 minutes because it would lead
to a situation where sensor data segments for self-reports might get overlapped, leading to data overlap between
samples. Therefore, throughout the paper, we present results with a ten-minute time window. In addition, in this
paper, we do not discuss why each sensing modality was chosen and how features were derived. This is because
such details have been discussed extensively in many prior studies on mobile sensing for health and well-being
[2, 10, 50, 57, 64, 67, 93, 98, 112].

3.3 Participant Recruitment and Deployment
The primary objective of this study was to capture data from diverse student populations. While many facets
of diversity could be captured by experimenting within the same country, it is difficult to study geographical
diversity in such a way. Hence, we conducted mobile sensing experiments in eight countries representing Europe,
Asia, and Latin America. Details regarding the data collection are mentioned in Table 3. According to prior work
in mobile sensing, many studies have focused on Europe and North America, but not much research has been
conducted in other world regions [64, 81]. Hence, conducting the same study with the same protocol in multiple
countries allows to study mood inference models and geographical diversity in a novel sense. The study was
conducted in the following phases.

3.3.1 Translation and Adaptation. In this phase, each site received the English version of the questionnaires and
the app, including time diaries and the list of sensors to be collected. These tools were evaluated and adapted, in
coordination with all the partners, to the specific context (e.g., invitation letters, type and amount of incentives for
the participants of the mobile app, privacy and ethics documentation, etc.). Some countries made minimal changes
to better adapt the questionnaire to the local situation or academic organization. Concerning the standard scales
mentioned above, the translations were completed by a forward translator from the original English version and
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Table 2. Summary of 105 features extracted from sensing data, aggregated around activity self-reports using a time window.
A detailed description about sensing modalities is provided in Appendix A.

Modality Frequency Features and Description

Location 1 sample
per minute radius of gyration, distance traveled, mean altitude

Bluetooth
[low energy,
normal]

1 sample
per minute

number of devices (the total number of unique devices found), mean/std/min/max
rssi (Received Signal Strength Indication – measures how close/distant other
devices are)

WiFi 1 sample
per minute

connected to a network indicator, number of devices (the total number of unique
devices found), mean/std/min/max rssi

Cellular [GSM,
WCDMA, LTE]

1 sample
per minute

number of devices (the total number of unique devices found), mean/std/min/max
phone signal strength

Notifications on change
notifications posted (the number of notifications that came to the phone),
notifications removed (the number of notifications that were removed by the
user) – these features were calculated with and without duplicates.

Proximity 10 samples
per second mean/std/min/max of proximity values

Activity 2 samples
per minute

time spent doing activities: still, in_vehicle, on_bicycle, on_foot, running, tilting,
walking, other (derived using the Google activity recognition API [38])

Steps
10 samples
per second
or on change

steps counter (steps derived using the total steps since the last phone turned on
at 10 samples per second), steps detected (steps derived using event triggered for
each new step captured on change)

Screen events on change
number of episodes (episode is from turning the screen of the phone on until the
screen is turned off), mean/min/max/std episode time (a time window could have
multiple episodes), total time (total screen on time within the time window)

User presence on change time the user is present using the phone (derived using android API that indicate
whether a person is using the phone or not)

Touch events on change touch events (number of phone touch events)

App events 10 samples
per minute

time spent on apps of each category derived from Google Play Store [57, 93]:
action, adventure, arcade, art & design, auto & vehicles, beauty, board, books &
reference, business, card, casino, casual, comics, communication, dating,
education, entertainment, finance, food & drink, health & fitness, house, lifestyle,
maps & navigation, medical, music, news & magazine, parenting, personalization,
photography, productivity, puzzle, racing, role playing, shopping, simulation,
social, sports, strategy, tools, travel, trivia, video players & editors, weather, word,
not_found
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then validated back via panel and back-translation processes by independent translators. In addition, whenever
a validated questionnaire translation was available, we used it (e.g., the Big five traits questionnaire is readily
available in several languages). After translation and adaptation, the tools were tested locally. A first test was
conducted to check and validate the translations and evaluate the tools’ usability. A second test was conducted
by sending the questionnaires to a small sample of participants, both project partners and students from various
universities. As far as questionnaires were concerned, approximately 30 participants were involved. This test was
also used to ascertain the completion times. Concerning the mobile app, a two-week validation test was carried
out.

3.3.2 Invitations, Pre-Study Diversity Questionnaire, and Participants. This was the first of the three phases of
the data collection. This phase started by sending an email containing the survey description, the invitation
to the first questionnaire, and information on the second part of the data collection (sensing component) via
university mailing lists. This invitation was then reiterated through four weekly reminders to all students who
still needed to complete the survey. Over 20000 college students were contacted with mailing lists in the initial
recruitment phase. Out of the set of people who were contacted, 13398 participants filled in the pre-study diversity
questionnaire. Then, a subset of the eligible participants was selected to participate in the second part of the study,
which was done with the mobile app. The requirements for the selection were two-fold: (i) having consented to
the processing of personal data – this required participants agreeing to release mobile data collected during the
study after anonymization; and (ii) owning an Android smartphone compatible with the app.

3.3.3 Mid-Study Questionnaire I, II and Mobile Sensing app. Of all the participants who completed the pre-study
diversity questionnaire, 678 participants were chosen for the next phase with the mobile sensing app. This
deployment was done between September and November 2020. The average age of study participants was
24.2 years (SD: 4.2), and the cohort had 58% females. They were sent emails with a specification manual to
download and install the mobile sensing app. In addition, the participants completed the mid-study questionnaire
I. Reminders were sent after one week for participants who still needed to complete the questionnaire. Then,
participants completed time diaries, and sensing data were passively collected in the mobile app. After two weeks
of mobile sensing app usage, the mid-study questionnaire II was sent to participants via email. After sending
out this questionnaire, two more weeks of mobile sensing data collection were conducted. Daily reports were
produced to facilitate monitoring the time diary survey and identify possible problems, including: (1) the number
of notifications each participant responded to; and (2) the amount of data collected by the individual sensors.
Using this information, local field supervisors could contact the inactive participants every three days and support
them as needed. A further element of contact was the daily sending of the results of a daily prize, which was an
additional incentive for participants. Finally, this paper will only focus on the mood variable captured during the
study, and deeper analyses around other questionnaires captured with pre-study, mid-study I, and mid-study II
questionnaires will be done in future publications with different scopes.

3.3.4 Incentive Design. An incentive scheme was designed to motivate participants to complete time diaries and
provide sensing data. Incentives included monetary prizes for participants who completed at-least 85% of time
diaries (e.g., 20 Euro in Italy, 150 Kr in Denmark, etc.), cash prizes for multiple daily winners randomly chosen
from each pilot (e.g., five winners were given a prize of 5 Euro in Italy, 5 MNT in Mongolia, etc.). In the end,
three winners from each country were randomly chosen for a larger prize (e.g., 150 Euros per person in Italy,
150 Sterling Pounds in the UK, etc.). Incentives in all countries were designed by considering each country’s
socioeconomic status and expecting all participants to be compensated and motivated equally.

3.3.5 Ethical Procedures. All the survey activities and results at each site comply with the national ethical privacy-
protecting laws and guidelines, hence getting approvals from respective ethical review boards. In addition, all
the experiments, including non-European pilots, were compliant with the General Data Protection Regulation
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Table 3. Participants of the mobile sensing data collection (countries named in alphabetical order).

Country University Participants ` Age (𝜎) % Women # Self-Reports
China Jilin University 41 26.2 (4.2) 51 22,289
Denmark Aalborg University 24 30.2 (6.3) 58 10,010
India Amrita Vishwa Vidyapeetham 39 23.7 (3.2) 53 4,233
Italy University of Trento 240 24.1 (3.3) 58 151,342

Mexico Instituto Potosino de Investigación
Científica y Tecnológica 20 24.1 (5.3) 55 11,662

Mongolia National University of Mongolia 214 22.0 (3.1) 65 94,006

Paraguay Universidad Católica
"Nuestra Señora de la Asunción" 28 25.3 (5.1) 60 9,744

UK London School of Economics
& Political Science 72 26.6 (5.0) 66 26,688

Total/Mean 678 24.2 (4.2) 58 329,974

(a) Five-class mood distribution (b) Two-class mood distribution

Fig. 2. Summary of self-reported mood distributions.

(GDPR) [108]. Additionally, for non-European experiments, the activities and results have been developed to
comply with those of a European country for compliance purposes. More specifically, Italian legislation was
selected as the reference.

4 BEHAVIORAL AND CONTEXTUAL CHARACTERISTICS AROUND MOOD REPORTS
EXTRACTED FROM SENSOR DATA AND SELF-REPORTS (RQ1)

4.1 Descriptive Analysis.
Figure 2 shows the distribution of mood labels for the eight countries. We observed fewer labels for the ‘negative’
and ‘very negative’ classes compared to the ‘neutral’, ‘positive’, and ‘very positive’ classes. As shown in Figure 2a,
except for China, where there were more ‘very positive’ reports than ‘positive’ or ‘neutral’ reports, all other
countries had ‘positive’ as the majority label. This behavior of skewed reporting is common in studies about
valence [57, 98]. Furthermore, we plot the hourly distribution of mood reports in Figure 3. According to Figure 3a,
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(a) All (b) Positive (c) Negative

Fig. 3. Distribution of self-reported moods for 24 hours of the day.

across all countries, we could see more self-reports in the morning compared to the afternoon or evening.
However, Figure 3b shows that most self-reports around morning are for the positive valence. This means that
users had a more positive mood after waking up and around the morning. Interestingly, we also observed that the
curve for Mongolia indicates late sleep and late wake-up, according to reports, which the partner institution later
confirmed to be consistent with the routines of students in the country. As shown in Figure 3c, we also noticed
that negative valence reports increase with time in most countries. This is in line with prior studies about mood
and stress levels increasing with the time of the day [68].

As mentioned in Section 3.2, participants’ social context and semantic location labels were captured with time
diaries, in addition to mood. So, in the sub-figures of Figure 4, we show the distributions of social context (alone
or not) and location context (home or away) for positive and negative moods. These two aspects were chosen
because prior work has shown that being alone and being away from home could affect mental well-being and
behavior [65, 79, 87, 99]. In the figure, on the X-axis, the eight countries are shown. On the Y-axis, the percentage
of self-reports is shown. Regarding location, except in China, in all other countries, most mood reports were
captured when participants were home. Please note that the data was collected in the Fall of 2020, during the
covid pandemic–so participants spent a significant amount of time at home. The more interesting aspect is the
difference in the percentages for Positive and Negative moods: that is when comparing Figure 4a and Figure 4b.
The highest difference was in Mongolia, where 67% of negative moods were reported at home out of all negative
reports. In contrast, 90% of positive moods were reported when at home, out of all positive reports. This means
that in Mongolia, participants reported a higher proportion of negative reports when away from home. This is a
difference of 23%. The difference is the lowest in Mexico. For social context, the highest difference was found in
the UK, where 87% of negative reports were done when alone. In contrast, only 68% of positive reports were done
when alone, indicating that in the UK, people tend to report more negatively when alone. The trend is similar in
all other countries except China and Denmark, where proportionally more people reported that they are alone
when having positive moods.

4.2 Statistical Analysis.
In this section, we seek to understand features with high statistical significance in discriminating either positive,
neutral, or negative classes from the other two. Therefore, in Table 4, we show the t-statistic [51] and p-values
[40] (p-values higher than 0.05 after Bonferroni correction for multiple hypothesis testing [115] are marked with
*). In addition, since p-values are limited in determining statistical significance [54], we also report Cohen’s-d [86]
(all features have 95% confidence interval not crossing zero [52]) for positive, neutral, and negative classes for
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(a) Location context for
negative mood.

(b) Location context for
positive mood.

(c) Social context for negative
mood.

(d) Social context for positive
mood.

Fig. 4. Location and social context distributions for negative and positive mood.

Fig. 5. Cohen’s-d (effect Size) distribution of features for negative and positive classes, grouped by countries and modalities.

each country. The rule of thumb to evaluate Cohen’s-d is 0.2 = small effect size, 0.5 = medium effect size, and 0.8 =
large effect size. For the positive mood, across all the European countries and Mongolia, proximity sensor-related
features were among the top five features, indicating that phone usage and/or location of the phone could reveal
positive moods. However, except for Denmark, where there was a small effect size, the proximity feature had less
than small effect sizes in all other countries. In addition, in Denmark, cycling activity was indicative of positive
moods. Interestingly, Copenhagen in Denmark is a city widely known for cycling [83], which might explain this
finding. Further, running activity could discriminate positive mood with a small effect size in Paraguay. Prior
work has also shown that high physical activity could lead to positive moods and less stress [9, 48].

Regarding the negative class, app features were predominant in most countries. For some apps, high usage
indicated negative moods (e.g., puzzle in Denmark, news & magazine in Italy, etc.). In contrast, for some apps,
low usage indicated negative moods (e.g., health & fitness in China, music & audio in China and Mongolia,
role-playing games in UK and Paraguay, etc.). In addition, for both UK and Paraguay, a high number of touch
events on the phone was indicative of negative moods. This finding is generally in line with prior studies that
examined fine-grained smartphone usage and mental well-being [45, 57]. In summary, features from modalities
such as app usage, screen and phone usage events (episodes, touch events, user presence, proximity, etc.), WiFi,
activity types, and location were among the ones that helped discriminate between different moods. Further,
except for the ‘proximity std’ feature in Mexico for neutral mood, none of the features had a larger effect size.
For a few country-mood pairs, there were cases of features having above medium effect sizes (e.g., number of
touch events in Denmark for Neutral, many features from modalities such as cellular, WiFi, proximity, etc. in
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Table 4. t-statistic (TS) (p-value > 0.05 : *) and Cohen’s-d (CD) (all features reported here had 95% confidence intervals not
overlapping with zero) for positive, neutral, and negative moods for each country.

Positive Neutral Negative
TS CD TS CD TS CD

China

location altitude min 10.43 0.16 proximity std 11.51 0.17 app health & fitness 5.03 0.08
wifi connected 7.98 0.11 location speed mean 7.81 0.11 app music & audio 4.52 0.13
app communication 7.95 0.11 app health & fitness 7.61 0.09 location speed min 3.71 0.15
screen # of episodes 5.56 0.08 app tools 7.31 0.10 location speed mean 3.34 0.15
app lifestyle 5.15 0.08 app personalization 6.87 0.10 proximity mean 2.81 0.12

Denmark

app not found 24.17 0.62 touch # of events 28.91 0.56 app puzzle 8.76 0.19
activity onbicycle 12.88 0.35 app video players/editors 28.91 0.11 app music & audio 7.32 0.29
wifi # of devices 9.93 0.24 app weather 9.73 0.16 screen std episode 4.07 0.25
proximity mean 9.89 0.27 app personalization 9.35 0.23 app lifestyle 3.84 0.11
wifi std rssi 9.72 0.24 activity still 8.83 0.22 app social 3.21 0.18

India

noti posted w/o duplicates 6.65 0.34 wifi min rssi 8.12 0.44 app business 4.17 0.22
wifi # of devices 6.59 0.34 wifi mean rssi 6.31 0.38 activity tilting 4.02 0.28
noti removed w/o duplicates 5.99 0.28 location radius of gyration 5.08 0.27 app tools 3.47 0.27
app strategy 5.72 0.36 app books and reference 5.02 0.11 wifi min rssi 3.17* 0.26
screen # of episodes 9.10 0.27 screen min episode 4.65 0.24 app communication 3.12* 0.27

Italy

proximity max 26.20 0.16 wifi # num of devices 12.96 0.07 app news & magazine 11.47 0.11
proximity std 15.19 0.09 app video players/editors 10.45 0.06 app action 8.55 0.09
location speed min 13.21 0.08 activity still 6.80 0.04 activity still 4.98 0.07
proximity mean 12.61 0.08 app adventure 6.52 0.03 app video players/editors 4.62 0.07
wifi min rssi 11.75 0.07 app lifestyle 6.16 0.03 app social 4.17 0.06

Mexico

wifi max rssi 24.57 0.68 proximity std 41.39 0.98 cellular lte min 10.29 0.65
wifi mean rssi 23.99 0.69 proximity max 0.93 0.06 wifi # of devices 9.74 0.65
wifi std rssi 22.28 0.63 app communication 20.98 0.49 proximity max 9.34 0.73
screen # of episodes 13.74 0.35 cellular lte std 18.23 0.32 app tools 8.79 0.73
location altitude max 12.39 0.34 app music & audio 18.03 0.36 activity still 7.92 0.56

Mongolia

app not found 13.76 0.12 wifi # of devices 16.46 0.14 app personalization 10.99 0.19
wifi std rssi 13.04 0.12 location altitude max 16.25 0.15 app music & audio 10.09 0.11
proximity 7.25 0.06 app role playing 15.24 0.09 app educational 9.79 0.05
wifi connected 6.66 0.05 wifi min rssi 12.26 0.11 app sports 8.10 0.08
user presence time 6.07 0.05 app tools 11.98 0.11 app communication 6.67 0.11

Paraguay

wifi min rssi 24.32 0.53 touch # of events 24.29 0.49 app role playing 6.99 0.15
wifi mean rssi 20.07 0.43 location speed min 22.49 0.48 app productivity 5.71 0.17
noti posted w/o duplicates 13.60 0.31 app tools 12.30 0.27 app tools 5.02 0.26
activity running 8.08 0.19 wifi # of devices 11.53 0.25 screen std episode 4.71 0.23
user presence time 7.69 0.17 app strategy 8.72 0.16 touch # of events 4.49 0.22

UK

proximity std 10.52 0.18 wifi mean rssi 17.93 0.24 app role playing 39.48 0.53
wifi # of devices 10.51 0.15 wifi min rssi 15.67 0.21 app board 21.19 0.29
app business 9.83 0.16 wifi max rssi 11.89 0.17 app personalization 17.32 0.47
app tools 9.82 0.14 app role playing 10.34 0.13 touch # of events 8.27 0.21
proximity max 9.53 0.16 cellular lte mean 9.08 0.13 screen # of episodes 6.78 0.20

Mexico, minimum RSSI value for WiFi in Paraguay for Positive, and role-playing apps in the UK for Negative).
Figure 5 shows the distribution of Cohen’s-d values for all features grouped by sensing modalities for the two
classes studied in this paper (i.e., negative vs. positive). Results indicate that depending on the country, the
expressiveness of different sensing modalities in discriminating negative classes from other classes is different.
For example, for ‘app’ features, effect sizes are small for countries such as China, Italy, and Mongolia. In contrast,
more informative features with larger effect sizes are present for Denmark, Mexico, and the UK.
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5 MOOD INFERENCE (RQ2 & RQ3)

5.1 Experimental Setup
The primary goal of this paper is to investigate aspects related to mood inference, personalization, and generaliza-
tion to different countries using smartphone sensing data. As described and defined in Figure 1 and Table 1, we
use two model types: population-level and hybrid, to examine personalization to individuals, and four modeling
approaches: country-specific, continent-specific, country-agnostic, and multi-country, to examine generalization
and country-wise performance. Hence, this section will describe the operationalization of the experimental
protocol.
We used python with scikit-learn [80] and Keras [21] frameworks to conduct all experiments. Initially, we

conducted country-specific experiments with different model types such as random forest (RF), gradient boosting,
support vector classification, XGBoost, AdaBoost, and multi-layer perceptron neural networks [19, 24, 74, 77, 88,
94]. We obtained the best results for a larger majority of inferences with RFs. In addition, these models allow
interpreting results better because they provide Gini feature importance values for trained models. Because of
these reasons and space limitations, we will only report results for RF models with default parameters in this
paper 2. Further, to fill in missing values of the dataset, we used k-nearest-neighbor (kNN) imputation [8, 123]. In
addition, we report all the results with the area under the receiver operating characteristic curve (AUROC) [13]
because they provide a better assessment of performance when dealing with imbalanced data (when used with
macro averaging which gives equal emphasis to all classes in an inference). While we provided a basic description
of model types in Table 1, the operationalization of models is given below.

• Population-Level Models (PLM): Since this represents a scenario where models are deployed to a set of
users unseen in model training, we use the leave-n-participants-out strategy when testing models. This is
an extension of leave-one-out cross-validation, where we consider 𝑛 users in testing instead of one. Hence,
if the number of users in the considered population is 𝑁 , we pick 𝑛 such that it is roughly 20% of 𝑁 (can be
obtained with group-k-fold cross-validation with k = 5 in scikit-learn). So, for each 𝑛 user in the testing
split, 50% of their data would be used for testing to be coherent with hybrid models (stratified based on
users and mood labels), and data from the rest of the 𝑁 −𝑛 users would be used for the training split. Then,
experiments were repeated ten times by randomly sampling 𝑛 users, and the results were averaged.

• Hybrid Models (HM): Since this represents a scenario where models are deployed to a set of users already
seen in model training (hence partially personalized models), we first use the leave-n-participants-out
strategy similar to PLM. So, for each 𝑛 user in the testing split, data from the rest of the 𝑁 − 𝑛 users would
be used for the training split. In addition, 50% of the data from the testing split (stratified based on users
and mood labels) would be included in the training set to represent partial personalization. In addition, an
equal number of data points to the number of data points added to the training set from the testing set
would be removed randomly to make the number of data points in the training and testing sets for HM
and PLM equal making them more comparable. Finally, experiments were repeated ten times by randomly
sampling 𝑛 users, and the results were averaged.

Using the above two model types, we conducted the experiments using four approaches. The country-specific
approach examines how models trained within a country perform. We examine both PLM and HM types for
this approach, hence examining the personalization within countries. The country-agnostic approach examines
how models trained in one or a few countries generalize to a new country. With PLM and HM model types,
we examine how personalization affects model performance when models are deployed to countries unseen
on training data. The multi-country approach is similar to a one-size-fits-all model trained with data from all
2Note that we also tried out GridSearch for parameters in the random forest (for n_estimators: 50, 100-2000 with intervals of 100, max_depth:
2-16 with intervals of 2, min_samples_split: 2-10) that did not yield better performance than the default parameters (n_estimators: 100,
max_depth: NA, min_samples_split: 2), except in a few cases. Hence, we used default parameters for all experiments for consistency.
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Table 5. Country-Specific and Multi-Country results with PLM and HM: Mean (𝑆) and Standard Deviation (𝑆𝜎 ) AUROC
scores computed from ten iterations. Results are presented as 𝑆 (𝑆𝜎 ), where 𝑆 is AUROC.

PLM HM
Two-Class Three-Class Two-Class Three-Class

Baseline .50 (.00) .50 (.00) .50 (.00) .50 (.00)
China .51 (.04) .45 (.04) .78 (.02) .79 (.01)
Denmark .41 (.10) .56 (.03) .83 (.03) .86 (.01)
India .46 (.15) .45 (.04) .79 (.03) .76 (.02)
Italy .55 (.05) .52 (.01) .82 (.01) .81 (.00)
Mexico .62 (.21) .62 (.13) .98 (.01) .94 (.01)
Mongolia .49 (.08) .49 (.02) .85 (.01) .83 (.00)
Paraguay .48 (.08) .53 (.01) .84 (.01) .84 (.01)
UK .56 (.05) .52 (.05) .91 (.01) .87 (.00)
Aggregate .51 (.10) .52 (.04) .85 (.02) .84 (.01)
Multi-Country .52 (.03) .53 (.02) .83 (.01) .79 (.00)
Multi-Country (Balanced) .53 (.02) .52 (.03) .81 (.03) .78 (.02)

available countries. This is similar to a model in which country diversity is ignored. Both PLM and HM model
types were used to examine the effects of personalization on model performance.

5.2 Results
5.2.1 Country-Specific Models. In Table 5, we show country-specific results with PLM and HM. In addition,
we also show the aggregate results from country-specific (as ‘Aggregate’) and multi-country models. Under
‘Multi-Country (Balanced)’, we use an equal number of data points from each country (equal to the country
with the minimum number of data points, which is India) by randomly sampling when training and testing
models. The results show that PLMs do not perform well for two and three-class inferences. Models in Mexico
performed better than in other countries. These results are reasonable because many features in Mexico had
medium to large effect sizes, as shown in Figure 5. However, HM results show that they perform better than
PLMs, showing the usefulness of personalization within each country. With HMs, the performance for two-class
inference almost doubled for Denmark, and even for other countries, the AUROC bump was above 30%. These
results suggest that for both two-class and three-class inferences, partial personalization within each country
leads to significant improvements in performance. When the aggregate results of country-specific models are
compared with multi-country models, PLMs do not show a significant difference. However, with HMs, it is
clear that country-specific models outperform multi-country models by 2% for two-class and 5% for three-class.
This suggests that model personalization within countries leads to better performance when compared to the
personalization of one-size-fits-all models. This is reasonable given that we are reducing the distributional shift
by only considering data within a country and adding an effect of personalization by being geographically
diversity-aware. In addition, the ‘Multi-Country’ approach performed slightly better than the ‘Multi-Country
(Balanced)’ case. This could be because, in the imbalanced case, models favor countries with more data points,
such as Italy and Mongolia, leading to a slight increase in performance for those countries that occupy a majority
of the dataset. Furthermore, regardless of whether it is a two/three-class inference, the performance of models
did not degrade much.

5.2.2 Country-Agnostic I Models. Next, we examine the country-agnostic approach. Table 6 and Table 7 show
the results for two-class and three-class inferences, respectively. In both tables, we first show results for models
trained in specific countries when tested on an unseen country in the form of a matrix with an empty diagonal.
Then, under ‘Aggregate’, we show the aggregate value of those results for each training country (e.g., PLM
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Table 6. Country-Agnostic I PLM & HM: Two-Class Inference – Mean (𝑆) and Standard Deviation (𝑆𝜎 ) of AUROC scores
obtained by testing each Country-Specific model (rows) on a new country. Results are presented as 𝑆 (𝑆𝜎 ), where 𝑆 is AUROC
score. Aggregate of the reported population-level results and results from hybrid models indicated under ‘Aggregate’.

Testing (PLM) Aggregate
Training China Denmark India Italy Mexico Mongolia Paraguay UK PLM HM
China .53 (.02) .44 (.03) .49 (.01) .58 (.05) .50 (.01) .42 (.03) .51 (.02) .55 (.02) .67 (.04)
Denmark .51 (.00) .47 (.01) .51 (.00) .58 (.02) .50 (.00) .58 (.01) .46 (.00) .52 (.01) .69 (.03)
India .48 (.00) .37 (.00) .50 (.00) .40 (.02) .50 (.00) .44 (.01) .52 (.00) .46 (.00) .70 (.02)
Italy .49 (.00) .45 (.00) .51 (.01) .40 (.02) .51 (.01) .48 (.00) .50 (.00) .48 (.01) .69 (.02)
Mexico .49 (.00) .58 (.01) .44 (.01) .49 (.00) .49 (.01) .56 (.01) .47 (.01) .50 (.01) .73 (.03)
Mongolia .49 (.00) .48 (.01) .52 (.00) .50 (.00) .51 (.00) .48 (.00) .51 (.00) .50 (.00) .71 (.03)
Paraguay .51 (.00) .53 (.01) .49 (.01) .50 (.00) .55 (.02) .53 (.01) .50 (.01) .52 (.01) .70 (.02)
UK .48 (.01) .43 (.02) .57 (.00) .50 (.01) .32 (.01) .50 (.01) .49 (.01) .47 (.01) .66 (.02)

Table 7. Country-Agnostic I PLM & HM: Three-Class Inference – Mean (𝑆) and Standard Deviation (𝑆𝜎 ) of AUROC scores
obtained by testing each Country-Specific model (rows) on a new country. Results are presented as 𝑆 (𝑆𝜎 ), where 𝑆 is AUROC
score. Aggregate of the reported population-level results and results from hybrid models indicated under ‘Aggregate’.

Testing (PLM) Aggregate
Training China Denmark India Italy Mexico Mongolia Paraguay UK PLM HM
China .48 (.01) .54 (.01) .48 (.01) .47 (.01) .50 (.01) .51 (.01) .50 (.00) .50 (.01) .68 (.02)
Denmark .52 (.01) .41 (.02) .56 (.01) .54 (.04) .51 (.01) .50 (.02) .58 (.01) .52 (.02) .66 (.04)
India .52 (.01) .42 (.02) .52 (.01) .38 (.02) .52 (.01) .52 (.01) .38 (.01) .47 (.01) .68 (.03)
Italy .52 (.01) .49 (.01) .47 (.02) .32 (.02) .51 (.01) .51 (.00) .54 (.00) .48 (.01) .69 (.02)
Mexico .49 (.00) .59 (.00) .44 (.00) .47 (.00) .50 (.00) .61 (.00) .54 (.00) .52 (.00) .71 (.02)
Mongolia .49 (.00) .50 (.00) .43 (.00) .51 (.00) .55 (.00) .54 (.00) .53 (.00) .51 (.00) .67 (.02)
Paraguay .44 (.01) .51 (.02) .48 (.03) .52 (.01) .58 (.05) .53 (.01) .55 (.01) .52 (.02) .65 (.04)
UK .53 (.01) .51 (.01) .51 (.03) .53 (.01) .40 (.06) .52 (.01) .53 (.02) .50 (.02) .67 (.03)

performance for models trained in China when deployed to other countries). In addition, we calculated AUROC
scores for the same set of models with partial personalization (all the results are not shown here due to space
limitations), and similar to the aggregate of PM, we show the aggregate values under HM. Results show that
PLMs do not generalize well to new countries with AUROCs of 0.47 - 0.52. However, these results are on par with
PLM accuracies in country-specific and multi-country approaches. This suggests that regardless of the country
from where sensing data were obtained to train models for mood inference, PLMs performed similarly. However,
HM results convey an opposite conclusion for two and three-class inferences. For the two-class inference, the
country-specific approach had AUROC scores in the range of 0.78-0.98, whereas the country-agnostic approach
yielded scores in the range of 0.66-0.73. A similar pattern can be seen for three-class inference, where scores
dropped from 0.76-0.94 to 0.65-0.71. This shows that the effect of personalization achieved with HMs is strong
for the country-specific approach, whereas country-agnostic models still did not generalize well. However, we
also noticed that with HMs for both two-class and three-class inferences, models trained in European countries
consistently performed better in other European countries than the rest. For example, in the two-class inference,
the Italian model had AUROC scores of 0.76 and 0.78 in Denmark and the UK, respectively. In contrast, the next
best score for the Italian model was 0.70 in India. Finally, for three-class inference, the UK model had AUROC
scores of 0.73 and 0.75 for Italy and Denmark, respectively, whereas the next best score was 0.69 for Paraguay.
These results could be partly justified given that European countries have somewhat closer everyday patterns
that could get captured in the models.
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Table 8. Country-Agnostic II PLM: Mean (𝑆) and Standard Deviation (𝑆𝜎 ) of AUROC scores obtained by testing each a
seven-country model on data from a new country. Results are presented as 𝑆 (𝑆𝜎 ), where 𝑆 is the AUROC.

Two-Class Three-Class
Baseline .50 (.00) .50 (.00)
China .54 (.01) .48 (.01)
Denmark .51 (.02) .48 (.01)
India .53 (.03) .47 (.01)
Italy .54 (.01) .50 (.01)
Mexico .41 (.02) .54 (.01)
Mongolia .49 (.01) .49 (.01)
Paraguay .56 (.01) .55 (.01)
UK .48 (.01) .51 (.01)

Table 9. Multi-Country and Continent-Specific with PLM and HM: Mean (𝑆) and Standard Deviation (𝑆𝜎 ) of F1-scores and
AUROC scores obtained by testing the "worldwide" model. Results are presented as 𝑆 (𝑆𝜎 ), where 𝑆 is any of the two metrics.

PLM HM
Two-Class Three-Class Two-Class Three-Class

Baseline .50 (.00) .50 (.00) .50 (.00) .50 (.00)
Europe .58 (.03) .50 (.03) .89 (.03) .86 (.02)
Asia .51 (.02) .52 (.05) .79 (.03) .74 (.01)
Multi-Country .52 (.03) .53 (.02) .83 (.01) .86 (.03)
Europe (Balanced) .53 (.02) .50 (.05) .86 (.04) .82 (.03)
Asia (Balanced) .52 (.04) .54 (.03) .79 (.02) .76 (.02)
Multi-Country (Balanced) .53 (.02) .52 (.03) .81 (.03) .78 (.02)

5.2.3 Country-Agnostic II Models. In Table 8, we show results for country-agnostic models that were trained
in seven countries and tested in the shown country. Compared to the previous setting, where the models were
trained in only one country and tested in another, these models capture a more considerable intra-subject
variability in model training. Moreover, HM results were not included here because, technically, it is similar to
the HM of multi-country models. PLM results show that the performance is not high for both two-class and
three-class inferences. For some countries, performance slightly increased compared to country-specific (e.g.,
China, Paraguay in two-class). For some, the performance declined (e.g., India, Denmark, Italy, Mexico, and the
UK in two-class). Hence, there is no clear evidence that having more data from multiple countries would help to
generalize better for an unseen country, even in this case.

5.2.4 Multi-Country and Continent-Specific Models. Finally, in Table 9, we show the results for the multi-country
approach and also the continent-specific approach that is similar to the country-specific; however, instead of
countries, we considered two continents: Europe (Italy, Denmark, UK) and Asia (China, Mongolia, India) 3. The
primary motivation for examining these models is the result we obtained in the country-agnostic approach,
where for HM, models trained in European countries performed better in other European countries with HMs.
Results for the continent-specific approach show that models performed similarly to any other approach for both
two-class and three-class inferences for PLM. However, the Europe model for two-class inference had an AUROC
score of 0.58, which is second only to the Mexican model (0.62) in the country-specific approach.
3There are arguments for and against on whether North and South America are a single continent or two [75, 114, 117]. In the Anglo-Saxon
world, it is often stated that there are seven continents, with North and South America being separate. In contrast, it is taught otherwise in
Latin America [114]. Hence, we did not include ‘America’ results by combining Mexico and Paraguay.
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Fig. 6. Country-Specific HM: Gini feature importance values from RF models for two-class inference.

Furthermore, results show that the continent-specific model for Europe with an AUROC of 0.89 for two-class
inference, performed better than the multi-country (0.83) and even country-specific approach for Italy (0.82)
and Denmark (0.83) and closer to the country-specific UK model with an AUROC of 0.91. Similar results can
be seen for three-class HM inference. This suggests that for western Europe, where everyday patterns might
be somewhat similar across countries, continent-specific models could perform reasonably. However, for the
continent-specific Asian model, it is not the same. For example, for the two-class inference, the Asia model had
an AUROC score of 0.79, which is similar to country-specific China (0.78) and India (0.79) results but significantly
lower than the result for Mongolia (0.85). On the other hand, for the three-class HM, the Asia approach reached
an AUROC of 0.74, whereas China, India, and Mongolia models reached 0.79, 0.76, and 0.84, respectively. Hence,
continent-specific models did not perform as well as country-specific or multi-country models for Asia. This could
be because even though China, India, and Mongolia are geographically on the same continent, the behaviors
and cultures of students are different. In addition, ‘balanced’ models decreased performance for Europe and
Multi-Country, whereas for Asia, it is not the same, where three-class HM performance increased in the balanced
case. Again, this is because India and China get more representation in training, leading to better performance in
testing.

5.2.5 Gini Feature Importance Values. Figure 6 and Figure 7 show the Gini feature importance values for each
country for two-class and three-class mood inferences with HMs. We report diagrams for HMs because they
provide the highest performance. Further, the top five features within each country are marked with numbers
from one to five. Moreover, in both diagrams, values are arranged in the decreasing order of values in China, from
left to right. For both inferences, many apps had very low feature importance values. On the other hand, ‘app
personalization’ and ‘app tools’ were among the top five features for many countries. For the UK, personalization
apps were highly important in two and three-class inferences. However, for Mexico, the importance of the feature
was relatively lower in both inferences. In addition, the number of touch events on the phone was within the top
five features for Italy, Mongolia, Paraguay, and the UK in the two-class inference and all countries except India
and Mexico in the three-class inference. This aligns with previous literature that presented findings of typing
and touch events indicative of aspects such as mood and stress [57]. Another feature discussed in the literature
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Fig. 7. Country-Specific HM: Gini feature importance values from RF models for three-class inference.

on psychological aspects and mobile sensing [15], which appeared again in the diagrams is speed, calculated
using location sensors (‘location speed mean’). Diagrams indicate that the feature was in the top five in two-class
inference for India and China and three-class inference for India and Paraguay. In addition to these features,
multiple features captured using Wifi signals were among the top five in all countries. Wifi-related features (i.e.,
‘wifi std rssi’,‘wifi mean rssi’, ‘wifi min rssi’, ‘wifi max rssi’ - The standard deviation/mean/minimum/maximum of
RSSI signal strengths captured with unique devices within the time window) were present with high importance
values for all countries across both inferences. Prior work highlights that the number of wifi devices and signal
strengths could be indicative of user context, including the location [93], and location-related features have
shown to be closely tied to the mood of individuals [15]. In summary, the top five features for mood inference,
regardless of whether it is two-class or three-class, were not the same across all countries. Certain features are
unique to individual countries. At the same time, we can also observe a specific set of features (shown in the left
quarter of both figures) that consistently appeared on the top list in all countries.

6 DISCUSSION
In this section, we discuss the main findings of the paper, and highlight limitations and future work.

6.1 What do the Results Suggest?
In the country-specific setting, PLMs did not perform well across countries, with the highest performance for
both two-class and three-class inferences coming from Mexico, with an AUROC of 0.62. However, performance
increased significantly, with HMs showing the effect of personalization within countries. Comparable performance
gains were observed for the multi-country setting as well. However, country-specific models (AUROC scores of
0.78-0.98 for two-class and 0.76-0.94 for three-class) would be preferred over multi-country models (0.83 and
0.79 for two and three classes, respectively). Then, in the country-agnostic setting, we observed that even HMs
performed poorly compared to the country-specific setting. This means that if a model is trained in a different
country, even if it is personalized to a person in another country, the model might not perform as well as a
country-specific model that is personalized to a person in the same country. However, we also observed that
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models perform relatively better in culturally similar countries (i.e., within Europe). Within Asia, even though
countries are in the same geographic region, cultural differences (i.e., India and China have different cultures and
behaviors) could be one reason that did not allow models to perform better. Finally, building continent-specific
models for Europe worked reasonably better than for Asia or a multi-country setting. Please note that the number
of participants in several of these countries remained small, and so we cannot make any strong assertions.

6.2 Comparison of Results to Previous Studies
First, it should be noted that mood inference with smartphone sensing data is inherently a difficult task because
of the task’s subjectiveness. In this context, if we consider the results we obtained compared to some prior work,
LiKamWa et al. [57] showed that they could achieve a 66% accuracy with population-level models, around 75%
accuracy with hybrid models, and 94% accuracy with user-level models. However, comparing the results in their
paper to ours is difficult because we reported results with AUROC, which is a more holistic performance metric,
especially in an imbalanced class scenario. However, purely in terms of numbers, the performance gain from PLM
to HLM is greater in our case (from around 50% to 80%). This could be because of our dataset’s more extensive
set of features compared to their dataset, which only has phone usage-related features such as messages, calls,
websites visited, and app usage. In addition, they modeled the inference as a regression task using multi-linear
regression and provided model performance as a percentage using an error bound of 0.25 around the predicted
value.

Another paper that used a similar dataset was by Servia-Rodriguez et al. [98]. It is also worth noting that this
dataset contains data from multiple countries, even though the analysis did not explicitly focus on that aspect.
Furthermore, they only showed results for PLMs, obtaining an accuracy of around 70% for weekends. Again,
purely in terms of numbers, this is a good performance compared to what we obtained (AUROC scores of about
0.5). However, it is worth noting that they only reported results for weekends, for which inference performance
was high, and we do not separate weekdays and weekends. In addition, the feature sets used for inference are
again different. Another potential reason for the lack of performance in our PLMs could be participants’ lack of
movement during the pandemic when data were collected. This could result in sensors such as location (used
in both the discussed papers) not being highly informative of different moods. Hence, this could lower the
performance of our models. Interestingly, one common result across all three studies was that fewer negative
labels were reported, which could make the development of fully personalized models more challenging due to the
lack of data for negative classes from certain individuals. Hence, future studies could look into ways of capturing
negative mood labels accurately and more often using different techniques. In addition, model personalization in
situations where some users lack data for certain classes is a potential problem that could be explored further (a
similar skewed labels-related scenario for depression detection has been discussed in a recent study [118]).

6.3 Diversity-Aware Research in Mobile Sensing
According to Gong et al. [37], diversity and diversity awareness are topics in machine learning that have gained
importance in the recent past, and increasing generalization and decreasing biases in models for different
populations are two fundamental goals discussed in this domain [64]. According to them, diversity is achieved
in machine learning with data diversification (maximizing the informativeness in training data such that the
model fits data better), model diversification (increased diversity in model parameters leading to better learning),
and inference diversification (model provides choices/information with more complementary information). Our
study examined diversity awareness, primarily with data diversification. Since the whole data collection was
done to emphasize the need for diversity awareness in machine learning-based mobile sensing systems, we
defined diversity based on social practice theory [33, 42, 95]. Accordingly, diversity is a complex and multi-layered
construct that does not exist within individuals but surfaces when two or more individuals interact. Considering

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 176. Publication date: December 2022.



176:24 • Meegahapola et al.

these conceptions, data and model diversity can be achieved by considering various types of diversity attributes
ranging from country of residence, gender, and age, to personality, values, etc. [42, 95]. In this paper, we focused
on ‘country of residence’ as an attribute for analysis because of the way mood is perceived and expressed, as well
as phone usage and everyday behavior are different in countries around the world. In future work, other diversity
attributes could be used to study mood (e.g., studying personality and mood with mobile sensing). Furthermore,
other constructs collected in the study (e.g., social context, activity, food consumption) could be examined with
mobile sensing, using country as a diversity attribute.

6.4 Diversity-Awareness: Countries or Cultures?
In this study, we considered the geographical diversity of users when building smartphone sensing-based mood
inference models. Hence, our primary construct of diversity is the ‘country of residence’. However, depending on
the city, even though it is within the same country, the cultural composition of students could vary significantly.
For example, our specific university in London, UK, is considered more diverse and has a high international
student population compared to our specific university in India. These differences could also affect inference
performance. In addition, our study also leaves the open question of whether the geographical region affects
mobile sensing inference performance, or whether it is the culture of study participants that mediates their
everyday life and phone usage behavior. Section 5 presented some initial results about these aspects. Future work
could investigate these aspects further.

6.5 Ethical Considerations
Mood is a self-reported internal state and thus constitutes sensitive information. Ethical implications related
to inference of affective states have been discussed in previous literature in affective computing [22, 70, 78],
ubicomp [43, 76], and other disciplines [12, 69]. From the perspective of possible applications beyond supporting
research on youth well-being, as we do here, it is fundamental that human-centered principles are followed and
limit their use to cases that benefit individuals and avoid potential harm.

6.6 The Effect of the Pandemic and Weather on Mood Inference Models
In this paper, we showed how mood inferences could be done in the context of a mobile sensing application. In
addition, we also showed how models lack generalization to unseen countries and the need for personalization.
However, a limitation of this study is that the study was conducted during the pandemic. During the data
collection time period in 2020, many countries have imposed different measures to curb the coronavirus. However,
it is worth noting that, except for China, where strict lockdown measures were not present, universities have
been in remote work/study mode in all the other countries. Hence, most students engaged in their studies from
home. This could be the reason why there are many app usage, touch event, proximity, and wifi related features
informative about mood according to Figure 6, Figure 7, and Table 4. It is also worth noting that the seasons in
each country during the data collection period were different. On the positive side, none of the countries were in
extreme winter or summer seasons. The September-November time period in European countries is the fall season,
and none of those countries faced extreme cold weather conditions during that period. At this time, the season in
Mongolia was comparable to European countries like Denmark or UK. All the other countries had comparatively
higher temperatures. However, given that students in all the sites were affected by movement restriction measures
and were stuck at home, we believe that weather conditions might not have affected the study as much compared
to a time period when student behavior in outdoor environments would significantly change based on weather
conditions. However, the results should be understood and interpreted with this limitation in mind. Future work
could explore the effects of seasons and weather conditions on mobile sensing-based inferences.
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6.7 Domain Adaptation for Multi-Modal Mobile Sensing
In this paper, we highlighted the issue of generalization and the possible distributional shifts in a mobile sensing
dataset collected with the same protocol in different countries. Even though issues of generalization, biases,
and domain shifts have been discussed extensively in other domains such as computer vision [59], natural
language processing [27], and speech [103], smartphone/mobile sensing studies have not focused on those aspects
extensively thus far [36]. Even though we provide evidence of the fundamental issue, we did not go into depth
about finding a potential solution for that issue, as it is not within the scope of this paper (especially given page
limits and extensive work that would be needed). Further, even though we showed that model personalization
(hybrid setting) could minimize domain shift to an extent, other advanced techniques inspired by the work related
to domain shift/adaptation in other domains could provide cues for solving such problems in mobile sensing.
Recent studies also suggest that domain adaptation techniques for time series data are limited [116]. For example,
a longstanding problem in the human activity recognition (HAR) domain is the wearing diversity of wearables in
different body positions. The wearing diversity hinders the performance of HAR models. A few recent studies
suggested that unsupervised domain adaptation could be a solution for wearing diversity issues [18, 62]. Further,
Wilson et al. [116] explored domain adaptation for similar datasets captured from people from two age groups.
However, the above studies focused on time series accelerometer data, which are more straightforward than the
multi-modal datasets we are working with within this study. Hence, to the best of our knowledge, a research
gap lies in solving domain adaptation for multi-modal sensing data coming from smartphones and wearables. In
fact, in a recent study, Adler et al. [1] discussed the issue of generalization in multi-modal mobile sensing data
and showed that lack of similarity across datasets collected in different time periods does not allow studying
generalization of techniques to a greater depth. Therefore, with the dataset discussed in this paper, we believe
solutions to domain adaptation and generalization could be explored further (not regarding generalization across
time, but across geographically/culturally distinct areas), hence pushing the boundaries of multi-modal mobile
sensing systems towards more real-world utility.

6.8 Other Limitations and Future Work
This work has several limitations and areas that could be improved in future work. First, the dataset used in
this study is highly imbalanced, where there are fewer negative and very negative mood labels than neutral,
positive, and very positive mood labels. However, this distribution is in a way similar to previous studies about
valence [57, 98]. Inherently, this also makes both inference tasks much harder. On the other hand, there is an
imbalance in the dataset regarding data per country, where Italy and Mongolia had a significantly higher number
of self-reports. In addition to the experimental results that we reported with imbalanced datasets, we conducted
experiments with stratified down-sampled datasets for each country (each country having samples equal to the
number of India, which had the lowest number of self-reports). While we reported some results for balanced
cases in multi-country and continent-specific cases, more extensive analysis could be done to explore that aspect
further. Hence, diversity-aware sampling strategies could be explored in future work to mitigate biases in mobile
sensing-based inference models. Further, we only considered valence in the circumplex mood model in this study.
Other time diary questions were used to capture other behaviors and contexts, and we did not want to overburden
users with multiple questions or lengthy questionnaires. However, we agree that collecting the arousal and
understanding the geographical diversity of arousal inference could be studied in future work. In addition, the
clinical validity of the valence in the circumplex mood models might be questionable. Future work could look
into conducting studies with more clinically valid instruments for mood inference. In addition, in this paper, we
did not use a ’wrapper’ feature selection technique before training models because tree-based models, such as
random forest, inherently use ’embedded’ feature selection with Gini impurity to find a set of good features to
build the trees with [107], especially when the feature space is small (i.e., around 100 in this dataset). However, if
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the feature space was larger, the dataset size was smaller, or if another non-tree-based model was used, using
feature selection is highly preferred. Therefore, future work could also look into improving models based on
feature selection and finding solutions to the issue of generalization using careful feature selection.

7 CONCLUSION
In this exploratory study, we collected a mobile sensing dataset and around 329K self-reports from 678 participants
in eight countries (China, Denmark, India, Italy, Mexico, Mongolia, Paraguay, UK) for over three weeks to
assess the effect of geographical diversity on mood inference models. We evaluated country-specific, continent-
specific, country-agnostic, and multi-country approaches trained on sensor data for two mood inference tasks
with population-level (non-personalized) and hybrid (partially personalized) models. We showed that partially
personalized country-specific models perform the best yielding AUROC scores in the range of 0.78-0.98 for
two-class (negative vs. positive) and 0.76-0.94 for three-class (negative vs. neutral vs. positive) inference. Further,
with the country-agnostic approach, we showed that models do not perform well compared to country-specific
settings, even when models are partially personalized. We also uncovered generalization issues of sensing-based
mood inference models to new countries. We hope that these findings will be of benefit to ubicomp researchers
towards building future mobile sensing applications with an awareness of geographical diversity.
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A APPENDIX
In this appendix, we describe how features were obtained for each sensing modality. This is an extension of the
description we provided in Table 2. First, it is worth noting that the analysis was done using a time window of
10 minutes. This would mean that for any sensing modality, we would filter out data for that particular time
window. In addition to the sensor data within the time window, we also used the last data point before the start
of the time window and the first data point after the end of the time window, in some cases when necessary.

Location. Location data were captured once every minute using either GPS signal or cell tower signals,
depending on the most accurate signal available in a particular moment. We used the definitions for radius of
gyration and distance covered from [15]. This enables to capture the movement of the individual within the
time window. Prior work has shown that movement could be indicative of different states related to mood and
depression [15, 57, 98]. In addition, we also calculated the mean altitude using altitude values captured with
location information.

Bluetooth and Wifi. There were two types of bluetooth devices logged with the mobile application. They are:
low energy and normal. For each type, the mobile application logged a list of devices found with device IDs and
signal strengths to each device. Then, we derived a set of features with a similar approach to [93], including the
number of device found, and statistical features regarding the signal strength to other devices in the vicinity.
This sensing modality provides the user context as prior work has shown that these features could be indicative
of whether the user is in a device-dense closed space or not [67, 93]. For Wifi, first, it was calculated whether the
user is connected to a network or not. Usually someone connecting to a network indicates that they are in a
familiar environment (i.e. home, workplace, university). In addition, similar to [93], we also captured statistical
features related to signal strength for all networks in the vicinity. This also provides data about the user context.

Notifications. The mobile app captured whenever users got a notification. In addition, in certain cases, unless
the notification was clicked, the same notification would be displayed again (e.g. this could happen in WhatsApp).
Hence, to capture these details, we calculated the number of notification posted by the system, and removed by
the user, with and without the duplicates. This gives an indication of the phone usage behavior of users.

Proximity. Prior work has shown that proximity sensor reading could give an indication on where the phone
is [2]. Hence, basic statistical features were captured for the proximity variable.

Steps. The step count was captured in the study using two techniques for reliability. First, the step count was
derived using the total number of steps taken since the last time the phone was turned on. In addition, using a
trigger in the system that sends an interrupt every time a new step is detected, the app also logged a separate
step count called steps detected. We used both these features in the analysis.
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Activity. The mobile app provided the activity a person is doing, two times per minute. This activity was
derived from a probability distribution of 8 activity types recognized by the Google Activity Recognition API.
Therefore, we have a label of the activity the user is doing, roughly each 30 seconds. For example, if the first
time window is from 𝑇 to 𝑇 + 10 mins, if the first activity label is at 𝑇 + 1 mins, the second activity report is at
𝑇 + 2 mins, we would assume that the user has been doing the first activity between 𝑇 + 1 min and 𝑇 + 2 min, for
1 minute. Similarly, we would calculate the approximate time of doing all the activities. However, it is worth
noting that sometimes, the first activity label we get could be after 1-2 minutes after the start of the time window.
This could happen because of inconsistencies in the data logged by the application. In such situations, we would
also consider the last activity report before the start of the time window (let’s say at 𝑇 − 1 min). We use the label
of the last activity and include it in the calculation assuming that the user has been doing that activity from 𝑇 to
𝑇 + 1 min. Hence, using this technique, for each time window, we would have a distribution of activities the user
has been doing in seconds.

Screen and Touch Events. The mobile app logged whenever the screen was turned on or off, with timestamps.
This allows us to calculate the time users spent with their screens turned on. For example, if the first time window
is from 𝑇 to 𝑇 + 10 mins, if the screen was turned on at 𝑇 + 3 mins and turned off at 𝑇 + 9 mins, we could assume
that the screen was turned off from 𝑇 to 𝑇 + 3 mins, and then it was on from 𝑇 + 3 to 𝑇 + 9. We consider 1 such
turn on-off time period as an episode. A 10 minute time window could have multiple such episodes. Hence, using
these values, we derived the number of episodes, statistical features for time spent in those episodes, and also
the total time spent with the screen turned on. The distinction is that this allows us to distinctively identify a
person who has the screen turned on for a longer duration vs. another person whose total screen on duration is
the same as the earlier person, but turn on and off the screen more frequently (e.g. in a situation waiting for a
email/message from someone, turning on the screen to see the time, etc.). We believe capturing these information
could have value when studying attributes regarding mental well-being specially since screen on time has been
associated to mental well-being in a lot of prior studies [104]. In addition, the mobile app also logged all the
touch events (this could be a tap or a keyboard press event). Using the values, we derived a feature for the total
number of touch events in the time window.

App Events. Prior work that used app usage either considered the usage of individual apps [67] or app
categories [93]. For this study, we felt that it’s better to use app categories because of the heterogeneity of the
dataset, where users from different countries would use different apps belonging to the same category, to do a
similar task. We followed an approach similar to [93] and obtained the google play store app category (i.e. action,
adventure, social, education, entertainment, etc.) for each app in the dataset, and used it to calculate app usage
times. App usage time would be calculate from the time an app is on the screen to the time it closes or go to the
background. There could also be instances where the phone screen is on and there are no apps on the screen.
Such time periods were included in the category called "not_found". In addition, whenever we could not find an
app category for a particular app, it was also included under the "not_found" category.
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