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Abstract. Several studies describe evoked EEG potentials elicited when a subjeciris af an erroneous
decision either taken by him or by an external interface. This paper stHdier-related potentials (ErrP)
elicited when a human user monitors an external system upon which he hastrol whatsoever. In addition,
the possibility of using the ErrPs as a learning signals to infer the user'sledestrategy is also addressed.
Experimental results show that single-trial recognition of correct armat &ials can be achieved, allowing the
fast learning of the user’s strategy. These results may constitute tisedbasnew kind of human-computer
interaction where the former provides monitoring signals that can betaseddify the performance of the
latter.This work has been supported by the Swiss National Science &m#CCR-IM2 and by the EC-
contract number BACS FP6-IST-027140. This paper only reflectsuligors’ views and funding agencies
are not liable for any use that may be made of the information containmethhe
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Figure 1: (a) Experimental protocdbreen square, moving cursorRed sguare, target locationDotted square,
cursor location at the previous time step. Correct and eoos movements are shown at tinted andt+2
respectively. (b) Grand average error related potentiakerEninus Correct condition—on the FCz electrode
(feedback is given at time t=0).

1 Introduction

The error monitoring process is crucial to improve perfano@for both humans and artificial cognitive sys-
tems. Upon identification of erroneous decisions, theilikald of repeating such actions in the same context
should be decreased in order to improve the performances mbthanism is the base of the reinforcement
learning theory [1]. Several studies on human EEG have iftlethevent-related potentials elicited by erro-
neous decisions or error feedback; ieeror-related negativity (ERN) andfeedback-related negativity (FRN),
respectively [2]. These potentials are characterized bydéima frontal negative deflection of the EEG around
80 ms and 250 ms, respectively. Moreover, evoked poteritéals also been described when errors are gener-
ated by a human-computer interface and not by the user Himsel. keyboard or brain-computer interfaces
(BCI) [3].

Although these signals convey valuable information abbetuser’s evaluation of performance, they have
seldom been used in the field of non-invasive BCls. Parra alidagues have proposed the use of ERNs to
correct user’s erroneous decisions on speed responsd4sksile Ferrez et al. userror-related potentials
(ErrP) to improve the information transfer rate of a BCI syst[3]. However, these studies use ErrPs only to
correct the response that generated the error, but theytdoahade a learning mechanism to prevent that error
to be repeated in the future.

This paper addresses this issue by testing the use of eteded potentials as a teaching signal to learn the
user’s strategy when solving a simple task. In particuidmnve test whether these potentials can be detected
on single trial when a human subject monitors the performaian external system upon which he has no
control whatsoever; an(i) we assess the feasibility of using such signals to learndkealintention, i.e. the
strategy the user expects the system to perform.

2 Experimental Protocol

Subjects seat in front of a computer screen where a movirgpc(a green square) is displayed. A red square
at either the left or right of the cursor signals the targeatmn, as shown in Figure 1a. At each time step the
cursor moves horizontally depending on the location of #rget. The user has no control over the cursor’s
movement and is asked only to monitor the performance ofythies, knowing that the goal is to reach the red
target. Cursor movement law is defined in a suboptimal waydeoto study signals elicited by the system'’s
errors. Specifically, at each time step there is a probghfi80% for the cursor to move towards the target.
One experimental session consists of 10 blocks of 3 min egmbrdx. 75 trials per block).

Three healthy male subjects performed two sessions of fheriexent. Data from the first session was used
to characterize the evoked potentials for both error ancecotrials and to train the classifier parameters (see
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Table 1: Single trial recognition rates (%) for the threejsats on the test set (i.e. session 2).

Subject | Subject Il Subject 1l
Correct  Error Correct  Error Correct  Error
Correct 92.01 7.99 83.82 16.18 86.86 13.14
Error 26.50 73.50 41.08 58.91 33.71 66.29

section 3 below). The second session, recorded seven wigektha first one, was used to test ErrP single-trial
classification. EEG was recorded for all subjects with a dengpate of 512 Hz using 64 electrodes according
to the standard 10/20 International system. Data was szaefed to the common average reference (CAR)
and a 1-10Hz band-pass filter was applied. The average feledibeked potential at channel FCz—difference
between error and correct grand averages—for the threecssiigeshown in Figure 1b.

To emulate experimental conditions of a BCI application,antifact rejection was applied and all trials
were used in the analysis. Moreover classification accunesyassessed on a single-trial basis, as opposite to
batch performance evaluation techniques such as crosktiah.

3 Single-trial Classification

Following previous studies, we classify the signals usit@paissian classifier [3]. The activity on the FCz and
Cz electrodes on the [200 ms, 450 ms] time window after thdlfaek presentation was used as input to the
classifier. The statistical classifier estimates the pmstprobability of a single trial corresponding to each of
the two classesrror, andcorrect. Classifier parameters were tuned using a stochastic gitaatkscent on the
mean square error.

Table 1 shows the recognition rates on single-trial for tiree¢ subjects. The same classifier parameters
were used in all cases. Learning rates wkge? and 10~ for the center and covariances of the Gaussian
prototypes. A total of 6 prototypes were used for each clasese results show classification above chance
for both correct and error trials, with higher recognitiares for the correct trials.

4 Learning from Error-related Potentials

We test then whether the detection of ErrPs can be used afetanihat the optimal behavior should be. The
rationale of this approach is that, given the system detssand the user’s evaluation of such decisions—
indicated by the presence or not of ErrPs—, it is possiblefar what strategy is considered as correct by the
human user.

Considering the experiment described above, the optimetkesfy is to move the cursor towards the target.
Let defineT;, A; € [L, R] the target location and the cursor’s direction of movemetinze t, where[L, R],
stand for left and right respectively. L&Y + be the probability of taking actiod given the target locatiof’,
and a strateg¥l, i.e. P4, 1, = P(Action = A;|Target = T}, II). The optimal strategyl* can be expressed
in terms of probabilities”; ; = P p = 1; respectivelyP; , = Pr ; = 0.

Alike to reward signals in reinforcement learning, ErrPed#ibn can be used to decrease the likelihood of
performing actions considered as erroneous and, in thesitpprase, to encourage correct actions. Let define
" = {P} 1, Pi g Pk 1, Pp ) the strategy at time t, if an ErrP is detected, the probghilitrepeating the
action A, given the target locatioff; must be decreased, i. PQHT = P}, 5, — AP}, 1,. Conversely, if the
trial is considered as corred®;, ., isincreased for the next time step. The probabilities oépttttions given
T are updated so that, P4, 7, = 1. Note that we keep separate models for each possible taxgtdn.

We choose a variable step si2eP’; ;. such that probabilities close to chance level are penalized
P}, 1, = 0.5, for two-action problems). In the currentimplementatid®y . = nH (P}, 1,), wheren = 0.3
is a constant scaling factor, atfi(z) = — > P(z;)log. P(z;) is the binary entropy function.

Figure 2 shows how the optimal strategy is learned using eetated potentials. For the three subjects,
based on the recognition of error and correct trials thegdodity of performing the correct action increases for
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Figure 2: ErrP-based learning of the user’s intended sgfydtar the three subjects. The X-axis represents the
time steps and the Y-axis represents the probability ofoperihg the correct action given the current strategy
(.e. 11" = {P] 1, P r}).

both possible target locations. On average, the optimategfyl1* is acquired in about 40 trials.

5 Conclusions

This study shows a novel use of error-related potentialdiénftame of brain-computer interfaces. In the
proposed approach, the human user acts as a critic who elssérw behavior of an acting agent and emits
monitoring signals about its performance. Successfuhiagrof the optimal strategy is achieved @y sin-

gle trial recognition of ErrPs as monitoring signals (céble 1), as well agii) an efficient strategy update
mechanism based on these signals (c.f. Figure 2).

Recent studies have linked ErrPs to the theory of reinfoesgrfearning in humans [5]. Similarly, this
study exploits ErrPs as a reinforcement signal for an eatespstem to learn the user’s intended strategy.
Notice that we have reported results on the off-line leayrohthe optimal strategy. New experiments are
currently undergoing to test this approach when the ErrRadégmodify the performance of the actual system
being monitored.
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