IDIAP COMMUNICATION REPORT

%lolao

RESEARCH INSTITUTE

HAVC-II - IDIAP PRIVATE CLOUD
(TECHNICAL INSIDE-OUT)

Cédric Dufour

Idiap-Com-01-2015

JULY 2015

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T+41 2772177 11 F+4127 72177 12 info@idiap.ch www.idiap.ch

HAVC-II - Idiap Private Cloud

Technical Inside-Out

2014.10.24, updated 2015.07.08 public report Cédric Dufour

b [P=]

RESEARCH INSTITUTE .

- this page is intentionally left blank -

2014.10.24, updated 2015.07.08 public report Cédric Dufour

SelCiIa0

RESEARCH INSTITUTE

Table of Contents

HAVC-I1 - [diap Private ClOUA.o e e e e e e e e e e e e eneenen 1
Y 01 o o= o 1

T aYa oo [¥Tal u o] o TP 1
L Y= Y 2
ProCESSING HalOWare. ... et e et e e e e e et e e aas 2
Yo = Te [I o oY fo 11 Y T PR 2
= oY g N o =T e L] (ST PP P TP RPRPR 3
(User) NetWork SEOMENES. .. i e e e et eeaas 4
UNiIiNterruptible POW T SUPPIY cuuiiii et e e e e 5
Operating System and Software SUILE........cciiiii 5
1] 0] 001 01 1= 1 2P PPRPPN 6
(0 o111 g o T PP 7
High-Availability Traffic and Live Migration...........ccoooiiiiii e 7
High-Availability TraffiC. ... e e en s 7
Y7\ [To] £ Y A o] o P TP UPTP 7
High Performance NetWOIK.o e e e e e enes 8

O U= 11 Vo) ES Y= VA Tol ST (1 1) 8
Network Adapters BONGING. ... i e e e e e e e e e e e e e e e s erneen 8
High-Availability ClUSTEr SizZe.. ... e e 9
Storage OULage RESIIENCE. e e 9
NOAE FENCING (STONITH). ouiitiitiitiiii et et e et et e et e e et e e aeaas 10
Thou shall Nt SPlit Brain! e 10
Management Modules t0 the RESCUE........ccu i e es 10
INEO DEEAIIS. o ee ittt 11
L= Ao] o NG o] e Jo] Lo To |V TP UPPR 11
PRYSICal TOPOIOgY .t ittt e 11
Logical SEgMENTS/Cat@gories. .. .ouuu i 12
Quality Of SEIVICE (QOS) .. u ittt ettt e e et e e e e e e 12
Network Quality of SErvice (QOS) .. ittt 12
0 P N oY o] g Te] g1 A =T J PP PRPTN 12
Guaranteed Minimum Bandwidth (GMB) ..ot 13
IMPIEMENTATION. ...ttt 14
Storage Quality of Service (QOS) ... it 14
NetAPP FIEXShAre Priorities. 14
SOTEWAIE SEACK. . et 15
Network CoNfigUIatioN. ... e e e e e e e e e eees 16
NEEWOIK BONAING. . e e e e et e et e e aeas 16

B L=) Lo e 1 o P 16

(0101 1013V aof o= Tal =T o =1 G PN 17
The RIGNE VISION. et e e r et e e e e e e e e eaees 17
LibvirtQemu Custom RESOUICE AQENT.. ..o e 17
SNMP SEONIEN PIUGINS . e e 18
LibVirt and QemU/KV M. ... i 18
Local Configuration and SCripLS. ... 19

[11 Sl = o] £ 2o ol 1= P 19
LIV Mg ation. . e e 19
System AdMIiNISEratioN. 21
(6o o ol 181 Lo o AU PRSPPI 22
ACKNOWIEAGMENES. .. ettt e e et e e et e aa e 22
Y a1 812> < PP 23
NEtWOrk CoONfIQUIAtioNie e et e e e e eans 23
JEEC /N EEW O K INE I ACES. o it 23
LinUX Traffic CONTIOL. e e e e e e et e e e aeens 25
Jetc/iNit.d/EraffiC-CONEIOL. ... 25
STONITH PlUGINS. ..ttt ettt ettt et e et e e et e ettt e e e e et e e e enaaanaennas 29

2014.10.24, updated 2015.07.08 public report Cédric Dufour

< |03 onimsieon o ‘

RESEARCH INSTITUTE

fusr/lib/stonith/plugins/external/ibmDbC...........ooieii i 29
Jusr/lib/stonith/plugins/external/ibmfX..... ... 35
Corosync/Pacemaker Configuration..... ..o e e 40
=i oL ele Yo 3VA 0 of Lelo] {013 Y/ o [ol ol o] o | P 40
Lol g 0 ¢ T oo] 0} i [PO PP PE PP 42
(Tl e (<) =1V (PSPPI 42
LibVirtQemu ReSOUICE AQENE. . i e e e e e ea e eeaas 42
Jusr/lib/ocf/resource.d/custom/LibVirtQemU........ccouiiiiiiiiii e 42
Libvirt Sample Configuration. 53
/havc/config/libvirt/template. Xml.. ... 53
Pacemaker Sample Configuration...........coooiiiiiiiiiii e 54
/havc/config/pacemaker/NETWORK. XMI......ooi e 54
/havc/config/pacemaker/STONITH ibmbC.Xml.. ... 55
/havc/config/pacemaker/resource.template.xml.......c.oooiiiiiii 55
/havc/config/pacemaker/constraint.template.xml..........coooii 56
System AdMINISTratiON ... e e e e a 56
/havc/config/pacemaker/ADMIN. XML e 56
fhavc/scripts/have-Config-hoSt.......cooiii i e 56
fhavc/scripts/have-Config-liDVirt.o 59
/havc/scripts/have-config-pacemaker.. ... 62
/havc/scripts/have-Config-hardWare. e 65
JNAVC/SCIIPES/ NAVC-SYNC ittt 68
TNaVC/SCriptS/NAVC-ENabIe. e 68
JNavC/sCripts/Nave-AiSable. 70
[have/sCripts/have-health. ... 72
JNave/sCripts/NavC-Shell.... ... 74

2014.10.24, updated 2015.07.08 public report Cédric Dufour

ZwlCiI30

RESEARCH INSTITUTE

Index of Tables

Table 1: Processing HardWare. e e e e e e e et e e e e e eaes 2
Table 2: STOrage HarGWare. et ettt e ettt e e e e e aneees 3
Table 3: Core SWItChING FabIiC......u i e e e e e 3
Table 4: Processing SWItChiNG RESOUICES........iiiiiiiiiii 4
Table 5: Storage Uplink RESOUICES......cuiiii et e e e e e e 4
Table 6: (User) Network SegmMENTS. ... e 4
Table 7: Uninterruptible POWEr SUPPIY.....uuiiii e 5
Table 8: Operating System and Software SUIte.........oiiiiii e 5
Table 9: Summary of Available Hardware and Software Used............ccooviiiiiiiiiiiii e 6
Table 10: (Network) Logical Segments/Categories. ..ot 12
Table 11: (Network) 802.1p Priorities and QUEUES..........ciiiiiiiiiiicec e e 13
Table 12: (Network) Guaranteed Minimum Bandwidth (GMB)...........ccooeiviiiiiiici e, 13
Table 13: (Storage) NetApp FlexShare Priorities.. ..o 15

2014.10.24, updated 2015.07.08 public report Cédric Dufour

b [P=]

RESEARCH INSTITUTE .

- this page is intentionally left blank -

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 1

RESEARCH INSTITUTE

HAVC-II - Idiap Private Cloud

Abstract

Virtualizing resources - servers, storage, networks - is now part of every IT departments life.
The benefits of virtualization no longer need to be demonstrated and, when played upon in a
large scale, provide both the saddle and spurs with which the Cloud mantra has been riding
towards its success. This document shall describe how Idiap took advantage of its
infrastructure to build its own virtualization farm, which shall (shamelessly) be referred to as
Idiap Private Cloud.

Introduction

Idiap has been following the trend of virtualizing resources since 2008 and - through the
years - developed what became its own virtualization farm, based on common open source
solutions and internally dubbed Idiap High-Availability Virtualization Cluster (HAVC).

With the funding opportunity offered by the BEAT (Biometrics Evaluation and Testing)
project?, Idiap was given the means to enlarge its virtualization farm and - after a thorough
engineering review - make the best possible use of all its available hardware, to answer both
BEAT requirements and Idiap general needs.

Nicknamed Idiap High-Availability Virtualization Cluster, 2" generation (HAVC II), this internal
project - undertaken by Idiap System Group - eventually led to what can now be publicly
referred to as Idiap Private Cloud.

This document shall cover all the objectives and steps which allowed this project to come to
fruition, describing all its aspects, from power supply provisioning to virtual machines
commissioning, across processing hardware, storage, network, operating system and
software considerations.

1 http://www.beat-eu.org, project funded by the European Commission under the Seventh Framework Programme (FP7)

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 2

RESEARCH INSTITUTE

Overview

In order to start with the general picture, this section will give an overview of Idiap
infrastructure, along the policies and historic that are relevant to the HAVC Il project.

Processing Hardware

Following a thorough comparison and evaluation of all aspects - features, operations,
maintenance, warranty, cost, etc. - of its existing commodity-based processing hardware
versus vendor-centric “all-in-one” offerings, Idiap chose in 2011 to migrate its processing
resources to IBM? BladeCenter (H) solutions.

Retrospectively, experience has shown that if such solutions do possess some caveats - IBM
hardware undoubtedly requires greater knowledge (and patience) to reach configuration
objectives - they do allow in the end to lower the overall operational burden (and cost) as
well as provide the means to significantly/easily increase the global system performances.

Based on that experience and given the BEAT funding opportunity, Idiap chose in early 2014
to extend its processing hardware base with IBM FlexSystem solutions.

The following table details all the processing hardware that has thus been taken advantage
of to build Idiap HAVC II:

IBM BladeCenter (N°1 & 2)
Node Type CPU RAM Nodes Oty
HS22 2x Intel Xeon L5640 12x PC3L-10600 8GiB 6
— 12 cores - 96GiB
HX5 2x Intel Xeon E7-2830 16x PC3L-8500 8GiB 10
— 16 cores - 128 GiB
IBM FlexSystem (N°1 & 2)
Node Type CPU RAM Nodes Oty
X240 2x Intel Xeon E5-2690v2 16x PC3-12800 16GiB 8
— 20 cores - 256GiB

Table 1: Processing Hardware

24 processing nodes
392 CPU cores
3'904 GiB RAM

Storage Hardware

Historically, Idiap has relied on NetApp?® filers as its main storage resource. Even though
competitors alternatives have been analyzed when major new investments were looked into
- in particular in response to the BEAT funding opportunity - Idiap has stuck to this original
choice.

2 www.ibm.com,"IBM" is a registered trademark owned by International Business Machines Corporation
3 www.netapp.com, “NetApp” is a registered trademark owned by NetApp, Inc.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 3

RESEARCH INSTITUTE

The BEAT project allowed to extend the existing NetApp resources with new material, the
current storage hardware picture now being:

NetApp Filer (N°1)

Filer Type Storage Type Storage Capacity Filer Qty
FAS3240 (dual) 48x 2TB SATA (7.2kRPM) 96TB (raw) / ~52TB (actual) 1
Ontap 8.1

(“seven mode”)
NetApp Filer (N°2)

Filer Type Storage Type Storage Capacity Filer Qty
FAS3220 (dual) 24x 900GB SAS (10kRPM) 22TB (raw) / ~10TB (actual) 1
Ontap 8.2 20x 800GB SSD 16TB (raw) / ~11TB (actual)

(“cluster mode”)

Table 2: Storage Hardware

Each NetApp filer is configured to provide active/active redundancy and load-balancing
thanks to its dual “heads”.

2 filers (internally redundant)
~73 TB capacity
(SATA, SAS and SSD)

Those two filers are not strictly devolved to HAVC Il. They also fulfill other Idiap storage
requirements (such as home, group and project directories, application-dedicated
directories, etc.).

Network Hardware

Since the very beginning, Idiap has relied on HP Procurve* hardware to build its network
infrastructure. Even though competitors alternatives have been analyzed when major new
investments were looked into, Idiap has stuck to this original choice.

Idiap thus relies on HP Procurve hardware for its core switching fabric, as detailed in the
following table:

Core Switching Fabric
Switch Type Available Ports Used Ports (HAVC Il) Switch. Qty
HP E8212zI 44x 10GbE 8x 10GbE (processing) 2
- 440Gb/s - 80Gb/s
(max. 560Gb/s) 4x 10GbE (storage)
- 40Gb/s

Table 3: Core Switching Fabric

Those two HP Procurve E8212zl are configured to provide Distributed Trunking, thus allowing
the uplink of each peer to be split between the two core switch and provide active/active
redundancy and load-balancing.

4 www.hp.com, “HP"and “Procurve” are registered trademarks owned by Hewlett-Packard Company

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
,}9\9 I D I a p Technical Inside-Out 4

RESEARCH INSTITUTE

The switching resources of the IBM BladeCenter and FlexSystem chassis - described below -
are then connected directly to the core switching fabric (using Distributed LACP Trunks):

IBM BladeCenter (N°1 & 2)

Switch Type Available Ports Used Ports Switch. Qty
BNT 10GbE 14x 10GbE (internal) 8x 10GbE (internal) 4
Virtual Fabric - 140Gb/s - 80Gb/s

10x 10GbE (uplink) 2x 10GbE (uplink)
- 100Gb/s - 20Gb/s
IBM FlexSystem (N°1 & 2)

Switch Type Available Ports Used Ports Switch. Qty

IBM EN4093(R) 14x 10GDbE (internal) 4x 10GbE (internal) 4
- 140Gb/s - 40Gb/s
10x 10GbE (uplink) 2x 10GbE (uplink)
- 100Gb/s - 20Gb/s

Table 4: Processing Switching Resources

As well as the NetApp filers:

NetApp Filer (N°1)

Filer Type Available Ports Used Ports Filer. Qty
FAS3240 (dual) 4x 10GBase-SR 4x 10GBase-SR 1
- 40Gb/s - 40Gb/s
NetApp Filer (N°2)
Filer Type Available Ports Used Ports Filer. Qty
FAS3220 (dual) 4x 10GBase-SR 4x 10GBase-SR 1
- 40Gb/s - 40Gb/s

Table 5: Storage Uplink Resources

2 core switches (redundant)
160 Gb/s (processing)
80 Gb/s (storage)

(User) Network Segments

User network traffic is split at Idiap in three main categories and corresponding network
segments:

(User) Network Segments

Segment Purpose / Description

INTRANET internal services, restricted to contracted users
operated by Idiap System Group

DMZ public services, accessible by anyone (Internet)
operated by Idiap System Group

LAB services not operated by Idiap System Group

Table 6: (User) Network Segments

Network segmentation is implemented using 802.1Q VLANs while traffic policing between
segments is enforced by Idiap central (and dual/redundant) firewall.

Other special-purpose network segments do exist and shall be mentioned - later - when
relevant to HAVC II.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

SelCiIa0

RESEARCH INSTITUTE

Uninterruptible Power Supply

HAVC-II - Idiap Private Cloud

Technical Inside-Out

Through the years, Idiap has gradually improved its ability to handle facility power outages.

Thanks to its two APC/MGE® battery-powered UPS (Uninterruptible Power Supply) - which
specifications are provided below - Idiap is nowadays able to sustain a >30 minutes power

outage.

UPS (N°1 & 2)

UPS Type

Available Power

Used Power (HAVC II) UPS. Qty

MGE Galaxy 5000

40kVA

~3kwW 2

Table 7: Uninterruptible Power Supply

Those two UPSs are not strictly devolved to HAVC Il and also provide the require power
backup to other Idiap critical systems. Each UPS is also able to bear the burden of its peer
should it fail (with an autonomy reduced by half should a facility power outage happen at

the same time).

2 battery-powered UPS (redundant)
40 kVA (capacity)

Coupled with the automatic power-off of uncritical resources (should the facility power

outage last longer than 15 minutes), the actual UPS autonomy is larger than the ~30

minutes (at full load) and expected to be closer to ~60 minutes.

Operating System and Software Suite

Though its Unix history had it venture on the soil of various Unix-like operating systems,
Idiap nowadays rely solely on the Debian® Linux” (64-bit) distribution to power its servers

infrastructure.

Favoring stability and security over leading-edginess of open source software - as far as
servers are concerned - ldiap relies in particular on the Debian/Stable branch, also known as
Debian/Wheezy at the time of writing.

Since 2011, Idiap has been virtualizing its servers resources using the open source
virtualization and high-availability software described below, all readily available as

(appropriately bundled and pre-configured) Debian packages:

Debian/Wheezy 64-bit
Software Internet Link Description / Purpose
KVM www.linux-kvm.org hardware-accelerated virtualization
QEMU www.gemu.org x86 hardware emulation/virtualization
libvirt www.libvirt.org virtualization (abstraction) API
Corosync corosync.github.io/corosync group (cluster) communication system
Pacemaker www.clusterlabs.org high-availability resource manager

Table 8: Operating System and Software Suite

5 www.apc.com, “APC” and “MGE" are registered trademarks owned by Schneider Electric
6 www.debian.org, “Debian” is a registered trademark owned by Software in the Public Interest, Inc.
7 www.linuxfoundation.org, “Linux” is a registered trademark owned by Linux Torvalds

2014.10.24, updated 2015.07.08

public report

Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

Linux Debian/Wheezy (64-bit)
QEMU/KVM + libvirt (virtualization)
Corosync/Pacemaker (high-availability)

Keep It Simple, Stupid (KISS)

There are several alternative software suites that target large scale
virtualization - or so-called Cloud enablement stacks - relying on (and
somewhat “hiding”) the QEMU/KVM(/libvirt) combo.

Idiap has chosen to stick to the most basic approach, both based on its
past experience with it and for the sake of its (relative) simplicity.

This approach allows in particular to easily bypass the (Corosync/
Pacemaker) high-availability layer and recover the lowest possible control
on the (QEMU/KVM) virtualization layer, if (when!) needs be.

Summary

The available hardware and software used can be summarized as:

Available Hardware

Type Summary
Processing 24 nodes, 392 CPU cores, 3904GiB RAM
Storage ~73TB capacity (SATA, SAS, SSD)
Network 160Gb/s (processing)
80Gb/s (storage)
Power full redundancy

(against UPS failure and/or facility outage)

Software Used

Type Summary
(o1 Linux Debian/Wheezy (64-bit)
Virtualization QEMU/KVM + libvirt
High-Availability Corosync/Pacemaker

Table 9: Summary of Available Hardware and Software Used

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 7

RESEARCH INSTITUTE

Challenges

Sensibly taking advantage of the available hardware to obtain optimal performances without
sacrificing data and operational security introduces many challenges, which shall be covered
in this section.

High-Availability Traffic and Live Migration

Achieving high-availability in a computer system environment implies using a software stack
that shall:

- gather several processing hosts - or nodes - into a logical group - or cluster - for the
sake of sharing/exchanging their ability to host services - or resources - that must
remain available “no matter what”

« monitor the “health” of all nodes, resources and the overall cluster

- take appropriate actions should this monitoring fail or spawn unwanted results, entirely
automatically (as in “without any human intervention”)

This implies messages - commonly referred to as high-availability traffic - must be
exchanged within the cluster in order to keep track of its status, while resources must be
migrated from one node to another in case of problems.

High-Availability Traffic

As we just saw, the high-availability cluster must maintain immediate and reliable
communication between all its nodes at all time, to keep track of its own health/status.

In other words, the (low-bandwidth) traffic that corresponds to the cluster health/status
messages must not be lost or delayed (further than the acceptable/configured limits).

Live Migration

When speaking of virtualization, live migration is the very neat feature that allows one
virtual machine to be moved from one physical host to another without - apparently (to the
human eye) - stopping its operations.

This is achieved by - simply put - synchronizing the full state (CPU, RAM, storage) between
the “stopping” virtual machine (on one node) and its “starting” peer (on another node).

The problem that live migration raises is the performance - more precisely the bandwidth -
of the network through which the state data shall be transmitted. With virtual machines
which state may extend to several gigabytes of data, the synchronization can take several
tens of seconds, if not minutes.

Unfortunately, high-availability is about avoiding (or reducing as much as possible)
unavailability. In this context, several minutes unavailability are unacceptable. Health
monitors (shortly mentioned in the previous chapter) will timeout way before minutes
passed, prompting the cluster for actions. Virtual machines state synchronization must thus
be achieved as fast as possible (or within acceptable/configured limits).

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 8

RESEARCH INSTITUTE

High Performance Network

The network shall be set up such as to prioritize high-availability
traffic and provide maximum performances for live migration.

Quality of Service (QoS)

The previous chapter already mentioned two stringent constraints to be taken in
consideration when designing the network topology on which to build HAVC II.

More generally speaking, unused costly resources are a waste of money. In order to use
resources as efficiently as possible, they ought to be shared as much as possible (between
users, applications, purposes, etc.), in order to suppress the boundaries (limits) that would
prevent one use-case to take full advantage of one resource when it would otherwise remain
idle.

The problem raised by sharing resources is the potential abuse and starving of resources by
one (or more) use-case(s) to the detriment of the others. In other words, shared resources
starving must be prevented.

Use cases usually falls into easily identifiable categories: INTRANET vs LAB services, high-
availability vs peer-to-peer traffic, etc. This is where Quality of Service (QoS) technologies
come handy, by allowing to prioritize resources usage according to the identified categories.

A global Quality of Service (QoS) policy shall be devised and
implemented throughout Idiap network, in respects with identified
use-cases categories.

Network Adapters Bonding

All the processing nodes available for the HAVC Il project are equipped with two Network
Interface Cards (NICs). As was explained in the previous chapter, those two network
adapters can be more efficiently used if bonded together - to provide a shared double-
capacity link - rather than each dedicated to a specific purpose.

Network adapters bonding also provides redundancy (and thus higher-availability), the
resulting network link remaining functional should one the network adapter (or uplink
switch) fail.

The Linux kernel offers various bonding modes, from simple active-backup teaming to
advanced active/active balance-alb or 802.3ad LACP trunking.

Each mode unfortunately has its pros and cons:

- active-backup:
[pros] no specific switch configuration, no ARP issues
[cons] only half the bandwidth available

- balance-alb:
[pros] no specific switch configuration, maximal bandwidth
[cons] ARP issues

» 802.3ad LACP:
[pros] maximal bandwidth, no ARP issues
[cons] requires specific switch configuration

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 9

RESEARCH INSTITUTE

Unfortunately, as will become obvious in the next section, the best choice of network
adapter bonding was not easy to make.

The network adapter bonding mode shall be chosen such as to
provide the best compromise to match the overall HAVC Il
requirements.

High-Availability Cluster Size

The Corosync/Pacemaker combo has been known and used for years in the open source
world to provide high-availability for “small” cluster scenarios (“small” as in typically two-to-
eight nodes, hosting a few tens of resources).

Idiap will to extend its high-availability cluster to more than 20 nodes and several hundreds
resources is - still - not something that is common among Corosync/Pacemaker community
(as was confirmed by Andrew Beekhof himself, as head-developer of Pacemaker).

As became obvious while deploying HAVC Il based on the stock Pacemaker version (1.1.7)

available in Debian/Wheezy, dealing with several hundreds resources on close to 20 nodes
was leading to major performances issues and high-availability hiccups.

Corosync/Pacemaker shall be set up such as to allow a high-
availability cluster spanning several tens of nodes and several
hundreds of resources.

Storage Outage Resilience

As one may recall from the previous section, HAVC Il relies entirely on NetApp filers for its
storage backend.

More to the point, following tests conducted in 2013 (which results are beyond the scope of
this document?®), Idiap even chose to rely entirely on NetApp NFS exports (rather than block-
level LUNSs) to host virtual machines images.

While both NetApp filers are equipped with two “head” nodes configured for active/active
high-availability, experience has shown that NFS would freeze for several tens of seconds in
case of a fail-over, thus resulting in apparent storage outage and node fencing actions in the
HAVC (II) cluster, despite the fact that NFS operations would resume totally healthily once

the fail-over was complete.

The QEMU/KVM virtualization layer shall be configured such as to
sustain several-minutes NFS storage outage gracefully (that is,
without having the high-availability loose its senses and starting
to fence nodes off).

8 shortly put: NetApp NFS performances were comparable to block-level LUNs performances, thus saving the
trouble/complexity of the iSCSI approach

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 10

RESEARCH INSTITUTE

Node Fencing (STONITH)

We have already and shortly covered in the first chapter of this section what a high-
availability software stack is and how it shall handle its hosted resources to guarantee their
availability.

Thou shall not split brain!

One particular situation that may arise in a high-availability setup is a network failure that
would prevent one or more nodes to communicate with the rest of the cluster.

For the sake of maintaining the availability of the resources hosted by those lost nodes, the
cluster must (re)start those resources on the remaining healthy nodes. But it can not do so
until it has the absolute guarantee that the affected resources are stopped on the faulty
nodes. Failure to enforce this rule would result in a potential split-brain situation (one body
controlled by two separate half-brains, a metaphor to underline the fact that anything awry
may then happen).

Since network communication is lost, the only way the cluster can obtain that guarantee is
by Shooting The Other Node In The Head (STONITH), that is - in the context of computer
systems - cutting off the power of the faulty node (or, simply put, “pull the plug”).

This action is also referred to as node fencing (in reference to putting the node apart, behind
a safe fence).

Management Modules to the Rescue

HAVC Il processing nodes being part of fully integrated management solutions in the form of
the IBM BladeCenter or FlexSystem chassis, node fencing can be achieved thanks to the
remote power control ability provided by the chassis management modules.

Both IBM BladeCenter Advanced Management Module (AMM) and IBM FlexSystem Chassis
Management Module (CMM) provide a SNMP (Simple Network Management Protocol)
interface, which can be used to control the processing nodes power via appropriate scripts.

Scripts - also known as STONITH plugins/modules - shall be written
such as to allow Pacemaker to perform node fencing via IBM
BladeCenter AMM and IBM FlexSystem CMM.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
? IC" I a HAVC-II - Idiap Private Cloud
° Technical Inside-Out 11

RESEARCH INSTITUTE I

Into Details

Now that the hardware context and most challenging issues have been covered, this section
will go into the implementation details of Idiap High Availability Virtualization Cluster, 2™
generation (HAVC II).

Network Topology

In many high-availability setup, the cluster network is entirely separated from the access
network, using dedicated hardware: network adapters, links and - in the most extreme
scenario - switches. While this topology offers guaranteed performances for the high-
availability and live migration traffic, it significantly increases costs. Also, dedicating the
hardware for a specific purpose makes it much more difficult - if not impossible - to achieve
redundancy by using hardware dedicated to another purpose.

Physical Topology

For HAVC Il, we chose not to separate the cluster network from the access network and to
use all the available hardware to setup a single physical network.

Since every element in this network is duplicated - network adapters, links and
switches - this approach allowed us to provide total redundancy from the network point of
view.

Chassis

Processing Nodes (x4 - x8)

0B

~
Switch ?1/:2) ~Switch (2/2)

MM (1/2) MM (2/2)N\

e

— ACtiVe
..... Standby
............. XN (repeated)

—] 0GBase-...

1000Base-T

Core Switch (1/2), Core Switch (2/2)

Head (1/2) Head (2/2)

ey (X2

Disks Shelves (xN)

Filer

Illustration 1: (Network) Physical Topology

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
,}9\9 I D I a p Technical Inside-Out 12

RESEARCH INSTITUTE

This topology provides active/active redundancy and load-balancing, save for two
exceptions:

+ Processing Nodes: as shall be explained in a following chapter, processing nodes dual
network adapters were bonded using active-backup mode (with each interface connected
to one of the two chassis switches). During non-degraded operations, each server has its
active interface alternated between the two switches, thus balancing the load optimally.
Uplink Failure Detection has been enabled on the chassis switches, thus guaranteeing
that the appropriate processing node interface is active in case the switch uplink fails.

Management Modules: IBM management modules can only be operated in
active/standby mode. Moreover, each module only has a single network interface. In order
to guarantee the availability of the management module: 1. each module has been
connected - directly - to one of the two core switches; 2. Uplink Failure Detection has
been enabled on the management modules, thus guaranteeing that the appropriate module
is active in case one of the core switch fails.

Logical Segments/Categories

The various type of traffic - high-availability, live migration, user (access), etc. - are
segregated using 802.1Q VLANs and TCP/UDP port-based ACLs, thus providing logical
separation (instead of physical separation).

(Network) Logical Segments/Categories

Category/Segment Type Description / Purpose
Cluster 802.1Q VLAN Cluster internal network
(internal) Live migration traffic

HA TCP/UDP port Corosync group communications

Management 802.1Q VLAN Management network
Backend 802.1Q VLAN Cluster nodes (hypervisors) access network
(hypervisor, storage) Storage (disk images) access network
INTRANET 802.1Q VLAN Internal services, restricted to contracted users
(VM, user) Operated by Idiap System Group
DMZ 802.1Q VLAN Public services, accessible by anyone (Internet)
(VM, user) Operated by Idiap System Group
LAB 802.1Q VLAN Services not operated by Idiap System Group
(VM, user)

Table 10: (Network) Logical Segments/Categories

Quality of Service (QoS)

Network Quality of Service (QoS)

802.1p priorities and Guaranteed Minimum Bandwidth (GMB) have been implemented
throughout Idiap network and hosts in order to obtain optimal performances during
normal operations and guaranteed minimum performances in case of network overload.

802.1p priorities

802.1p priorities are a simple mechanism which allow to associate one among eight
priority levels to network packets. Based on these priorities, packets are then “routed”
towards the network host (numbered) egress queues, where a queue with a higher
number usually has strict priority over a queue with a lower number.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 13

RESEARCH INSTITUTE

802.1p Priorities and Queues
Category/Segment 802.1p Queue

HA 7 (highest) 7

Management 6 (very high) 6

Cluster 5 (high) 5

(internal)

Backend 4 (medium-high) 4

(hypervisor, storage)

INTRANET 3 (medium-low) 3

(VM, user)

DMz 0 (low, default) 2

(VM, user)

LAB 2 (very low) 1

(VM, user)

Table 11: (Network) 802.1p Priorities and Queues
One can see here:
- high-availability traffic has been attributed the highest priority; we don't want the high-
availability stack - Corosync/Pacemaker - to loose its bearing and start behaving berserk

- then management traffic; system administrators should always be able to connect to the
system management interfaces

- followed by (mostly) live migration traffic; live migration does not happen often but when it
does, we want it to proceed and complete as fast as possible
- then (mostly) virtual machines disk images (storage) traffic; no point in prioritizing user
traffic if the underlying backend fails to keep up
 and finally user traffic, according to its importance
Unfortunately, without additional bandwidth control, this scenario is prone to the so-called

queue starvation issue, where traffic in a lower-numbered queue is blocked and kept
waiting until no more traffic has to be delivered from higher-numbered queues.

Guaranteed Minimum Bandwidth (GMB)

In order to prevent queue starvation, Guaranteed Minimum Bandwidth (GMB) has been
added to the 802.1p priorities. This mechanism is used to guarantee that the minimum
configured bandwidth for a queue is always honored, no matter what happens in higher-
numbered queues.

(Network) Guaranteed Minimum Bandwidth (GMB)

Category/Segment Queue GMB

HA 7 strict priority

Management 6 10%
Cluster 5 25%
(internal)
Cluster 4 25%
(hypervisor, storage)
INTRANET 3 20%
(VM, user)
DMz 2 10%
(VM, user)
LAB 1 5%
(VM, user)
(other traffic) 0 5%

Table 12: (Network) Guaranteed Minimum Bandwidth (GMB)

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
,}9\9 I D I a p Technical Inside-Out 14

RESEARCH INSTITUTE

Guaranteed Minimum Bandwidth vs. Rate Limiting

Another way to prevent queue starvation is to apply Rate Limiting to each
traffic category/segment, stating that its flow shall not exceed - no matter
what - the configured maximum bandwidth.

The major drawback of this technique lies with the fact that a given
category/segment may be throttled down unnecessarily, when no higher-
priority traffic is competing for the available hardware resources.

Shortly put, Rate Limiting is a waste of hardware resources, while
Guaranteed Minimum Bandwidth makes optimal use of it.

egress vs. igress traffic control

One should first note that most network hosts implement buffering
(queues) only for egress (output) traffic.

Given this situation, igress (input) traffic control presents the major
drawback of dropping packets rather than delaying them (by keeping them
in their attributed buffer/queue). Dropping packets should be avoided
by all means, since it prompts the sending party to resend lost packets -
according to its network congestion algorithm - and contributes to increase
network load and latencies.

Of course, when network load is too high, dropped packets will occur
nonetheless, due to buffers overflow.

Implementation

The network quality of service policy just described must be implemented on all network
hosts is order to be fully efficient. Given the context of HAVC I, it must thus be implemented
on:

« HP Procurve core switches; the required features are readily available through “qos ...” and
“interface ... bandwidth-min" CLI commands

« IBM (BNT) chassis switches; the required features are readily available once enabled the
switch Converged Enhanced Ethernet (CEE) mode and through “/c/cee/global/ets/pg”,
“/c/acl/acl” and “/c/port INT.../acl/add” CLI commands

- Linux (processing nodes) hosts: the required features are readily available thanks to the
“tc” (traffic control) utility

Storage Quality of Service (QoS)

For the same reasons that drove us to setup a single physical network, we have chosen to
take advantage of available storage hardware as a single generic-use backend rather than
dedicate specific hardware for one purpose or another.

Storage performances considerations are identical to network ones, which can be addressed
with strategies and techniques that exploit the same ideas.

NetApp FlexShare Priorities

NetApp filers running Ontap software in “seven mode” offer FlexShare Priorities to
address storage prioritization at the volume level.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

) |
;ﬁ ICj I a D HAVC-II - Idiap Private Cloud
. Technical Inside-Out 15

RESEARCH INSTITUTE

(Storage) NetApp FlexShare Priorities

Volume Priority Description / Purpose
/vol/havc_hypervisor 90 HAVC Il configuration files and scripts
/vol/havc_intranet 70 © INTRANET (user) segment
/vol/havc_dmz 50 © DMZ (user) segment
/vol/havc_lab 30 © LAB (user) segment

Table 13: (Storage) NetApp FlexShare Priorities

NetApp Ontap “seven mode” vs. “cluster mode”

NetApp Ontap running in “seven mode” provides FlexShare priorities to
address storage performances prioritization issues, much the same way as
network 802.1p and Guaranteed Minimum Bandwidth (GMB).

Very unfortunately, NetApp Ontap running in “cluster mode” does not
support FlexShare priorities and only support storage Quality of
Service (QoS) through Rate Limiting (storage operations/bandwidth).

The same critic that was made of Rate Limiting in the network context
applies to storage, namely its resulting in a waste of resources.

Software Stack

The following illustration details how the various software elements introduced in the first
section interact with each other and their surrounding network environment:

Debian/Wheezy

I Pacemaker |<-->I libvirt I

e i Tt ic tion=
- HA - - - E Qemu
. A
N e

Software/Hardware Elements O Network Segment (VLAN)

=3 Software Interactions <= =) Network Traffic

lllustration 2: Software Stack (Interactions and Network)

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 16

RESEARCH INSTITUTE

Network Configuration

In order to provide the network connections required by the various elements, a rather
extended network setup had to be configured, keeping in mind the various aspects it shall
cover.

Network Bonding

Each processing node being equipped with two network adapters, they have to be bonded
together to fit within our “single physical network” topology.

The Linux kernel offers several mode to achieve network bonding, the one relevant to our
setup being active-backup, balance-alb and 802.3ad LACP. The pros and cons of each mode
has already been covered in the previous section. However...

Each node network adapter being connected to each of the two chassis switch, 802.3ad
LACP bonding requires that the two switches be stacked together. While IBM/BNT switches
do support stacking, several features are no longer available when it is enabled. Converged
Enhanced Ethernet (CEE) is unfortunately among them. Since our setup requires CEE to
achieve network Quality of Service (QoS), 802.3ad LACP bonding is not a possible
option.

The active/active bonding mode that remains is balance-alb, which stands for “Advanced
(RX/TX) Load-Balancing”. This method relies on IPv4 Address Resolution Protocol (ARP) and
IPv6 Network Discovery Protocol (NDP) mangling, such as to appropriately advertise one of
the two network adapters MAC address to each external network party. Unfortunately again,
when coupled with the bridging setup required by Qemu/KVM, this mode sometimes
behaves erroneously and advertises the wrong MAC address to a network party, resulting in
network disruption. This bug is present even in the latest backported kernel available for
Debian/Wheezy (version 3.14). Thus, balance-alb bonding is not a viable option.

The only mode that remains is thus active-backup, where only one of the two network
adapters is active and available for network traffic. In case its link goes down, the backup
network adapter will then become the active one and take over all the traffic. Coupled with
IBM/BNT “Uplink Failure Detection” mechanism, active-backup bonding provides edge-
to-core redundancy, though with only half of the potential performances.
Considering the uplink bandwidth of each chassis switch (namely, 20Gb/s), this reduction of
performances is leveraged by the fact that during balanced operations (throughout all
processing nodes), the uplink is not able to sustain the full network load (of all processing
nodes) anyway.

Linux Network Adapters Bonding
802.3ad LACP = no go!
balance-alb = no go!
active-backup = oh well...

Traffic Control

As we have seen, HAVC Il relies on 802.1p-like priorities and Guaranteed Minimum
Bandwidth (GMB) to achieve the required network Quality of Service (QoS). While this takes
only a few configuration lines on HP or IBM/BNT switches, it is much more complex to
implement on a Linux box.

This is where the tc (traffic control) utility comes into play, allowing the administrator to
modify the network adapters queuing discipline (qdisk) and replicate the switches setup with
a mix of PRIO prioritizer, HTB (Hierarchical Token Bucket) traffic shapers and SFQ (Stochastic
Fairness Queuing) queues.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 17

RESEARCH INSTITUTE

eth
A
priorititizer |o strict
RI
> (root) <]
BAND BAND
0 1
L —
shapers | GMB
HTB
| (root) E |
HTB B
z o (X7) 2
SFQ SFQ SFQ
7 6 0
A A A
| | |
<—higher. priority —lower—>
| policies A

(egress) traffic

lllustration 3: (Linux) Traffic Control

The actual implementation (script) to achieve this scenario can be found in the final section
of this document.

Corosync/Pacemaker

The Right Version

The final purpose of HAVC Il is to host a few hundreds virtual machines, corresponding to
as many high-availability resources.

While commissioning the system with Debian/Wheezy default version of Pacemaker -
namely 1.1.7 plus a few patches - it became obvious that Pacemaker had a hard time
managing the large quantity of resources, with handling of the growing XML-based Cluster
Information Base (CIB) resulting in 100% CPU load for several minutes (during which high-
availability could not be considered as guaranteed).

Fortunately, the just released Pacemaker 1.1.12° brought a bunch of fixes and new features,
including - specifically - a significant improvement in regards with the CIB: “Thanks to a new
algorithm, the CIB is now two orders of magnitude faster”.

After backporting Pacemaker 1.1.12 to Debian/Wheezy - along libgb 0.17.0, corosync
1.4.7 and crmsh 1.2.6 dependencies - it appeared the new CIB code did hold its promises,
allowing our ~400-resources cluster to work back as a charm.

Corosync/Pacemaker for Large Cluster (Rule N°1)
Only Pacemaker 1.1.12 (or later) will do!

LibvirtQemu Custom Resource Agent

Even though Pacemaker 1.1.12 appears to definitely fix the CIB processing issue we
encountered, we thought we'd better try to reduce the quantity of HA resources by merging
multiple resources primitives (per group) into as few primitives as possible, ideally into a
single one.

9 https://github.com/ClusterLabs/pacemaker/releases/tag/Pacemaker-1.1.12

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 18

RESEARCH INSTITUTE

The rationale for this is two-fold:

- limit CIB size: each primitive corresponds to XML code in the CIB; the fewer primitives, the
smaller the CIB size

- limit resources operations: each resource triggers specific operations throughout the
various phase of its high-availability life; the fewer the resources, the fewer those operations
(and resulting latencies)

Historically, Idiap had been managing its virtual machines resources thanks to the default
VirtualDomain and MailTo resource agents (and corresponding primitives), the latter being
used solely to have informational status e-mail sent when virtual machines were being
started or stopped. Given our new resources/primitives requirement, those two could
conveniently be merged as a single resource/primitive for each virtual machine.

We thus created a custom LibvirtQemu resource agent, which merges the
VirtualDomain and MailTo resource agents into a single one:

« simplifying its inner structure by targeting Qemu/KVM specifically (rather than all potential
Linux virtualization technologies)

- merging and extending the support for informational e-mail messages, now giving more
detailed information about what happens at the virtualization level (graceful vs. forced
shutdown, live migration, etc.)

« allowing to reduce by half the part of the CIB used for virtual machines configuration and
status tracking

Corosync/Pacemaker for Large Cluster (Rule N°2)
Avoid creating multiple-primitives resources (group)!
Create your own custom all-in-one resource agent(s)!

The actual script corresponding to Idiap custom LibvirtQemu resource agent can be found in
the final section of this document.

SNMP Stonith Plugins

Allowing fencing to be achieved via IBM chassis management modules required that we
wrote scripts that matched the Stonith plugins semantic and appropriately interacted
with the modules via SNMP(v1).

STONITH with IBM Blade Center and Flex System chassis...
... must be implemented with custom (SNMP-wrapping) scripts!

The actual scripts allowing to remotely control IBM Blade Center and Flex System chassis
can be found in the final section of this document.

Libvirt and Qemu/KVM

Though Debian/Wheezy stock libvirt version - 0.9.12.3 - did not give us any reason to
complain, we opted to use the available backported version - 1.2.4 - to anticipate potential
unforeseen bugs and ease future update.

On the other hand, Qemu/KVM was kept at its default Debian/Wheezy version - 1.1.2 - in
order to benefit from the thorough security watch and fast responses from the Debian
security team.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 19

RESEARCH INSTITUTE

Local Configuration and Scripts

In order to prevent the LibvirtQemu (Pacemaker/HA) resource agent or STONITH plugins to
choke in case of network storage issues (failure or, more likely, performances degradation) -
resulting in (highly undesirable) node fencings - all configuration and scripting dependencies
must be kept on each node local file system.

All configuration files and scripts...
... must be stored on each node local file system!

The administrative burden of this requirement has been leveraged by using a shared
network repository where all files are actually maintained, before being rsync-ed to the local
file system of all cluster nodes.

Disk Errors Policies

As mentioned in the previous section, Qemu/KVM ought to sustain NFS disruptions gracefully
- that is by just waiting for NFS to be accessible again rather than triggering any Pacemaker
reaction - knowing that such disruptions are only transient, given the high-availability of the
NFS service itself.

Assuming the NFS backend is absolutely fail-safe, this could be achieved by configuring
Qemu/KVM to ignore read and write errors (rerror/werror).

Unfortunately, even clustered NetApp NFS filers are error-prone, especially given human
error sources (e.g. underestimated storage capacity...). The safest setting is thus to use
Qemu/KVM enospc setting, resulting in Qemu/KVM virtual machines being paused in case
storage capacity gets exhausted and other errors being reported to the guests. NFS
disruptions are thus reported as disk I/O timeouts in the guests, which are usually handled
gracefully enough (save for ad-hoc messages being logged).

In libvirt, this setting corresponds to the error_policy='enospace’ attribute of each disk's
driver (XML) element.

In order to sustain NFS disruptions as gracefully as possible,
Qemu/KVM disks...

... must be configured to enospc read/write errors (rerror/werror)!

Live Migration

Successful live migration of Qemu/KVM virtual machines is tightly dependent on stateful disk
operations. In other words, disk operations must not resume on the destination host - at all
cost! - until the source host is completely done with the disk image(s) and all writes
successfully committed to the storage backend. Failure to honor this requirements
immediately results in disk/data corruption.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

) |
;ﬁ ICj I a D HAVC-II - Idiap Private Cloud
s Technical Inside-Out 20

RESEARCH INSTITUTE

While Qemu/KVM live migration of NFS-backed virtual machines works flawlessly, we
have discovered that it fails miserably - with immediate disk/data corruption - if one
uses a (local) symlink to the actual NFS-backed disk image. We suspect this has to do

with file locking issues (bugs?), causing Qemu/KVM to become unable to detect when the
handover of disk operations can be safely achieved.

In order to prevent disk/data corruption during live migration...
... NFS-backed Qemu/KVM disk devices must NOT use symlinks!

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
g M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 21

RESEARCH INSTITUTE

System Administration

Configuring and enabling resources - virtual machines - in HAVC Il comes down to writing
the proper XML configuration files for libvirt and Pacemaker before feeding them to
Pacemaker using the cibadmin command.

In order to ease and streamline this step, we haven written templates and scripts that
eventually allow to bring down the time required to commission a new virtual machine -
provided its disk image is available and the DNS/DHCP are already configured - in a few
seconds:

- havc-config-host ...

- havc-config-libvirt ...

- havc-config-pacemaker ...

- havc-config-hardware ...

- havc-enable ...

These scripts are all invoked from our central administration server, which is granted the
proper permissions to access, configure and control the cluster and its nodes, thus further
easing all administrative tasks.

The actual system configuration and administration scripts can be found in the final section
of this document.

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 22

RESEARCH INSTITUTE

Conclusion

Using open source software and thoughtful engineering, Idiap has been able to implement a
large scale virtualization solution, prioritizing the most efficient use possible of available
resources, without sacrificing the service level requirements of the various service
categories, and guaranteeing the highest possible availability of the setup.

Thanks to readily available and (Debian) packaged software components, this setup is easy
both to implement and maintain, thus minimizing its operational cost.

Having reached its production phase, Idiap High-Availability Virtualization Cluster, 2nd
generation (HAVC Il) - also known as Idiap Private Cloud - nowadays hosts 200+ virtual
machines, one half being general-purpose servers and the other half computation nodes for
Idiap computation grid and the BEAT platform.

Acknowledgments

Foremost, for its making the entire project financially possible: the Biometrics Evaluation and
Testing (BEAT) project, European FP7 grant n.284989

For their utter patience and support throughout its implementation: Frank Formaz (ldiap
System Group manager), Norbert Crettol (my fellow sysadmin), Bastien Crettol (and his
acute English-reader eye) and Louis-Marie Plumel (and his apt covering of my blunders when
users came screaming to Idiap Helpdesk).

For his fast and acute help: Andrew Beekhof, head developer of the Pacemaker project.
And all the enthusiasts that allow open source software to be so cool to work with.

Cédric Dufour
Martigny - October 24, 2014

2014.10.24, updated 2015.07.08 public report Cédric Dufour

SelCiIa0

RESEARCH INSTITUTE

HAVC-II - Idiap Private Cloud
Technical Inside-Out

23

Annexes

This section shall provide all the actual configuration files and scripts relevant to the HAVC Il setup. Be careful, here be dark marshes, evil

spirits and fiery dragons

NOTE: actual IP addresses, network masks, VLAN IDs, etc. have been replaced with sample ones.

Network Configuration

/etc/network/interfa

Loopback
auto lo

Interfaces trunk
auto bond0

... bond
iface bond® inet st
... parameters

bond-mode active-
bond-miimon 100
bond-updelay 3500

... slaves

bond-slaves none
post-up ifup eth@
post-up ifup ethl
... IP settings
address 192.168.3
netmask 255.255.2
gateway 192.168.3

ces

iface lo inet loopback

('active-backup' bond)

... primary physical interface
iface eth® inet manual

bond-master bond0@
... secondary physical interface
iface ethl inet manual

bond-master bond0@

atic

backup

bond-downdelay 500

.101
55.0
.1

2014.10.24, updated 2015.07.08

public report

Cédric Dufour

RESEARCH INSTITUTE

HAVC-II - Idiap Private Cloud

- -
g? I D I a p Technical Inside-Out

24

... dependencies
post-up ifup vlan2
post-up ifup vlan4
post-up ifup vlan5
post-up ifup vlan6
pre-down ifdown vlan2
pre-down ifdown vlan4
pre-down ifdown vlan5
pre-down ifdown vlan6

VLANs

... 2 (HA)

iface vlan2 inet static
vlan_raw_device bond0
... IP settings
address 192.168.2.101
netmask 255.255.255.0

... 4 (INTRANET)

iface vlan4 inet manual
vlan raw _device bond®
post-up ifup bro

... 5 (DM2)

iface vlan5 inet manual
vlan raw _device bond0®
post-up ifup brl

... 6 (LAB)

iface vlan6 inet manual
vlan raw _device bond0
post-up ifup br2

Bridge interfaces (for KVM)

... VLAN 4 (INTRANET)

iface br®@ inet manual
bridge-ports vlan4
bridge-maxwait 0
bridge-stp off
bridge-fd 0

... VLAN 5 (DMZ)

iface brl inet manual
bridge-ports vlan5
bridge-maxwait 0
bridge-stp off
bridge-fd 0

... VLAN 6 (LAB)

iface br2 inet manual
bridge-ports vlan6
bridge-maxwait 0
bridge-stp off

2014.10.24, updated 2015.07.08

public report

Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

25

~ bridge-fd @

Linux Traffic Control

/etc/init.d/traffic-control

HHEHBFHHFHFHEHFHFHFHHFEHFFHRHHHH

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Traffic control start/stop script

A. The 'prio' qdisc implements *strict* priority queuing, among the specified

"bands" (classes), the lower bands being serviced first, no matter what
B. The 'htb' gdisc implements *guaranteed minimum bandwidth + priority*
queuing, knowing that:
1. the kernel "services" (dequeues traffic) from the root HTB class, which

5.

recursively services its "leaf" sub-classes based on their 'prio'
order.

. each of the "leaf" class is serviced unobstrusively as long as its

corresponding traffic flow is below the specified 'rate'

. the "remaining" bandwidth ('rate' - actual) can be "lended to" other

classes, who can "borrow" it should they need to send traffic above
their allocated 'rate' (but below their specified 'ceil')

"remaining" bandwidth is used to service classes *in order* of their
specified 'prio'(rity), lowest first. If several classes have the same
'prio' they get a 'rate'-ratioed share of it.

the actual bandwidth of each class can never excess its specified
'ceil'.

. The 'sfq' qdisc allows to service traffic more "fairly" (within *each*

associated traffic class), than the 'pfifo' gdisc would, by splitting the
traffic into "flows" (a flow corresspong ~ to a TCP connection), and
servicing each flow in a round-robin fashion. In scenario of congestion,
this prevents low-bandwidth flows to be delayed too long by high-bandwidth
ones.

D. TC

'filter' *must* be associated to the qdisk to which 'flowid'(s) they

classify the traffic to.

BEGIN INIT INFO

Provides: traffic-control
Required-Start: $network
Required-Stop: $network

Default-Start:
Default-Stop:

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- w ICJIBD Technical InsigeOut 26

RESEARCH INSTITUTE

Short-Description: Traffic control (shaping) configuration script
END INIT INFO

Usage
[$# -1t 1 -0 "${1##*-}" == 'help'] && cat << EOF && exit 2
USAGE: ${0##*/} {start|stop|restart|status}

SYNOPSIS:
Implement traffic control, similarly to switches-implemented
Quality-of-Service (QoS):
- 1 strict priority queue
- 7 Guaranteed Minimum Bandwith (GMB) priority queues
- QoS priorities being mapped to queues/bandwidth as:
gos: 1 2 0 3 4 5 6 7
queue: 0 1 2 3 4 5 6 7
bandwidth: 5% 5% 10% 20% 25% 25% 10% strict
EOF

Arguments
TC ACTION="${1}"

Parameters

... from configuration

TC_AUTO="'yes'

TC _IFACES=('etho')

TC RATES=(1000000) # kbit

TC DEFQ=2

[-e /etc/default/traffic-control] && . /etc/default/traffic-control
["${TC AUTO}" != 'yes'] && exit 0

... queues

gqos=(12034567)

g bw=(55 10 20 25 25 10 strict) # percent (sum=100)
#

#

Resources
. traffic control
m _root=1000; h root="${m root}:"
m strict=$[${m root}+100]; h strict="${m strict}:"
m _gmb=$[${m root}+200]; h gmb="${m gmb}:"

Functions
function start {
for i in $(seq 0 $[${#TC IFACES[@]}-1]); do
iface=${TC IFACES[${i}1}
rate=${TC RATES[${i}]}

Queues

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 27

RESEARCH INSTITUTE

h _qos=()

... root

tc qdisc add dev ${iface} root handle ${h root} prio bands 2 priomap 1 1 11111111111111
h root 1="${m root}:1" # band 0

h_root 2="${m root}:2" # band 1

... strict priority queue # 7 (QoS priority 7)
tc qdisc add dev ${iface} parent ${h root 1} handle ${h strict} sfq perturb 10
h qos[7]="${h _root 1}"

... guaranteed minimum bandwidth queues # 6-0 (QoS priority 6-0)

c_gmb="${m gmb}:1"

tc qdisc add dev ${iface} parent ${h root 2} handle ${h gmb} htb r2q $[${rate}/1000] default 1${TC DEFQ} # default queue # 4 (Qos
priority 4)

tc class add dev ${iface} parent ${h gmb} classid ${c gmb} htb rate ${rate}kbit

for queue in {6..0}; do

c_gmb_sub="${m gmb}:1${queue}"
tc class add dev ${iface} parent ${c_gmb} classid ${c_gmb sub} htb rate $[${rate}/100*${q bw[${queue}]}]1kbit ceil ${rate}kbit prio
$[8-${queue}]
m_gmb_sub=$[${m gmb}+10+${queue}]; h gmb sub="${m gmb sub}:"
tc qdisc add dev ${iface} parent ${c_gmb sub} handle ${h gmb sub} sfq perturb 10
g h_qos[${q_qgos[${queue}]}]1="${c gmb sub}"
one

Traffic classification

... QoS priority 7 (highest)

HA (corosync)

tc filter add dev ${iface} parent ${h root} protocol ip pref 1 u32 match ip dport 5404 OxFFFF flowid ${h qos[7]}
tc filter add dev ${iface} parent ${h root} protocol ip pref 2 u32 match ip dport 5405 OxFFFF flowid ${h qos[7]}

... QoS priority 6 (very high)
VLAN 1 (MGMT)
[-e /proc/net/vlan/vlanl] && \
tc filter add dev ${iface} parent ${h gmb} pref 3 basic match 'meta(vlan eq 1)' flowid ${h qos[6]}
Monitoring (nagios)
tc filter add dev ${iface} parent ${h gmb} protocol ip pref 4 u32 match ip sport 5666 OxFFFF flowid ${h qos[6]}

... QoS priority 5 (high)
VLAN 2 (HA)
[-e /proc/net/vlan/vlan2] && \
tc filter add dev ${iface} parent ${h gmb} pref 6 basic match 'meta(vlan eq 2)' flowid ${h qos[5]}
System Administration
tc filter add dev ${iface} parent ${h gmb} protocol ip pref 9 u32 match ip dst 192.168.4.251/32 flowid ${h qos[5]}

... QoS priority 4 (medium-high)
VLAN 3 (BACKEND)

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

28

RESEARCH INSTITUTE

[-e /proc/net/vlan/vlan3] && \

... QoS priority 3 (medium-low)
VLAN 4 (INTRANET)
[-e /proc/net/vlan/vliand] && \

... QoS priority 0 (low, default)
VLAN 5 (DMZ)
[-e /proc/net/vlan/vlan5] && \

... QoS priority 2 (very low)
VLAN 6 (LAB)
[-e /proc/net/vlan/vlan6] && \

... QoS priority 1 (lowest)

done

}

function stop {
for i in $(seq 0 $[${#TC IFACES[@]}-1]); do
iface=${TC IFACES[${i}]}
tc qdisc del dev ${iface} root 2> /dev/null
done

}

function status {
for i in $(seq 0 $[${#TC IFACES[@]}-1]); do
iface=${TC IFACES[${i}1}
eChO ========== ${iface} ==========
echo '---------- filter ---------- !
tc -s filter show dev ${iface} parent ${h root}
tc -s filter show dev ${iface} parent ${h gmb}

echo '---------- class ---------- '
tc -s class show dev ${iface}
echo '---------- gdisc ---------- '
tc -s gdisc show dev ${iface}
done
}
Actions

. /lib/1sb/init-functions
case "${TC ACTION}" in

tc filter add dev ${iface} parent ${h gmb} pref 10 basic match 'meta(

tc filter add dev ${iface} parent ${h gmb} pref 11 basic match 'meta(

tc filter add dev ${iface} parent ${h gmb} pref 13 basic match 'meta(

tc filter add dev ${iface} parent ${h gmb} pref 14 basic match 'meta(

vlan

vlan

vlan

vlan

eq 3)' flowid ${h qos[4]}

eq 4)' flowid ${h_qos[3]}

eq 5)' flowid ${h qos[0]}

eq 6)' flowid ${h qos[2]}

2014.10.24, updated 2015.07.08

public report

Cédric Dufour

P ! - -
S |CT| DD e tne rwose clove

RESEARCH INSTITUTE

29

start|restart)
log daemon msg "Starting traffic control" "tc"
stop
_ start
log end msg 0

o

stop)
log daemon _msg "Stopping traffic control" "tc"
__stop
log end msg 0

r

status)
__status

*)
echo "ERROR: Invalid action (${TC ACTION})"
exit 3

o

esac
exit 0

STONITH Plugins

/usr/lib/stonith/plugins/external/ibmbc

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Usage
[$# -1t 1 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE: ${0##*/} <action> <hostname>
WHERE :
Actions MUST be one of the following:
query - Query the power state for the given host.
on - Switch the given host on.
off - Switch the given host off.
reset - Reset the given host.
gethosts - Return the list of hosts configured.
status - Exit with return code zero if this device can be reached,
2014.10.24, updated 2015.07.08 public report Cédric Dufour

HAVC-II - Idiap Private Cloud
Technical Inside-Out

SelCiIa0

30

RESEARCH INSTITUTE

non-zero if this device cannot be reached.

Return the list of mandatory environment variables that
needs to be configured.

Return the device class.

Return the device name.

Return the description of this device.

Return a URL pointing to more information on this device.
Return an XML fragment defining all of the parameters

and their descriptions.

getconfignames

getinfo-devid
getinfo-devname
getinfo-devdescr
getinfo-devurl
getinfo-xml

REFERENCE :
See http://www.linux-ha.org/ExternalStonithPlugins
EOF

Arguments
ARG _ACTION="¢$1"
ARG _HOSTNAME="$2"

0IDs

0ID IBMBC SIG='.1.3.6.1.2.1.1.1.0'

0ID IBMBC SIG CHECK='BladeCenter Advanced Management Module'

0ID IBMBC NAME PREFIX='.1.3.6.1.4.1.2.3.51.2.22.1.6.1.1.6'

OID IBMBC STATE PREFIX=' 5 4
5 7

.1.3.6.1.4.1.2.3.51.2.22.1.6.1.1.4"
0ID IBMBC POWER PREFIX='.1.3.6.1.4.1.2.3.51.2.22.1.6.1.1.7'
Values

VAL IBMBC STATE OFF=0

VAL IBMBC STATE ON=1

VAL IBMBC STATE SOFTOFF=2

VAL_IBMBC_STATE STANDBY=3

VAL_IBMBC_STATE HIBERNATE=4

Set the SNMP configuration directory path
export SNMPCONFPATH="${snmp conf path}"

Useful function

function devchk() {
[-z "${mgmt_address}"] & echo "ERROR: Missing the device management IP address or hostname (mgmt address)" >&2 && retur
[-z "${snmp_conf path}"] & echo "ERROR: Missing the SNMP configuration directory path (snmp_conf path)" >&2 && return 1
[! -d "${snmp_conf path}"] && echo "ERROR: Invalid SNMP configuration directory path (${snmp conf path})" >&2 && return
[' -r "${snmp_conf path}/snmp.conf"] & echo "ERROR: Missing the SNMP configuration file (${snmp_conf path}/snmp.conf)"

-z "$(which snmpwalk)"] && echo "ERROR: Missing SNMP binary (snmpwalk)" >&2 && return 1

-z "$(which snmpget)" 1 &% echo "ERROR: Missing SNMP binary (snmpget)" >&2 && return 1

[-z "$(which snmpset)"] & echo "ERROR: Missing SNMP binary (snmpset)" >&2 && return 1

sig="$(snmpget -m '' -t 5 -r 15 -0Ov -0q ${mgmt address} ${0ID IBMBC SIG} | sed 's|"||g')"

[$? -ne 0] & echo "ERROR: Failed to retrieve SNMP device signature" >&2 && return 1

["${sig,,}" != "${0ID IBMBC SIG CHECK,,}"] & echo "ERROR: Invalid device signature (${sig})" >&2 && return 1

[
[

nl

1
>&2 && return

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

Fw |CI1 DD s oe prvate clous

31

RESEARCH INSTITUTE

return 0

}
function gethosts() {

[${PIPESTATUS[O]} -ne 0] &% echo "ERROR: Failed to retrieve label list" >&2 && return 1
for label in ${labels}; do
echo ${label}
done | uniq
return 0

}

function getoids() {
labels=$(snmpwalk -m '' -t 5 -On -0q ${mgmt _address} ${0ID IBMBC NAME PREFIX} | sed 's|~™\([”~ 1*\) "\([~(1*(\
_lg")
[${PIPESTATUS[O]} -ne 0] && echo "ERROR: Failed to retrieve label list" >&2 && return 1
found=0
for label in ${labels}; do
oid=${label%:*}
label=${label#*:}
["${label}" != "${ARG_HOSTNAME}"] && continue
found=1
echo ${oid##*.}
done
[${found} -eq O] & echo "ERROR: No outlet matches the given label (${ARG HOSTNAME})" >&2 && return 1
return 0

}

function query() {
0ids=$(getoids ${ARG HOSTNAME}); [-z "${oids}"] && return 1
for oid in ${oids}; do
state=$(snmpget -m '' -t 5 -Ov -0q ${mgmt address} ${0ID IBMBC STATE PREFIX}.${oid})
[$? -ne 0] & echo "ERROR: Failed to retrieve SNMP value" >&2 && return 1
case ${state} in
${VAL IBMBC STATE OFF}) echo 'OFF';;
${VAL IBMBC STATE ON}|${VAL IBMBC STATE STANDBY}|${VAL IBMBC STATE HIBERNATE}) echo 'ON';;
*) echo "Unknown power state (${state})";;
esac
done
return 0

}

function on() {
oids=$(getoids ${ARG HOSTNAME}); [-z "${oids}"] && return 1
for oid in ${oids}; do

state=$(snmpget -m '' -t 5 -Ov -0q ${mgmt address} ${0ID IBMBC STATE PREFIX}.${oid})
[$? -ne 0] && echo "ERROR: Failed to retrieve SNMP value" >&2 && return 1
["${state}" == "${VAL IBMBC STATE ON}"] && continue

labels=$(snmpwalk -m '' -t 5 -Ov -0q ${mgmt address} ${OID IBMBC NAME PREFIX} | sed 's|~"\([~(I*(\)*[|;s|\NO[)I*\)*"$]|]|;s]|

)*I\1: |5s|\()

[_19")

R RAVARE TN FRY

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
g? 1013 p HAVC-II - Idiap Private Cloud

Technical Inside-Out

RESEARCH INSTITUTE

snmpset -m ''

-t 5 ${mgmt_address} ${0ID IBMBC POWER PREFIX}.${oid} i ${VAL IBMBC STATE ON} >/dev/null
[$?2 -ne 0] &8 echo "ERROR: Failed to send SNMP command (ON)" >&2 && return 1
for t in {1..60}; do

state=$(snmpget -m ''

-t 5 -r1 -0v -0q ${mgmt_address} ${0ID IBMBC STATE PREFIX}.${oid})
[$? -ne 0] && echo

"WARNING: Failed to retrieve SNMP value" >&2 && continue
["${state}" == "${VAL IBMBC STATE ON}"] && break
sleep 1
done
["${state}" != "${VAL IBMBC STATE ON}"] && echo "ERROR: Failed to switch the server off (${ARG_HOSTNAME})" >&2 && return 1
done
return 0

}

function off() {

0ids=$(getoids ${ARG HOSTNAME}); [-z "${oids}"] && return 1
for oid in ${oids}; do

state=$(snmpget -m '' -t 5 -Ov -0q ${mgmt address} ${0ID IBMBC STATE PREFIX}.${oid})
[$?2 -ne 0] &8 echo "ERROR: Failed to retrieve SNMP value" >&2 && return 1

["${state}" == "${VAL IBMBC STATE OFF}"] && continue

if ["${no_softoff:-0}" == '0']; then

snmpset -m '' -t 5 ${mgmt address} ${0ID IBMBC POWER PREFIX}.${oid} i ${VAL IBMBC STATE SOFTOFF} >/dev/null

[$? -ne 0] & echo "ERROR: Failed to send SNMP command (SOFTOFF)" >&2 && return 1
for t in {1..30}; do

state=$(snmpget -m '' -t 5 -r 1 -Ov -0q ${mgmt address} ${0ID IBMBC STATE PREFIX}.${oid})
[$?2 -ne 0] & echo "WARNING: Failed to retrieve SNMP value"

>&2 && continue
["${state}" == "${VAL IBMBC STATE OFF}"] && break
sleep 1

done

["${state}" == "${VAL_IBMBC_STATE_OFF}"] && continue
fi

snmpset -m '' -t 5 ${mgmt_address} ${0ID_IBMBC POWER PREFIX}.${oid} i ${VAL_IBMBC STATE OFF} >/dev/null

[$?2 -ne 0] && echo "ERROR: Failed to send SNMP command (OFF)" >&2 && return 1
for t in {1..60}; do

state=$(snmpget -m '' -t 5 -r 1 -Ov -0q ${mgmt _address} ${0ID IBMBC STATE PREFIX}.${oid})
[$? -ne 0] & echo "WARNING:

Failed to retrieve SNMP value" >&2 && continue
["${state}" == "${VAL IBMBC STATE OFF}"] && break
sleep 1
done
["${state}" != "${VAL IBMBC STATE OFF}"] && echo "ERROR: Failed to switch the server off (${ARG_HOSTNAME})" >&2 && return 1
done
return 0

}

Execute action
case ${ARG_ACTION} in
query)

_query || exit 1
exit 0

2014.10.24, updated 2015.07.08

public report Cédric Dufour

HAVC-II - Idiap Private Cloud

- -
g? I D I a p Technical Inside-Out

RESEARCH INSTITUTE

33

r

on)
~on || exit 1
exit 0

o

off)
_off || exit 1
exit 0

o

reset)
_off || exit 1
sleep 1
~on || exit 1
exit 0

o

gethosts)
_gethosts || exit 1
exit 0

o

status)
_devchk || exit 1
exit 0

o

getconfignames)
echo "mgmt address"
echo "snmp conf path"
echo "no softoff"
exit 0

o

getinfo-devid)
echo "IBM BladeCenter STONITH device"
exit 0

o

getinfo-devname)

echo "IBM BladeCenter STONITH device (${snmp_conf_path})"

exit 0

r

getinfo-devdescr)

echo "IBM BladeCenter's STONITH device via SNMPv3"

2014.10.24, updated 2015.07.08

public report

Cédric Dufour

- ! L -
P [P=m Bt d i

34

RESEARCH INSTITUTE

exit 0

o

getinfo-devurl)
echo 'http://www.ibm.com/'
exit 0

o

getinfo-xml)
cat << EOF
<parameters>

<parameter name="mgmt address" unique="1" required="1">
<content type="string" />

<shortdesc lang="en">

Management Address (or Hostname)

</shortdesc>

<longdesc lang="en">

The IP address or hostname for the IBM BladeCenter (AMM).
</longdesc>

</parameter>

<parameter name="snmp conf path" unique="1" required="1">
<content type="string" />

<shortdesc lang="en">

SNMP Configuration Directory Path

</shortdesc>

<longdesc lang="en">

The path to the directory containing the 'snmp.conf' configuration file to
access the IBM BladeCenter (AMM).

See 'man snmp_config' and 'man snmp.conf' for details.
</longdesc>

</parameter>

<parameter name="no softoff" unique="1" required="0">

<content type="integer" default="0" />

<shortdesc lang="en">

Do not use SOFTOFF power state to switch host off

</shortdesc>

<longdesc lang="en">

Do not use the SOFTOFF (2) power state when switching host(s) off.

On some systems (eg. IBM BladeServer HX5), power states do not correspond
to documentation: SOFTOFF becomes SOFTRECYCLE and OFF becomes SOFTOFF.

In order to STONITH to work as expected, power 'cycling' SHOULD NOT be used.
</longdesc>

</parameter>

</parameters>

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 35

RESEARCH INSTITUTE

EOF
exit 0

*)
echo "ERROR: Invalid action (${ARG ACTION})" >&2 && exit 1
exit 1

o

esac

/usr/lib/stonith/plugins/external/ibmfx

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Usage
[$# -1t 1 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE: ${0##*/} <action> <hostname>
WHERE :
Actions MUST be one of the following:
query - Query the power state for the given host.
on - Switch the given host on.
off - Switch the given host off.
reset - Reset the given host.
gethosts - Return the list of hosts configured.
status - Exit with return code zero if this device can be reached,
non-zero if this device cannot be reached.
getconfignames - Return the list of mandatory environment variables that
needs to be configured.
getinfo-devid - Return the device class.
getinfo-devname - Return the device name.
getinfo-devdescr - Return the description of this device.
getinfo-devurl - Return a URL pointing to more information on this device.
getinfo-xml - Return an XML fragment defining all of the parameters
and their descriptions.
REFERENCE :
See http://www.linux-ha.org/ExternalStonithPlugins
EOF

Arguments
ARG_ACTION="$1"
ARG _HOSTNAME="$2"

0IDs

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ® ICJIBD Technical InsigeOut 36

RESEARCH INSTITUTE

0ID IBMFX SIG='.1.3.6.1.2.1.1.1.0'

0ID IBMFX SIG CHECK='IBM Flex Chassis Management Module'

OID IBMFX NAME_PREFIX='.1.3.6.1.4.1.2.3.51.2.22.1.6.1.1.6

0ID IBMFX STATE PREFIX='.1.3.6.1.4.1.2.3. I
3.6.1.4.1.2.3. .1.1.

4'
0ID_IBMFX_POWER PREFIX='.1. 7'

NN -
=
@O‘l

Values

VAL IBMFX STATE OFF=0

VAL IBMFX STATE ON=1

VAL IBMFX ' STATE SOFTOFF=2
VAL IBMFX STATE STANDBY=3
VAL IBMFX STATE HIBERNATE=4

Set the SNMP configuration directory path
export SNMPCONFPATH="${snmp_conf_path}"

Useful function
function devchk() {
[-z "${mgmt_address}"] & echo "ERROR: Missing the device management IP address or hostname (mgmt address)" >&2 && return 1
[-z "${snmp_conf path}"] & echo "ERROR: Missing the SNMP configuration directory path (snmp _conf path)" >&2 && return 1
[! -d "${snmp_conf path}" 1 & echo "ERROR: Invalid SNMP configuration directory path (${snmp _conf path})" >&2 && return 1
[' -r "${snmp _conf path}/snmp.conf"] && echo "ERROR: Missing the SNMP configuration file (${snmp _conf path}/snmp.conf)" >&2 && return

[-z "$(which snmpwalk)"] && echo "ERROR: Missing SNMP binary (snmpwalk)" >&2 && return 1

[-z "$(which snmpget)"] & echo "ERROR: Missing SNMP binary (snmpget)" >&2 && return 1

[-z "$(which snmpset)"] & echo "ERROR: Missing SNMP binary (snmpset)" >&2 && return 1

sig="$(snmpget -m '' -t 5 -r 15 -Ov -0q ${mgmt_address} ${OID_IBMFX SIG} | sed 's|"||g"')

[$? -ne 0] && echo "ERROR: Failed to retrieve SNMP device signature" >&2 && return 1

["${sig,,}" != "${0ID IBMFX SIG CHECK,,}"] & echo "ERROR: Invalid device signature (${sig})" >&2 && return 1
return 0

}

function gethosts() {
labels=$(snmpwalk -m '' -t 5 -Ov -0q ${mgmt _address} ${OID IBMFX NAME PREFIX} | sed 's|~"\(I[~(I1*(\)*|[;sI\NOI™)I*\)*"$||;s| | _lg")
[${PIPESTATUS[0]} -ne ©] & echo "ERROR: Failed to retrieve label list" >&2 && return 1
for label in ${labels}; do
echo ${label}
done | uniq
return 0

}

function getoids() {
labels=$(snmpwalk -m '' -t 5 -On -0q ${mgmt address} ${0ID IBMFX NAME PREFIX} | sed 's|~\([™ 1*\) "\(I~C(I*(\)*|\1:];s|\NO)[™)I*\)*"$]|]|;s]|
_lg’
[${PIPESTATUS[O]} -ne 0] && echo "ERROR: Failed to retrieve label list" >&2 && return 1
found=0
for label in ${labels}; do
oid=${label%:*}

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

label=${label#*:}

["${label}" !'= "${ARG_HOSTNAME}"] && continue

found=1

echo ${oid##*.}
done
[${found} -eq 0] & echo "ERROR: No outlet matches the given label (${ARG HOSTNAME})" >&2 && return 1
return 0

}

function query() {

0ids=$(getoids ${ARG HOSTNAME}); [-z "${oids}"] && return 1
for oid in ${oids}; do

state=$(snmpget -m '' -t 5 -Ov -0q ${mgmt address} ${0ID IBMFX STATE PREFIX}.${oid})

[$?2 -ne 0] &8 echo "ERROR: Failed to retrieve SNMP value" >&2 && return 1
case ${state} in

${VAL IBMFX_STATE OFF}) echo 'OFF';;
${VAL_IBMFX_STATE ON}|${VAL IBMFX_ STATE_STANDBY}|${VAL IBMFX_STATE HIBERNATE}) echo 'ON';;

*) echo "Unknown power state (${state})";;
esac

done
return 0

}

function on() {

oids=$(getoids ${ARG HOSTNAME}); [-z "${oids}"] && return 1
for oid in ${oids}; do

state=$(snmpget -m '' -t 5 -Ov -0q ${mgmt address} ${0ID IBMFX STATE PREFIX}.${oid})
[$?2 -ne 0] && echo "ERROR: Failed to retrieve SNMP value" >&2 && return 1
["${state}" == "${VAL IBMFX STATE ON}"] && continue

snmpset -m '' -t 5 ${mgmt address} ${0ID IBMFX POWER PREFIX}.${oid} i ${VAL IBMFX STATE ON} >/dev/null

[$? -ne 0] & echo "ERROR: Failed to send SNMP command (ON)" >&2 && return 1
for t in {1..60}; do

state=$(snmpget -m '' -t 5 -r 1 -Ov -0q ${mgmt address} ${0ID IBMFX STATE PREFIX}.${oid})
[$? -ne 0] &8 echo "WARNING: Failed to retrieve SNMP value"

>&2 && continue
["${state}" == "${VAL IBMFX STATE ON}"] && break
sleep 1
done
["${state}" != "${VAL IBMFX STATE ON}"] && echo "ERROR: Failed to switch the server off (${ARG_HOSTNAME})" >&2 && return 1
done
return 0

}

function off() {

oids=$(getoids ${ARG HOSTNAME}); [-z "${oids}"] && return 1
for oid in ${oids}; do

state=$(snmpget -m '' -t 5 -Ov -0q ${mgmt address} ${0ID IBMFX STATE PREFIX}.${oid})
[$? -ne 0] & echo "ERROR: Failed to retrieve SNMP value" >&2 && return 1
["${state}" == "${VAL IBMFX STATE OFF}"] && continue

2014.10.24, updated 2015.07.08

public report Cédric Dufour

37

- ! L -
P [P=m Bt d i

38

RESEARCH INSTITUTE

if ["${no_softoff:-0}" == '0']; then
snmpset -m '' -t 5 ${mgmt address} ${OID IBMFX POWER PREFIX}.${oid} i ${VAL IBMFX_ STATE SOFTOFF} >/dev/null
[$? -ne 0] & echo "ERROR: Failed to send SNMP command (SOFTOFF)" >&2 && return 1
for t in {1..30}; do
state=$(snmpget -m '' -t 5 -r 1 -Ov -0q ${mgmt address} ${0ID IBMFX STATE PREFIX}.${oid})
[$? -ne 0] & echo "WARNING: Failed to retrieve SNMP value" >&2 && continue

["${state}" == "${VAL IBMFX STATE OFF}"] && break
sleep 1

done

["${state}" == "${VAL IBMFX STATE OFF}"] && continue

fi

snmpset -m '' -t 5 ${mgmt address} ${0ID IBMFX POWER PREFIX}.${oid} i ${VAL IBMFX STATE OFF} >/dev/null
[$? -ne 0] & echo "ERROR: Failed to send SNMP command (OFF)" >&2 && return 1

for t in {1..60}; do

state=$(snmpget -m '' -t 5 -r 1 -Ov -0q ${mgmt address} ${0ID IBMFX STATE PREFIX}.${oid})
[$? -ne 0] && echo "WARNING: Failed to retrieve SNMP value" >&2 && continue
["${state}" == "${VAL IBMFX STATE OFF}"] && break
sleep 1
done
["${state}" != "${VAL IBMFX STATE OFF}"] && echo "ERROR: Failed to switch the server off (${ARG _HOSTNAME})" >&2 && return 1
done
return 0

}

Execute action
case ${ARG_ACTION} in
query)
_query || exit 1
exit 0
on)
~on || exit 1
exit 0O
off)
_off || exit 1
exit 0
reset)
_off || exit 1
sleep 1
~on || exit 1
exit 0O

o

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

i i
;ﬁ ICj I a D HAVC-II - Idiap Private Cloud
. Technical Inside-Out 39

RESEARCH INSTITUTE

gethosts)
_gethosts || exit 1
exit 0

o

status)
_devchk || exit 1
exit 0

r

getconfignames)
echo "mgmt address"
echo "snmp conf path"
echo "no softoff"
exit 0

o

getinfo-devid)
echo "IBM FlexSystem STONITH device"
exit 0

r

getinfo-devname)
echo "IBM FlexSystem STONITH device (${snmp _conf path})"
exit 0

o

getinfo-devdescr)
echo "IBM FlexSystem's STONITH device via SNMPv3"
exit 0

o

getinfo-devurl)
echo 'http://www.ibm.com/'
exit 0

o

getinfo-xml)
cat << EOF
<parameters>

<parameter name="mgmt address" unique="1" required="1">
<content type="string" />

<shortdesc lang="en">

Management Address (or Hostname)

</shortdesc>

<longdesc lang="en">

The IP address or hostname for the IBM FlexSystem (CMM).

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

40

RESEARCH INSTITUTE

</longdesc>
</parameter>

<parameter name="snmp conf path" unique="1" required="1">
<content type="string" />

<shortdesc lang="en">

SNMP Configuration Directory Path

</shortdesc>

<longdesc lang="en">

The path to the directory containing the 'snmp.conf' configuration file to
access the IBM FlexSystem (CMM).

See 'man snmp _config' and 'man snmp.conf' for details.
</longdesc>

</parameter>

<parameter name="no softoff" unique="1" required="0">

<content type="integer" default="0" />

<shortdesc lang="en">

Do not use SOFTOFF power state to switch host off

</shortdesc>

<longdesc lang="en">

Do not use the SOFTOFF (2) power state when switching host(s) off.

On some systems (eg. IBM BladeServer HX5), power states do not correspond
to documentation: SOFTOFF becomes SOFTRECYCLE and OFF becomes SOFTOFF.

In order to STONITH to work as expected, power 'cycling' SHOULD NOT be used.
</longdesc>

</parameter>

</parameters>
EOF
exit 0

o

echo "ERROR: Invalid action (${ARG_ACTION})" >&2 && exit 1
exit 1

r

esac

Corosync/Pacemaker Configuration

/etc/corosync/corosync.conf

NOTE: Those are the default settings, as provided by Debian maintainers/package.

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

HAVC-II - Idiap Private Cloud

- -
g? I D I a p Technical Inside-Out

RESEARCH INSTITUTE

41

Please read the openais.conf.5 manual page

totem {

version: 2

token: 3000

token retransmits before loss const: 10

join: 60

consensus: 3600

vsftype: none

max_messages: 20

clear node high bit: yes

secauth: off

threads: 0

rrp_mode: none

interface {
ringnumber: 0
bindnetaddr: 192.168.2.0
mcastaddr: 226.94.1.1
mcastport: 5405

}
}
amf {
mode: disabled
}
service {
ver: 1
name: pacemaker
}
aisexec {
user: root
group: root
}
logging {

fileline: off

to stderr: yes

to logfile: no

to syslog: yes

syslog facility: localo

debug: off

timestamp: on

logger subsys {
subsys: AMF
debug: off

tags: enter|leave|tracel|trace2|trace3|trace4|trace6b

2014.10.24, updated 2015.07.08

public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 42

RESEARCH INSTITUTE

}

crm_config

<crm_config>
<cluster property set id="cib-bootstrap-options">
<nvpair id="cib-bootstrap-options-dc-version" name="dc-version" value="1.1.12-561c4cf"/>
<nvpair id="cib-bootstrap-options-cluster-infrastructure" name="cluster-infrastructure" value="classic openais (with plugin)"/>
<nvpair id="cib-bootstrap-options-expected-quorum-votes" name="expected-quorum-votes" value="24"/>
<nvpair id="cib-bootstrap-options-placement-strategy" name="placement-strategy" value="balanced"/>
<nvpair id="cib-bootstrap-options-batch-limit" name="batch-limit" value="24"/>
<nvpair id="cib-bootstrap-options-migration-limit" name="migration-limit" value="5"/>
<nvpair id="cib-bootstrap-options-last-lrm-refresh" name="last-1lrm-refresh" value="1411382456"/>
</cluster property set>
</crm_config>

rsc_defaults

<rsc_defaults>
<meta attributes id="rsc defaults-options">
<nvpair id="rsc defaults-options-resource-stickiness" name="resource-stickiness" value="10000"/>
</meta_attributes>
</rsc_defaults>

LibvirtQemu Resource Agent

/usr/lib/ocf/resource.d/custom/LibvirtQemu
#!/bin/bash
License: GNU General Public License (GPL)

Resource Agent for domains managed by the libvirt API.
Requires a running libvirt daemon (libvirtd).

(c) 2008-2010 Florian Haas, Dejan Muhamedagic,
and Linux-HA contributors

2014.08.11: Cedric Dufour <cedric.dufour@idiap.ch>
Simplified version of 'VirtualDomain' OCF script.
(Partially) integrated 'MailTo' OCF script

FHHHHHFHH R HH

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

43

RESEARCH INSTITUTE

Usage: ${0} {start|stop|status|monitor|migrate to|migrate from|meta-data|validate-all}
#

B B L L I iR iR B iR I i i B i1 3
Initialization:

: ${OCF_FUNCTIONS DIR=${0CF ROOT}/lib/heartbeat}

. ${OCF_FUNCTIONS DIR}/ocf-shellfuncs

Defaults
OCF_RESKEY force stop default=0
OCF_RESKEY email subject='[SYSTEM:HA][VM:%domain_ name%] '

: ${0CF_RESKEY force stop=${0CF RESKEY force stop default}}
: ${OCF_RESKEY email subject=${0OCF RESKEY email subject default}}
G e iz

usage() {
echo "USAGE: ${0##*/} {start|stop|status|monitor|migrate to|migrate from|meta-data|validate-all}"
}

meta data() {

cat <<EOF
<?xml version="1.0"?>
<IDOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="LibvirtQemu">
<version>1.1l</version>

<longdesc lang="en">

Resource agent for a libvirt (gemu) virtual domain.

</longdesc>

<shortdesc lang="en">Manages qgemu virtual domains through the libvirt virtualization framework</shortdesc>

<parameters>

<parameter name="config" unique="1" required="1">

<longdesc lang="en">

Absolute path to the libvirt (gemu) configuration file (corresponding to the desired virtual domain).
</longdesc>

<shortdesc lang="en">Libvirt (gemu) configuration file</shortdesc>

<content type="string" default="" />

</parameter>

<parameter name="force stop" unique="0" required="0">

<longdesc lang="en">

Always forcefully shut down ("destroy") the domain on stop. The default
behavior is to resort to a forceful shutdown only after a graceful
shutdown attempt has failed. You should only set this to true if

your virtual domain (or your virtualization backend) does not support
graceful shutdown.

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P [P=m Bt d i

44

RESEARCH INSTITUTE

</longdesc>

<shortdesc lang="en">Always force shutdown on stop</shortdesc>
<content type="boolean" default="${0CF RESKEY force stop default}" />
</parameter>

<parameter name="migration transport" unique="0" required="0">
<longdesc lang="en">

Transport used to connect to the remote hypervisor while

migrating. Please refer to the libvirt documentation for details on
transports available. If this parameter is omitted, the resource will
use libvirt's default transport to connect to the remote hypervisor.
</longdesc>

<shortdesc lang="en">Remote hypervisor transport</shortdesc>

<content type="string" default="" />

</parameter>

<parameter name="migration network suffix" unique="0" required="0">
<longdesc lang="en">

Use a dedicated migration network. The migration URI is composed by
adding this parameters value to the end of the node name. If the node
name happens to be an FQDN (as opposed to an unqualified host name),
insert the suffix immediately prior to the first period (.) in the FQDN.

Note: Be sure this composed host name is locally resolveable and the
associated IP is reachable through the favored network.

</longdesc>

<shortdesc lang="en">Migration network host name suffix</shortdesc>
<content type="string" default="" />

</parameter>

<parameter name="monitor scripts" unique="0" required="0">

<longdesc lang="en">

To additionally monitor services within the virtual domain, add this
parameter with a list of scripts to monitor.

Note: when monitor scripts are used, the start and migrate from operations
will complete only when all monitor scripts have completed successfully.
Be sure to set the timeout of these operations to accommodate this delay.
</longdesc>

<shortdesc lang="en">Space-separated list of monitor scripts</shortdesc>
<content type="string" default="" />

</parameter>

<parameter name="email" unique="0" required="0">

<longdesc lang="en">

Space-separated list of operators E-mail addresses (to send status notifications to).
</longdesc>

<shortdesc lang="en">Space-separated E-mail addresses</shortdesc>

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P [P=m Bt d i

45

RESEARCH INSTITUTE

<content type="string" default="" />
</parameter>

<parameter name="email subject" unique="0" required="0">
<longdesc lang="en">
The subject of the status notification E-mails.

The 'Sdomain _name%' macro shall be replaced with the actual virtual domain name.
</longdesc>

<shortdesc lang="en">E-mail subject</shortdesc>

<content type="string" default="[SYSTEM:HA][VM:%domain name%]" />

</parameter>

</parameters>

<actions>

<action name="start" timeout="30" />

<action name="stop" timeout="60" />

<action name="status" depth="0" timeout="30" interval="60" />
<action name="monitor" depth="0" timeout="30" interval="60" />
<action name="migrate from" timeout="60" />

<action name="migrate to" timeout="60" />

<action name="meta-data" timeout="5" />

<action name="validate-all" timeout="5" />

</actions>

</resource-agent>

EOF

}

Options to be passed to virsh
VIRSH OPTIONS="--quiet"

LibvirtQemu EmailSend() {
${MAILCMD} -s "${1}" "${OCF _RESKEY email}" << EOF
${1}

EOF
return $?

}

LibvirtQemu Status() {
local try=0
local status

rc=${0CF_ERR GENERIC}
status='no state'
while ["${status}" == 'no state']; do
try=$((${try} + 1))
status="$(virsh ${VIRSH OPTIONS} domstate ${DOMAIN NAME} 2>&1)"

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 46

RESEARCH INSTITUTE

case "${status,,}" in
'domain not found'|'shut off')
shut off: persistent domain is defined, but not started
domain not found: domain is not defined and thus not started
ocf log debug "Domain '${DOMAIN NAME}' is currently in state '${status}'."
rc=${OCF_NOT_RUNNING}

‘running'| 'paused'|'idle'|'in shutdown'|'blocked"')
running: domain is currently actively consuming cycles
paused: domain is paused (suspended)
idle: domain is running but idle
in shutdown: domain is being (gracefully) shut down
blocked: synonym for idle used by legacy Xen versions
ocf log debug "Domain '${DOMAIN NAME}' is currently in state '${status}'."
rc=${0CF_SUCCESS}
"'"|*'failed to '*'connect to the hypervisor'*|'no state')
Empty string may be returned when virsh does not
receive a reply from libvirtd.
"no state" may occur when the domain is currently
being migrated (on the migration target only), or
whenever virsh can't reliably obtain the domain
#

state.
status='no state'
if ["${ OCF ACTION}" == 'stop'] && [${try} -ge 3 1; then

During the stop operation, we want to bail out
quickly, so as to be able to force-stop (destroy)
the domain if necessary.
ocfg log err "Domain '${DOMAIN NAME}' has no state during stop operation; bailing out."
return ${0CF_ERR GENERIC};
else
During all other actions, we just wait and try
again, relying on the CRM/LRM to time us out if
this takes too long.
ocf log info "Domain '${DOMAIN NAME}' currently has no state; retrying."
sleep 1
fi
*)II
any other output is unexpected.
ocfg log err "Domain '${DOMAIN NAME}' has unknown state ('${status}')!"
esac
done
return ${rc}

}

LibvirtQemu Undefine() {

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

47

for domain _name in $(virsh ${VIRSH OPTIONS} list --all --name); do
if ["${domain name}" == "${DOMAIN NAME}"]; then
ocf log warn "Domain '${DOMAIN NAME}' is defined as persistent; undefining it (making it transient)"
virsh ${VIRSH OPTIONS} undefine ${DOMAIN NAME} >/dev/null 2>&1
break
fi
done

}

LibvirtQemu Start() {
if LibvirtQemu_Status; then
ocf log info "Domain '${DOMAIN NAME}' is already running."
return ${0CF_SUCCESS}
fi

NOTE: We cannot 'virsh create' a domain that has been previously 'virsh defined'
LibvirtQemu Undefine
virsh ${VIRSH OPTIONS} create "${0CF RESKEY config}"
rc=$?
if [${rc} -ne 0 1; then
ocfg log err "Failed to start domain '${DOMAIN NAME}'."
return ${OCF_ERR GENERIC}

fi

while ! LibvirtQemu Monitor; do
sleep 1

done

if [-n "${OCF _RESKEY email}"]; then
fi

return ${0CF_SUCCESS}
}

LibvirtQemu Stop() {
local status
local shutdown timeout
local out ex

LibvirtQemu Status
status=$7?

case ${status} in
${0CF_SUCCESS})
if ! ocf is true ${OCF_RESKEY force stop}; then
Issue a graceful shutdown request
ocf log info "Issuing graceful shutdown request for domain '${DOMAIN NAME}'."

LibvirtQemu EmailSend "${OCF RESKEY email subject//%domain name%/${DOMAIN NAME}} $(date +'SY-%m-%d %H:%M:%S') START on $(uname -n)"

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

48

virsh ${VIRSH OPTIONS} gemu-monitor-command ${DOMAIN NAME} --hmp sendkey esc
virsh ${VIRSH OPTIONS} shutdown ${DOMAIN NAME}
The "shutdown_timeout" we use here is the operation
timeout specified in the CIB, minus 5 seconds
shutdown timeout=$((${SECONDS} + (${OCF _RESKEY CRM meta timeout}/1000)-5))
Loop on status until we reach ${shutdown timeout}
while [${SECONDS} -1t ${shutdown timeout}]; do
LibvirtQemu Status
status=$7?
case ${status} in
${0CF_NOT_RUNNING})
This was a graceful shutdown.
if [-n "${OCF_RESKEY email}"]; then

(graceful) on $(uname -n)"
fi
return ${0OCF_SUCCESS}

${0CF_SUCCESS})
Domain is still running, keep
waiting (until shutdown timeout
expires)
sleep 1

*)..
Something went wrong. Bail out and
resort to forced stop (destroy).
break;

esac"
done
fi

${OCF_NOT_ RUNNING})
ocf log info "Domain '${DOMAIN NAME}' already stopped."
return ${0OCF_SUCCESS}
esac
OK. Now if the above graceful shutdown hasn't worked, kill
off the domain with destroy. If that too does not work,
have the LRM time us out.

out="$(virsh ${VIRSH OPTIONS} destroy ${DOMAIN NAME} 2>&1)"
ex=$7?
echo "${out}" >&2
case ${ex}${out,,} in
'domain is not running'|*'domain not found'¥*)
: # unexpected path to the intended outcome, all is well

ocf log info "Issuing forced shutdown (destroy) request for domain '${DOMAIN NAME}'.

For F*%&*% M$ Windaube!...

LibvirtQemu EmailSend "${OCF RESKEY email subject//%domain_name%/${DOMAIN NAME}} $(date +'%Y-%m-%d %H:%M:%S') STOP

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 49

RESEARCH INSTITUTE

[10]%)
return ${0CF_ERR GENERIC}
0%)
while [${status} != ${OCF_NOT RUNNING}]; do
LibvirtQemu Status
status=$?
done
esac
if [-n "${OCF RESKEY email}"]; then
LibvirtQemu EmailSend "${OCF RESKEY email subject//%domain name%/${DOMAIN NAME}} $(date +'%Y-%m-%d %H:%M:%S') STOP (forced) on $(uname
_n)ll
fi
return ${0CF_SUCCESS}

LibvirtQemu Migrate To() {
local target node
local remoteuri
local transport suffix
local migrateuri
local migrateport
local migrate target

target_node="${0CF_RESKEY_ CRM meta migrate target}"
if LibvirtQemu Status; then

Find out the remote hypervisor to connect to. That is, turn

something like "gemu://f00:9999/system" into

"gemu+tcp://bar:9999/system"

if [-n "${OCF_RESKEY migration transport}"]; then
transport suffix="+${0CF _RESKEY migration transport}"

fi

A typical migration URI via a special migration network looks

like "tcp://bar-mig:49152". The port would be randomly chosen

by libvirt from the range 49152-49215 if omitted, at least since

version 0.7.4 ...

if [-n "${0OCF _RESKEY migration network suffix}"]; then
Hostname might be a FQDN
migrate target=$(echo ${target node} | sed -e "s,”"\([”.]1\+\),\1${0CF_RESKEY migration network suffix},")
For quiet ancient libvirt versions a migration port is needed
and the URI must not contain the "//". Newer versions can handle
the "bad" URI.
migrateport=$((49152 + $(ocf maybe random) % 64))
migrateuri="tcp:${migrate target}:${migrateport}"

fi

remoteuri="gemu${transport suffix}://${target node}/system"

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

OK, we know where to connect to. Now do the actual migration.
ocf log info "Migrating domain '${DOMAIN NAME}' to node '${target node}' ('${remoteuri}' via '${migrateuri}')."
virsh ${VIRSH OPTIONS} migrate --live ${DOMAIN NAME} ${remoteuri} ${migrateuri}
rc=$7?
if [${rc} -ne 0]; then
ocfg log err "Migration of domain '${DOMAIN NAME} to node '${target node}'

('${remoteuri}' via '${migrateuri}') failed: ${rc}"
return ${0CF_ERR GENERIC}
else

ocf log info "Migration of domain '${DOMAIN NAME}' to node '${target node}' succeeded."
if [-n "${OCF _RESKEY email}"]; then

LibvirtQemu EmailSend "${OCF RESKEY email subject//%domain name%/${DOMAIN NAME}} $(date +'%Y-%m-%d %H:%M:%S') MIGRATE on $(uname
-n) (to ${target node})"
fi
return ${0CF_SUCCESS}
fi
else
ocfg log err "${DOMAIN NAME}: migrate to: Not active locally!"

return ${0CF_ERR GENERIC}
fi

}

LibvirtQemu Migrate From() {
while ! LibvirtQemu Monitor; do
sleep 1
done
ocf log info "Migration of domain '${DOMAIN NAME}' from '${OCF RESKEY CRM meta migrate source}' succeeded."
if [-n "${OCF RESKEY email}"]; then
LibvirtQemu EmailSend "${OCF RESKEY email subject//%domain name%/${DOMAIN NAME}} $(date +'%Y-%m-%d %H:%M:%S') MIGRATE on $(uname -n)
(from ${OCF_RESKEY CRM meta migrate source})"
fi
return ${0CF_SUCCESS}
}

LibvirtQemu Monitor() {

First, check the domain status. If that returns anything other
than ${OCF_SUCCESS}, something is definitely wrong.
LibvirtQemu Status
rc=$7?
if [${rc} -eq ${OCF_SUCCESS} 1; then
OK, the generic status check turned out fine. Now, if we
have monitor scripts defined, run them one after another.
for script in ${OCF_RESKEY monitor scripts}; do
script output="$(${script} 2>&1)"
script rc=$?
if [${script rc} -ne ${OCF _SUCCESS} 1; then
A monitor script returned a non-success exit
code. Stop iterating over the list of scripts, log a

2014.10.24, updated 2015.07.08

public report Cédric Dufour

50

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

51

warning message, and propagate ${0CF_ERR GENERIC}.
ocf log warn "Monitor script '${script}' for domain '${DOMAIN NAME}' failed; '${script output}' [rc=${script rc}]"
rc=${0CF_ERR GENERIC}
break
else
ocf log debug "Monitor script '${script}' for domain '${DOMAIN NAME}' succeeded; '${script output}' [rc=0]"

return ${rc}

}

LibvirtQemu Validate All() {

Required binaries:

for binary in virsh grep sed; do
check binary ${binary}

done

if [-z "${MAILCMD}" 1; then
ocfg log err "MAILCMD variable not set"
exit ${0CF_ERR INSTALLED}

fi

check binary "${MAILCMD}"

if [-z "${OCF RESKEY config}" 1; then
ocfg log err "Missing configuration parameter 'config'."
return ${0CF_ERR CONFIGURED}

fi

check if we can read the config file (otherwise we're unable to
deduce ${DOMAIN NAME} from it, see below)
if [! -r "${0CF_RESKEY config}"]; then
if ocf is probe; then
ocf log info "Configuration file '${OCF RESKEY config}' not readable during probe."
else
ocfg log err "Configuration file '${OCF_RESKEY config}' does not exist or is not readable."
return ${0OCF_ERR INSTALLED}
fi
fi
}

if [$# -ne 1]1; then
usage
exit ${0CF_ERR ARGS}
fi

case ${1} in
meta-data)
meta data

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P [P=m Bt d i

52

RESEARCH INSTITUTE

exit ${0CF_SUCCESS}
usage)

usage

exit ${0CF_SUCCESS}

o

esac

Everything except usage and meta-data must pass the validate test
LibvirtQemu Validate All || exit $7?

During a probe, it is permissible for the config file to not be
readable (it might be on shared storage not available during the
probe). In that case, we're
unable to get the domain name. Thus, we also can't check whether the
domain is running. The only thing we can do here is to assume that
it is not running.
if [! -r "${0CF_RESKEY config}"]; then
ocf is probe && exit ${0CF_NOT RUNNING}
["${ OCF ACTION}" == 'stop'] && exit ${OCF_SUCCESS}
fi

Retrieve the domain name from the config file.
DOMAIN NAME="$(grep '<name>.*</name>' "${OCF RESKEY config}" | sed 's/”.*<name>\(.*\)<\/name>.*$/\1/' 2>/dev/null)"
if [-z "${DOMAIN NAME}" 1; then
ocfg log err "Failed to parse domain name from configuration file ('${OCF_RESKEY config}')."
exit ${OCF ERR GENERIC}
fi

case ${1} in
start)
LibvirtQemu Start
stop)
LibvirtQemu Stop

migrate to)
LibvirtQemu Migrate To

migrate from)

LibvirtQemu Migrate From
status)

LibvirtQemu Status
monitor)

LibvirtQemu Monitor

o

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P (] F= [Bt S

53

RESEARCH INSTITUTE

validate-all)
*)II
usage
exit ${0OCF_ERR UNIMPLEMENTED}
esac
exit $?

Libvirt Sample Configuration

/havc/config/libvirt/template.xml

<domain type='kvm'>
<name>%{VM_FQN}</name>
<uuid>%{VM UUID}</uuid>
<memory>524288</memory>
<memoryBacking>
<hugepages/>
</memoryBacking>
<vcpu>1l</vcpu>
<!--
<cpu match='exact'>
<model>Nehalem</model>
</cpu>
-->
<0S>
<type arch='x86 64' machine='pc-0.12'>hvm</type>
<boot dev='hd'/>
</0s>
<features>
<acpi/>
<apic/>
<pae/>
</features>
<clock offset="'utc'/>
<on_poweroff>destroy</on poweroff>
<on_reboot>restart</on reboot>
<on_crash>restart</on _crash>
<devices>
<emulator>/usr/bin/kvm</emulator>
<disk type='file' device='disk'>
<driver name='gemu' type='raw' cache='none' error policy='enospace'/>
<source file='%{VM IMAGE}'/>
<target dev='vda' bus='virtio'/>

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P [P=m Bt d i

54

RESEARCH INSTITUTE

</disk>
<interface type='bridge'>
<mac address='%{MAC_ADDRESS}'/>
<source bridge='%{NETWORK BRIDGE}'/>
<model type='virtio'/>
</interface>
<serial type='pty'>
<target port='0'/>
</serial>
<console type='pty'>
<target type='serial' port='0'/>
</console>
<input type='tablet' bus='usb'/>
</devices>
</domain>

Pacemaker Sample Configuration

/havc/config/pacemaker/NETWORK.xml
NOTE: The two IPs used here are those attributed to each of the two core HP E8212z| switches.

<resources>
<clone id="NETWORK">
<primitive id="NETWORK-ping" class="ocf" provider="pacemaker" type="ping">
<operations>
<op id="NETWORK-ping-OP-start" name="start" interval="0" timeout="60s"/>
<op id="NETWORK-ping-OP-stop" name="stop" interval="0" timeout="30s"/>
<op id="NETWORK-ping-OP-monitor" name="monitor" interval="60s" timeout="55s"/>
</operations>
<instance attributes id="NETWORK-ping-IA">
<nvpair id="NETWORK-ping-IA-host list" name="host list" value="192.168.3.2 192.168.3.3"/>
<nvpair id="NETWORK-ping-IA-timeout" name="timeout" value="3"/>
<nvpair id="NETWORK-ping-IA-attempts" name="attempts" value="3"/>
<nvpair id="NETWORK-ping-IA-options" name="options" value="-i 3"/>
<nvpair id="NETWORK-ping-IA-multiplier" name="multiplier" value="500"/>
<nvpair id="NETWORK-ping-IA-dampen" name="dampen" value="90"/>
</instance attributes>
</primitive>
</clone>
</resources>

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
,}9\9 I D I a p Technical Inside-Out 55

RESEARCH INSTITUTE

/havc/config/pacemaker/STONITH_ibmbc.xml
NOTE: This is a single sample for IBM Blade Center AMM; all IBM (chassis/redundant) AMMs/CMMs shall are configured identically.

<resources>
<clone id="STONITH ibmbc">
<meta attributes id="STONITH ibmbc-MA">
<nvpair id="STONITH ibmbc-MA-globally-unique" name="globally-unique" value="false"/>
</meta attributes>
<primitive id="STONITH ibmbc-P" class="stonith" type="external/ibmbc">
<operations>
<op 1d="STONITH ibmbc-P-OP-monitor" name="monitor" interval="21600s" timeout="60s"/>
</operations>
<instance attributes id="STONITH ibmbc-P-IA">
<nvpair id="STONITH ibmbc-P-IA-mgmt address" name="mgmt address" value="192.168.1.251"/>
<nvpair id="STONITH ibmbc-P-IA-snmp conf path" name="snmp conf path" value="/havc/config/stonith/ibmbc"/>
<nvpair i1d="STONITH ibmbc-P-IA-no softoff" name="no softoff" value="0"/>
</instance attributes>
</primitive>
</clone>
</resources>

/havc/config/pacemaker/resource.template.xml

<resources>
<group id="%{VM FQN}">
<primitive id="%{VM FQN}-LibvirtQemu" class="ocf" provider="custom" type="LibvirtQemu">
<instance attributes id="%{VM FQN}-LibvirtQemu-IA">
<nvpair id="%{VM FQN}-LibvirtQemu-IA-config" name="config" value="/havc/config/libvirt/%{VM FQN}.xml"/>
<nvpair id="%{VM FQN}-LibvirtQemu-IA-email" name="email" value="watchdog@example.org"/>
</instance attributes>
<meta attributes id="%{VM FQN}-LibvirtQemu-MA">
<nvpair id="%{VM FQN}-LibvirtQemu-MA-allow-migrate" name="allow-migrate" value="true"/>
</meta_attributes>
<utilization id="%{VM FQN}-LibvirtQemu-utilization">
<nvpair id="%{VM FQN}-LibvirtQemu-utilization-cpu" name="cpu" value="1"/>
<nvpair id="%{VM FQN}-LibvirtQemu-utilization-memory" name="memory" value="512"/>
</utilization>
<operations>
<op id="%{VM FQN}-LibvirtQemu-OP-monitor" name="monitor" timeout="30s" interval="60s"/>
<op id="%{VM FQN}-LibvirtQemu-OP-start" name="start" timeout="60s" interval="0"/>
<op id="%{VM FQN}-LibvirtQemu-OP-stop" name="stop" timeout="60s" interval="0"/>
<op id="%{VM FQN}-LibvirtQemu-OP-migrate-to" name="migrate to" timeout="60s" interval="0"/>
<op id="%{VM FQN}-LibvirtQemu-OP-migrate-from" name="migrate from" timeout="60s" interval="0"/>
</operations>
</primitive>
</group>

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

56

RESEARCH INSTITUTE

‘</resources>

/havc/config/pacemaker/constraint.template.xml

<constraints>
<rsc_location id="%{VM FQN}-connectivity" rsc="%{VM FQN}">
<rule id="%{VM FQN}-connectivity-R" score="-INFINITY" boolean-op="or">
<expression id="%{VM FQN}-connectivity-R-E-not defined" attribute="pingd" operation="not defined"/>
<expression id="%{VM FQN}-connectivity-R-E-1lte" attribute="pingd" operation="1te" value="0"/>
</rule>
</rsc_location>
<rsc_location id="%{VM FQN}-location" rsc="%{VM FQN}" node="%{PREFERRED NODE}" score="1000"/>
</constraints>

System Administration

/havc/config/pacemaker/ADMIN.xml

<resources>
<group id="ADMIN havc">
<primitive id="ADMIN havc-IPaddr" class="ocf" provider="heartbeat" type="IPaddr2">
<instance attributes id="ADMIN havc-IPaddr-IA">
<nvpair id="ADMIN havc-IPaddr-IA-ip" name="ip" value="192.168.3.250"/>
<nvpair id="ADMIN havc-IPaddr-IA-cidr netmask" name="cidr netmask" value="24"/>
<nvpair id="ADMIN havc-IPaddr-IA-nic" name="nic" value="bond0"/>
</instance attributes>
</primitive>
</group>
</resources>
<constraints>
<rsc_location id="ADMIN havc-connectivity" rsc="ADMIN havc">
<rule id="ADMIN havc-connectivity-R" score="-INFINITY" boolean-op="or">
<expression id="ADMIN havc-connectivity-R-E-not defined" attribute="pingd" operation="not defined"/>
<expression id="ADMIN havc-connectivity-R-E-1te" attribute="pingd" operation="1te" value="0"/>
</rule>
</rsc_location>
</constraints>

/havc/scripts/havc-config-host

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 57

RESEARCH INSTITUTE

Usage
[$# -1t 2 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE :

${0##*/} <vm-name> <host-name>

SYNOPSIS:
Define and save the proper settings for the given host (KVM guest).

WHERE :
<vm-name>
Is the Virtual Machine (VM) name, as used by LibVirt (virsh).
Example: KVMGUESTO1

<host-name>
Is the host name, as resolvable by the Domain Name Service (DNS).
Example: kvmguest@l.idiap.ch
EOF

Arguments
VM NAME="$1"
HOST NAME="$2"

Parameters
HOST CONFIG DIR='/havc/config/hosts'

Check (arguments)

... virtual machine name
VM _NAME="$(echo "${VM NAME}" | tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')"
[-z "$(echo "${VM NAME}" | egrep '~[-.A-Z0-9]{3,}$')"] & echo "ERROR: Invalid virtual machine name (${VM NAME})" >&2 && exit 1

... host name
DNS LOOKUP="$(host ${HOST NAME} | egrep ' has address [0-9]1{2,3}(\.[0-9]1{1,3}){3}$' | head -n 1)"
[-z "${DNS_LOOKUP}"] && echo "ERROR: No matching DNS entry for the given hostname (${HOST NAME})" >&2 && exit 1

Settings

... IP address and FQHN

IP ADDRESS="$(echo "${DNS LOOKUP}" | awk '{print $4}')"

[-z "$(echo "${IP_ADDRESS}" | egrep '~[0-91{2,3}(\.[0-9]1{1,3}){3}$')" 1 & echo "ERROR: Invalid IP address (${IP_ADDRESS})" >&2 && exit 1
HOST FQHN="$(echo "${DNS LOOKUP}" | awk '{print $1}')"

[-z "$(echo "${HOST FQHN}" | egrep '~([- a-z0-91{1,}\.){2,}[a-z1{2,4}$')" 1 && echo "ERROR: Invalid fully-qualified host name ($

{HOST FQHN})" >&2 && exit 1

IP_ADDRESS A=${IP ADDRESS%%.*}; IP_ADDRESS=${IP ADDRESS#*.}

IP ADDRESS B=${IP ADDRESS%%.*}; IP ADDRESS=${IP ADDRESS#*.}

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 58

RESEARCH INSTITUTE

IP_ADDRESS_C=${IP_ADDRESS%%.*}; IP_ADDRESS=${IP_ADDRESS#*.}
IP _ADDRESS D=${IP ADDRESS%%.*}; IP_ ADDRESS=${IP ADDRESS A}.${IP_ADDRESS B}.${IP_ADDRESS C}.${IP_ADDRESS D}

... network zone
case ${IP_ADDRESS} in

192.168.4.*) NETWORK ZONE=intranet; NETWORK VLAN=4;;

192.168.5.*) NETWORK ZONE=dmz; NETWORK VLAN=5;;

192.168.6.*) NETWORK ZONE=lab; NETWORK VLAN=6;;

*) echo "ERROR: Unsupported IP range/address (${IP_ADDRESS})" >&2 && exit 1;;
esac

... MAC address and UUID suffix

MAC_ADDRESS="$(printf '02:00:%.2X:%.2X:%.2X:%.2X' ${IP_ADDRESS A} ${IP_ADDRESS B} ${IP_ADDRESS C} ${IP_ADDRESS D})"

[-z "$(echo "${MAC ADDRESS}" | egrep '~[A-F0-9]1{2}(:[A-F0-9]1{2}){5}$')" 1 && echo "ERROR: Invalid MAC address (${MAC ADDRESS})" >&2 &&
exit 1

UUID SUFFIX=${MAC _ADDRESS//:/}

... IPv6 address
IP ADDRESS V6="$(printf '2001:620:7a3:%d: :%xff:fe%2x:%x%.2x"' ${NETWORK VLAN} ${IP_ ADDRESS A} ${IP ADDRESS B} ${IP_ADDRESS C} $
{IP_ADDRESS D})"

... virtual machine name
VM _FQN="${VM NAME} ${NETWORK ZONE}"

... configuration file

HOST CONFIG FILE="${HOST CONFIG DIR}/${VM FQN}"

HOST CONFIG ALIAS="${HOST CONFIG DIR}/${HOST FQHN}"

if [-e "${HOST CONFIG FILE}"]; then
echo "WARNING: The host configuration file already exists (${HOST CONFIG FILE})"
echo 'PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...'
read

fi

Feedback

cat << EOF
ABOUT TO CREATE HOST CONFIGURATION:

- host name: ${HOST FQHN}

- network zone: .. ${NETWORK ZONE}

- machine name: .. ${VM FQN}

- UUID suffix: ... ${UUID SUFFIX}

- MAC address: ... ${MAC ADDRESS}

- IPv4 address: .. ${IP ADDRESS}

- IPv6 address: .. ${IP ADDRESS V6}

- CONFIGURATION: . "${HOST CONFIG FILE}"
PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...
EOF

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 59

RESEARCH INSTITUTE

read

Commit/save configuration

cat << EOF > "${HOST CONFIG FILE}"
HOST FQHN=${HOST FQHN}

NETWORK ZONE=${NETWORK ZONE}

VM NAME=${VM_ NAME}

UUID SUFFIX=${UUID SUFFIX}
MAC_ADDRESS=${MAC_ADDRESS}
IP_ADDRESS=${IP ADDRESS}

IP ADDRESS V6=${IP_ADDRESS V6}

EOF

In -s "${HOST CONFIG FILE##*/}" "${HOST CONFIG_ALIAS}"

DONE
echo
cat << EOF
HOST CONFIGURATION CREATED!
You can now:
Create the corresponding KVM/LibVirt configuration
> havc-config-libvirt ${VM FQN} <disk-source>
Create the corresponding HA/Pacemaker configuration
> havc-config-pacemaker ${VM FQN} <preferred-node>
EOF
echo

/havc/scripts/havc-config-libvirt

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Usage
[$# -1t 2 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE:

${0##*/} <vm-fgn|host-fghn> <disk-source> [<libvirt-template>=virtual-server-linux]

SYNOPSIS:
Configure the KVM/LibVirt stack for the given host (KVM guest).

WHERE :
<vm-fqn>
Is the fully qualified virtual machine name (as configured by the 'havc-config-host' script).
Example: KVMGUESTO1 intranet

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 60

RESEARCH INSTITUTE

<host-fghn>
Is the fully qualified host name (as configured by the 'havc-config-host' script).
Example: kvmguest0l.idiap.ch

<image-source>
Is the image source (path) to use as the actual image for
the Virtual Machine.
Example: /havc/storage/filer/vm/intranet/newguest.raw

<libvirt-template>
Is the XML filename used as template for defining the
virtual machine (using LibVirt stanza).
Default: virtual-server-linux
EOF

Arguments

HOST CONFIG NAME="$1"

VM_IMAGE SOURCE="$2"

[$# -ge 3] &% LIBVIRT TEMPLATE="$3" || LIBVIRT TEMPLATE='virtual-server-linux'

Parameters

HOST CONFIG DIR='/havc/config/hosts'

LIBVIRT CONFIG_DIR='/havc/config/libvirt'

LIBVIRT TEMPLATE DIR='/havc/config/libvirt/TEMPLATES'

VM_STORAGE DIRS='/dev/ /havc/storage/filer/vm/intranet/ /havc/storage/filer/vm/dmz/ /havc/storage/filer/vm/lab/"'

Check (dependencies and arguments)

... host configuration
HOST CONFIG FILE="${HOST CONFIG DIR}/${HOST CONFIG NAME}"
[! -r "${HOST CONFIG FILE}"] && echo "ERROR: Missing/unreadable host configuration file (${HOST CONFIG FILE})" >&2 && exit 1

... installation source

[! -e "${VM IMAGE SOURCE}"] && echo "ERROR: Missing/invalid VM image source (${VM IMAGE SOURCE})" >&2 && exit 1
VM IMAGE VALID=''

for vm storage dir in ${VM STORAGE DIRS}; do

if ["${VM IMAGE SOURCE:0:${#vm storage dir}}" == "${vm storage dir}"]; then
VM_IMAGE VALID='yes'
break
fi
done
["${VM IMAGE VALID}" != 'yes'] &% echo "ERROR: VM image source MUST be on a valid HAVC storage location (${VM IMAGE SOURCE})" >&2 &&
exit 1

Load configuration
HOST FQHN=; IP ADDRESS=; MAC ADDRESS=; NETWORK ZONE=; VM NAME=; UUID SUFFIX=;

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

61

RESEARCH INSTITUTE

source "${HOST_ CONFIG_FILE}"

Create/check (configuration)

... virtual machine name
VM _FON="${VM NAME} ${NETWORK ZONE}"

... network zone
case "${NETWORK ZONE}" in

‘intranet') NETWORK BRIDGE='br0' ;;

‘dmz') NETWORK BRIDGE='brl' ;;

'lab') NETWORK BRIDGE='br2' ;;

*) echo "ERROR: Invalid network zone (${NETWORK ZONE})" >&2 && exit 1
esac

... disk image
if ["${VM _IMAGE SOURCE:0:5}" == '/dev/']; then
VM_IMAGE="${VM_IMAGE SOURCE}"
else
VM IMAGE="${VM IMAGE SOURCE%/*}/${VM FQN}.raw"
if [-e "${VM IMAGE}" 1; then
echo "WARNING: The virtual machine storage image already exists (${VM_IMAGE})"
echo 'PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...'
read
fi
fi

... configuration files
LIBVIRT TEMPLATE FILE="${LIBVIRT TEMPLATE DIR}/${LIBVIRT TEMPLATE}.xml"

LIBVIRT CONFIG FILE="${LIBVIRT CONFIG DIR}/${VM_FQN}.xml"

if [-e "${LIBVIRT CONFIG_FILE}" 1; then
echo "WARNING: The KVM/LibVirt configuration file already exists (${LIBVIRT CONFIG FILE})"
echo 'PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...'
read

fi

Feedback

cat << EOF
ABOUT TO CREATE KVM/LIBVIRT CONFIGURATION:
- host name: ${HOST FQHN}
- IP address: ${IP_ADDRESS}
- MAC address: ${MAC_ADDRESS}
- network zone: ... ${NETWORK ZONE}
- machine name: ... ${VM FQN}
- UUID suffix: ${UUID SUFFIX}

[' -r "${LIBVIRT TEMPLATE FILE}"] && echo "ERROR: Missing/unreadable KVM/LibVirt template file (${LIBVIRT TEMPLATE FILE})" >&2 && exit 1

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 62

RESEARCH INSTITUTE

- network bridge: . ${NETWORK BRIDGE}

- image source: ... "${VM IMAGE SOURCE}"
- actual image: ... "${VM IMAGE}"

- template: "${LIBVIRT TEMPLATE FILE}"
- CONFIGURATION: .. "${LIBVIRT CONFIG FILE}"
PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...
EOF
read

Commit/save configuration

Create image

if ["${VM_IMAGE}" '= "${VM IMAGE_SOURCE}" 1; then
echo "INFO: Importing the virtual machine image"
mv -v "${VM IMAGE SOURCE}" "${VM IMAGE}"
chmod -v o= "${VM IMAGE}"

fi

Save configuration and (re-)create virtual machine

sed "s/%{HOST NAME}/${HOST FQHN}/g;s/%{IP_ADDRESS}/${IP ADDRESS}/g;s/%{MAC ADDRESS}/${MAC ADDRESS}/g;s/%{NETWORK ZONE}/$
{NETWORK_ZONE}/g;s/%{VM FQN}/${VM FQN}/g;s/%{UUID SUFFIX}/${UUID SUFFIX}/q;s/%{NETWORK BRIDGE}/${NETWORK BRIDGE}/g;s:%{VM IMAGE}:$
{VM IMAGE}:g" "${LIBVIRT TEMPLATE FILE}" > "${LIBVIRT CONFIG FILE}"

DONE
echo
cat << EOF
KVM/LIBVIRT CONFIGURATION CREATED!
You can now:
Create the corresponding HA/Pacemaker configuration
> havc-config-pacemaker ${VM FQN} <preferred-node>
Manually start the virtual machine (ARE YOU SURE?)
> virsh create "${LIBVIRT CONFIG FILE}"
EOF
echo

/havc/scripts/havc-config-pacemaker

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Usage
[$# -1t 2 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE :
${0##*/} <vm-fgn|host-fghn> <preferred-node> [<resource-template>=virtual-server] [<contsraint-template>=virtual-server]

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ® ICJIBD Technical InsigeOut 63

RESEARCH INSTITUTE

SYNOPSIS:
Configure the HA/Pacemaker stack for the given host (KVM guest).

WHERE :
<vm- fqn>
Is the fully qualified virtual machine name (as configured by the 'havc-config-host' script).
Example: KVMGUESTO1l intranet

<host-fghn>
Is the fully qualified host name (as configured by the 'havc-config-host' script).
Example: kvmguest0l.idiap.ch

<preferred-node>
Is the preferred node for the resource location.
Example: hvmhost01

<resource-template>
Is the XML filename used as template for defining the
HA resource.
Default: virtual-server

<constraint-template>
Is the XML filename used as template for defining the
corresponding HA constraint(s).
Default: connectivity
EOF

Arguments

HOST CONFIG NAME="$1"

PREFERRED NODE="${2}"

[$# -ge 3] && RESOURCE TEMPLATE="$3" || RESOURCE TEMPLATE='virtual-server'

[$# -ge 4] & CONSTRAINT TEMPLATE="$4" || CONSTRAINT TEMPLATE='virtual-server'

Parameters

HOST_CONFIG DIR='/havc/config/hosts'

PACEMAKER CONFIG DIR='/havc/config/pacemaker’

PACEMAKER TEMPLATE DIR='/havc/config/pacemaker/TEMPLATES'

Check (dependencies and arguments)
... host configuration

HOST CONFIG FILE="${HOST CONFIG DIR}/${HOST CONFIG NAME}"
[! -r "${HOST CONFIG FILE}"] & echo "ERROR: Missing/unreadable host configuration file (${HOST CONFIG FILE})" >&2 && exit 1

Load configuration
HOST FQHN=; IP ADDRESS=; MAC ADDRESS=; NETWORK ZONE=; VM NAME=; UUID SUFFIX=;

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 64

RESEARCH INSTITUTE

source "${HOST_ CONFIG_FILE}"

Check/create (configuration)

... network zone
case "${NETWORK ZONE}" in

'intranet') NETWORK BRIDGE='br@' ;;

'dmz') NETWORK BRIDGE='brl' ;;

‘lab') NETWORK BRIDGE='br2' ;;

*) echo "ERROR: Invalid network zone (${NETWORK ZONE})" >&2 && exit 1
esac

... virtual machine name
VM _FON="${VM NAME} ${NETWORK ZONE}"

... IP address
[-z "$(echo "${IP_ADDRESS}" | egrep '~[0-91{2,3}(\.[0-9]1{1,3}){3}$')" 1 & echo "ERROR: Invalid IP address (${IP_ADDRESS})" >&2 && exit 1

... resource configuration files
RESOURCE_TEMPLATE FILE="${PACEMAKER TEMPLATE DIR}/resource.${RESOURCE TEMPLATE}.xml"
[' -r "${RESOURCE TEMPLATE FILE}"] && echo "ERROR: Missing/unreadable HA/Pacemaker resource template file (${RESOURCE_TEMPLATE FILE})"
>&2 && exit 1
RESOURCE_CONFIG FILE="${PACEMAKER CONFIG DIR}/${VM FQN}.resource.xml"
if [-e "${RESOURCE_CONFIG FILE}"]; then
echo "WARNING: The HA/Pacemaker resource configuration file already exists (${RESOURCE CONFIG FILE})"
echo 'PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...'
read
fi

... constraint configuration files
CONSTRAINT TEMPLATE FILE="${PACEMAKER TEMPLATE DIR}/constraint.${CONSTRAINT TEMPLATE}.xml"
[' -r "${CONSTRAINT TEMPLATE FILE}"] && echo "ERROR: Missing/unreadable HA/Pacemaker constraint template file ($
{CONSTRAINT TEMPLATE FILE})" >&2 && exit 1
CONSTRAINT CONFIG FILE="${PACEMAKER CONFIG DIR}/${VM FQN}.constraint.xml"
if [-e "${CONSTRAINT CONFIG FILE}"]; then
echo "WARNING: The HA/Pacemaker constraint configuration file already exists (${CONSTRAINT CONFIG FILE})"
echo 'PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...'
read
fi

Feedback

cat << EOF

ABOUT TO CREATE HA/PACEMAKER CONFIGURATION:
- host name: ${HOST FQHN}
- IP address: ${IP_ADDRESS}
- MAC address: ${MAC_ADDRESS}

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 65

RESEARCH INSTITUTE

- network zone: ${NETWORK_ ZONE}
- machine name: ${VM FQN}
- UUID suffix: ${UUID SUFFIX}
- network bridge: ${NETWORK BRIDGE}
- preferred node(s): ${PREFERRED NODE}${PREFERRED NODE 2:+,}${PREFERRED NODE 2}
- resource template: "${RESOURCE_TEMPLATE FILE}"
- RESOURCE CONFIGURATION: ... "${RESOURCE_CONFIG FILE}"
- constraint template: "${CONSTRAINT TEMPLATE FILE}"
- CONSTRAINT CONFIGURATION: . "${CONSTRAINT CONFIG FILE}"
PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...
EOF
read

Commit/save configuration

sed expr="s/%{HOST NAME}/${HOST FQHN}/g;s/%{IP_ADDRESS}/${IP_ADDRESS}/g;s/%{MAC_ADDRESS}/${MAC ADDRESS}/g;s/%{NETWORK ZONE}/$

{NETWORK ZONE}/g;s/%{VM _FQN}/${VM FQN}/g;s/%{UUID SUFFIX}/${UUID SUFFIX}/g;s/%{NETWORK BRIDGE}/${NETWORK BRIDGE}/g;s/%{PREFERRED NODE}/$
{PREFERRED NODE}/g"

sed_expr="${sed_expr};/%{PREFERRED_NODE 2}/d"

sed "${sed expr}" "${RESOURCE TEMPLATE FILE}" > "${RESOURCE CONFIG FILE}"

sed "${sed expr}" "${CONSTRAINT TEMPLATE FILE}" > "${CONSTRAINT CONFIG FILE}"

unset sed expr

DONE
echo
cat << EOF
HA/PACEMAKER CONFIGURATION CREATED!
You can now:
Configure allocated hardware resources
> havc-config-hardware ${VM FQN} <RAM-megabytes> [<CPU-cores>=1]
Enable the HA/Pacemaker resource
> havc-enable ${VM FQN}
EOF
echo

/havc/scripts/havc-config-hardware

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Usage
[$# -1t 2 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE:

${0##*/} <vm-fgn|host-fghn> <RAM-megabytes> [<CPU-cores>=1]

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 66

RESEARCH INSTITUTE

SYNOPSIS:
Configure the CPU/RAM hardware resources for the given host (KVM guest).

WHERE :
<vm- fqn>
Is the fully qualified virtual machine name (as configured by the 'havc-config-host' script).
Example: KVMGUESTO1l intranet

<host-fghn>
Is the fully qualified host name (as configured by the 'havc-config-host' script).
Example: kvmguest0l.idiap.ch

<RAM-megabytes>
Is the quantity of RAM, in megabytes (MiB).

<CPU-cores>
Is the number of vCPU(s).
WARNING: Do NOT over-commit KVM guests with vCPUs>=2 |
EOF

Arguments

HOST CONFIG NAME="$1"

HARDWARE RAM="¢$2"

[$# -ge 3] & HARDWARE CPU="$3" || HARDWARE CPU=1

Parameters
HOST_CONFIG_DIR='/havc/config/hosts'

LIBVIRT CONFIG DIR='/havc/config/libvirt'
PACEMAKER CONFIG DIR='/havc/config/pacemaker'

Check (dependencies and arguments)

... host configuration
HOST CONFIG FILE="${HOST CONFIG DIR}/${HOST CONFIG NAME}"
[! -r "${HOST CONFIG FILE}"] & echo "ERROR: Missing/unreadable host configuration file (${HOST CONFIG FILE})" >&2 && exit 1

Load configuration
HOST FQHN=; IP ADDRESS=; MAC ADDRESS=; NETWORK ZONE=; VM NAME=; UUID SUFFIX=;
source "${HOST CONFIG FILE}"

... virtual machine name
VM _FQN="${VM NAME} ${NETWORK ZONE}"

... libvirt configuration
LIBVIRT CONFIG FILE="${LIBVIRT CONFIG DIR}/${VM FQN}.xml"
[! -r "${LIBVIRT CONFIG FILE}"] & echo "ERROR: Missing/unreadable Libvirt configuration file (${LIBVIRT CONFIG FILE})" >&2 && exit 1

2014.10.24, updated 2015.07.08 public report Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 67

RESEARCH INSTITUTE

fgrep -q '<memory>' "${LIBVIRT CONFIG FILE}"

[$? -ne 0] & echo "ERROR: Missing 'memory' node in Libvirt configuration file (${LIBVIRT CONFIG FILE})" >&2 && exit 1
fgrep -q '<vcpu>' "${LIBVIRT CONFIG FILE}"

[$? -ne 0] & echo "ERROR: Missing 'vcpu' node in Libvirt configuration file (${LIBVIRT CONFIG FILE})" >&2 && exit 1

... pacemaker configuration

PACEMAKER CONFIG FILE="${PACEMAKER CONFIG DIR}/${VM FQN}.resource.xml"

[! -r "${PACEMAKER CONFIG FILE}"] && echo "ERROR: Missing/unreadable HA/Pacemaker configuration file (${PACEMAKER CONFIG FILE})" >&2 &&
exit 1

fgrep -q 'name="memory"' "${PACEMAKER CONFIG FILE}"

[$? -ne 0] & echo "ERROR: Missing 'memory' node in HA/Pacemaker configuration file (${PACEMAKER CONFIG FILE})" >&2 && exit 1

fgrep -q 'name="cpu"' "${PACEMAKER CONFIG FILE}"

[$? -ne 0] & echo "ERROR: Missing 'cpu' node in HA/Pacemaker configuration file (${PACEMAKER CONFIG FILE})" >&2 && exit 1

Feedback

cat << EOF
ABOUT TO UPDATE LIBVIRT/PACEMAKER CONFIGURATION:
- host name: ${HOST FQHN}
- machine name: ${VM_FQN}
- RAM(MiB):. oo iiiiiieeeean s ${HARDWARE RAM}
- VCPU(S): viiiiiiiinnnnnnnns ${HARDWARE CPU}
- LIBVIRT CONFIGURATION: "${LIBVIRT CONFIG FILE}"
- PACEMAKER CONFIGURATION: .. "${PACEMAKER CONFIG FILE}"
PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...
EOF
read

Update configuration

... libvirt
sed -i "s|<memory>.*$|<memory>$((${HARDWARE RAM}*1024))</memory>|;s|<vcpu>.*$|<vcpu>${HARDWARE CPU}</vcpu>|" "${LIBVIRT CONFIG FILE}"
xmllint --debug "${LIBVIRT CONFIG FILE}" >/dev/null || exit 1

... pacemaker
sed -i "s|name=\"memory\"\(.*\)value=\"["\"1*\"|name=\"memory\"\1lvalue=\"${HARDWARE RAM}\"|;s|name=\"cpu\"\(.*\)value=\"["\"1*\"|
name=\"cpu\"\1lvalue=\"${HARDWARE CPU}\"|" "${PACEMAKER CONFIG FILE}"

xmllint --debug "${PACEMAKER CONFIG FILE}" >/dev/null || exit 1

DONE
echo
cat << EOF
LIBVIRT/PACEMAKER CONFIGURATION UPDATED!
You MUST now:
Disable the virtual machine
> havc-disable ${VM FQN}

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

68

Re-enable the virtual machine
> havc-enable ${VM FQN}
EOF
echo

/havc/scripts/havc-sync

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Usage

["${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE: ${0##*/} [--cleanup] [--I-KNOW-WHAT-I-AM-DOING]
EOF

Arguments
MY _CLEANUP=
MY CONFIRM=
while [-n "${1}"]; do
case "${1}" in
--cleanup) MY CLEANUP='yes';;
--I-KNOW-WHAT-I-AM-DOING) MY CONFIRM='yes';;
esac
shift
done

Parameters
MY RSYNC OPTIONS=

if ["${MY_CLEANUP}" == 'yes']; then

MY_RSYNC_OPTIONS='--verbose --delete --force'

["${MY_CONFIRM}" != 'yes'] && MY_RSYNC_OPTIONS="${MY_RSYNC_OPTIONS} --dry-run"
fi

Synchronize HAVC resources

echo 'INFO: Synchronizing HAVC resources (config, scripts, etc.)'

eval "rsync -a ${MY RSYNC OPTIONS} --exclude=TEMPLATES --exclude=ARCHIVES /havc/storage/filer/hypervisor/config/ /havc/config/"
eval "rsync -a ${MY RSYNC OPTIONS} --exclude=ARCHIVES /havc/storage/filer/hypervisor/scripts/ /havc/scripts/"

/havc/scripts/havc-enable

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
_}9\9 I D I a p Technical Inside-Out 69

RESEARCH INSTITUTE

Usage
[$# -1t 1 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE:

${0##*/} <vm-fgn>

SYNOPSIS:
Enable the given host (KVM guest) in the HA/Pacemaker stack.

WHERE:
<vm-fqn>
Is the fully qualified virtual machine name (as configured by the 'havc-config-host' script).
Example: KVMGUESTO1l intranet
EOF

Arguments
HOST CONFIG NAME="$1"

Parameters
HOST_CONFIG_DIR='/havc/config/hosts'
PACEMAKER CONFIG DIR='/havc/config/pacemaker'

Check (dependencies and arguments)

... dependencies
[-z "$(which cibadmin)"] && echo 'ERROR: Missing required depencency (cibadmin)' >&2 && exit 1

... host configuration
HOST CONFIG FILE="${HOST CONFIG DIR}/${HOST CONFIG NAME}"
[! -r "${HOST CONFIG FILE}"] && echo "ERROR: Missing/unreadable host configuration file (${HOST CONFIG FILE})" >&2 && exit 1

Load configuration
HOST FQHN=; IP ADDRESS=; MAC ADDRESS=; NETWORK ZONE=; VM NAME=; UUID SUFFIX=;
source "${HOST CONFIG FILE}"

Check/create (configuration)

... virtual machine name
VM _FQN="${VM NAME} ${NETWORK ZONE}"

... resource configuration files

RESOURCE_CONFIG FILE="${PACEMAKER CONFIG DIR}/${VM FQN}.resource.xml"

if [! -r "${RESOURCE CONFIG FILE}"]; then
echo "ERROR: The HA/Pacemaker resource configuration file is missing/unreadable (${RESOURCE_CONFIG FILE})" >&2
exit 1

fi

2014.10.24, updated 2015.07.08 public report Cédric Dufour

RESEARCH INSTITUTE

Fw |CI1 DD s oe prvate clous

70

... constraint configuration files

CONSTRAINT CONFIG FILE="${PACEMAKER CONFIG DIR}/${VM FQN}.constraint.xml"

if [! -r "${CONSTRAINT CONFIG FILE}"]; then
echo "WARNING: The HA/Pacemaker constraint configuration file is missing unreadable
echo 'PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...'
read

fi

Feedback

cat << EOF
ABOUT TO UPDATE HA/PACEMAKER CONFIGURATION:
- host name: ${HOST FQHN}
- IP address: ${IP_ADDRESS}
- MAC address: ${MAC_ADDRESS}
- network zone: ${NETWORK_ ZONE}
- machine name: ${VM FQN}
- UUID suffix: ${UUID SUFFIX}
- RESOURCE CONFIGURATION: ... "${RESOURCE CONFIG FILE}"
CONSTRAINT CONFIGURATION: . "${CONSTRAINT CONFIG FILE}"
PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT.
EOF
read
Commit

cibadmin -o resources -M -c -x "${RESOURCE_CONFIG FILE}"

(${CONSTRAINT_ CONFIG_FILE})"

[-r "${CONSTRAINT_CONFIG_FILE}"] && cibadmin -o constraints -M -c -x "${CONSTRAINT_ CONFIG_FILE}"

DONE
echo
cat << EOF
HA/PACEMAKER CONFIGURATION UPDATED!
You can now:
Display the HA/Pacemaker status
> ha-status ${VM FQN}
EOF
echo

/havc/scripts/havc-disable

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Usage

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P [P=m Bt d i

71

RESEARCH INSTITUTE

[$# -1t 1 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE::
${0##*/} <vm-fqn>

SYNOPSIS:
Disable the given host (KVM guest) in the HA/Pacemaker stack.

WHERE :
<vm- fqn>
Is the fully qualified virtual machine name (as configured by the 'havc-config-host' script).
Example: KVMGUESTO1l intranet
EOF

Arguments
VM _FON="$1"

Check (dependencies and arguments)

... dependencies
[-z "$(which cibadmin)"] && echo 'ERROR: Missing required depencency (cibadmin)' >&2 && exit 1
[-z "$(which crm)"] & echo 'ERROR: Missing required depencency (crm)' >&2 && exit 1

Check/retrieve (configuration)

... resource ID

HA RESOURCE XML="$(cibadmin -o resources -Q | fgrep "id=\"${VM FQN}\"")"

[-z "${HA RESOURCE_XML}"] && echo "ERROR: Missing/unmatchable virtual machine name (${VM FQN})" >&2 && exit 1
HA RESOURCE_NAME="$(echo "${HA RESOURCE XML}" | sed 's/.*id="\([""I*\)".*/\1/"')"

... constraints IDs
HA CONSTRAINTS XML="$(cibadmin -o constraints -Q | fgrep "rsc=\"${VM FQN}\"")"
HA CONSTRAINTS NAME="$(echo "${HA CONSTRAINTS XML}" | sed 's/.*id="\([~"]*\)".*/\1/' | tr '\n' ',"')"

Feedback

cat << EOF
ABOUT TO UPDATE HA/PACEMAKER CONFIGURATION:
- machine name: ${VM_FQN}
- RESOURCE ID: ${HA RESOURCE_NAME}
- CONSTRAINT(S) ID(S): ${HA CONSTRAINTS NAMESS%,
PRESS <ENTER> TO CONTINUE, <CTRL+C> TO ABORT...
EOF
read
Traps

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P [P=m Bt d i

72

RESEARCH INSTITUTE

HA_INTERRUPTED=0
trap 'HA_INTERRUPTED=1' SIGINT

Commit
crm resource stop ${HA RESOURCE NAME}
echo 'INFO: Waiting for resource to stop...'
echo '1------- 10-------- 20-------- 30-------- 40-------- 50-------- 60"
HA COUNT START="${SECONDS}"
HA COUNT DOTS=0
while true; do
[${HA INTERRUPTED} -ne 0] && break
[-n "$(crm resource status ${HA RESOURCE NAME} 2>&1 | fgrep -i 'not running')"] && break
HA COUNT ELAPSED=$((${SECONDS} - ${HA COUNT START}))
while [${HA COUNT DOTS} -1t ${HA COUNT ELAPSED}]; do
HA COUNT DOTS=$((${HA COUNT DOTS} + 1))
echo -n '.'
[$((${HA COUNT DOTS} % 60)) -eq 0] && echo
done
sleep 1
done
echo
if [${HA INTERRUPTED} -ne 0]; then
echo 'WARNING: Interrupted while waiting for resource to stop!'
echo 'WARNING: Resource will eventually be stopped but will NOT be disabled!'
exit 1
fi
echo 'INFO: Resource successfully stopped'
IFS=$'\n'
for xml in ${HA CONSTRAINTS XML}; do cibadmin -o constraints -D -X "${xml}"; done
for xml in ${HA_RESOURCE XML}; do cibadmin -o resources -D -X "${xml}"; done

DONE
exit 0

/havc/scripts/havc-health

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Track errors/warnings
HA_WARNINGS=0
HA ERRORS=0

Check mountpoints
for d in /havc/storage/gx05/{hypervisor,vm/intranet,vm/dmz,vm/lab}; do

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
M HAVC-II - Idiap Private Cloud
.}9\9 I D I a p Technical Inside-Out 73

RESEARCH INSTITUTE

echo "INFO: Testing mount '${d}'"

[! -d "${d}"] & echo "ERROR: Invalid/missing mountpoint (${d})" && HA ERRORS=$((${HA ERRORS}+1)) && continue

[-z "$(awk "{if(\$2==\"${d}\")print \$2}" /proc/mounts)"] && echo "ERROR: Missing mount (${d})" & HA ERRORS=$((${HA ERRORS}+1)) &&
continue
done

Check peers
HA HOST="$(hostname -s)"

if ["${HA HOST:0:5}" == 'janus']; then

HA HOSTS="$(echo janusO{l..6})"
else

HA HOSTS="$(echo bc{1,2}{hs22a0{1..3},hx5a0{4..7}} fx{1,2}x240a0{1..4})"
fi

n=0; for p in ${HA HOSTS}; do
echo "INFO: Testing peer '${p}'"
ping -c 1 -w 1 ${p} >/dev/null
[$? -ne 0] && echo "WARNING: Peer does not respond to ping (${p})" && HA WARNINGS=$((${HA WARNINGS}+1)) && continue
virsh --quiet --connect gemu://${p}/system uri >/dev/null
[$? -ne 0] && echo "WARNING: Peer does not respond to virsh (${p})" && HA WARNINGS=$((${HA WARNINGS}+1)) && continue
n=$((${n}+1l))

done

[${n} -eq 0] && echo "ERROR: No peers are reachable" &% HA ERRORS=$((${HA ERRORS}+1))

Check stonith devices
if ["${HA HOST:0:5}" == 'janus']; then
STONITH DEVS='mfsys:10.17.20.0'
STONITH OPTS='serverl hostname=test'
else
STONITH DEVS='ibmbc:10.17.21.251 ibmbc:10.17.22.251 ibmfx:10.17.31.253 ibmfx:10.17.32.253"
STONITH OPTS='"
fi
for d in ${STONITH DEVS}; do
echo "INFO: Testing stonith device '${d}'"
t="${d%:*}"; ip="${d#*:}"
eval "stonith -s -S -t external/${t} mgmt address=${ip} snmp_ conf path=/havc/config/stonith/${t} ${STONITH OPTS}" >/dev/null
[$?7 -ne 0] & echo "ERROR: Stonith device does not respond to status query (${d})" &% HA ERRORS=$((${HA ERRORS}+1))
done

Done
if [${HA WARNINGS} -eq O -a ${HA ERRORS} -eq 0]; then
echo 'SUCCESS! You can safely enable HA.'
elif [${HA ERRORS} -eq 0]; then
echo 'WARNING! Not all tests pass; you can enable HA, but are you sure?'
else
echo 'ERROR! Critical tests failed; do NOT enable HA!'
fi

2014.10.24, updated 2015.07.08 public report Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

74

/havc/scripts/havc-shell

#!/bin/bash
Cedric Dufour <cedric.dufour@idiap.ch>

Usage
[$# -1t 1 -0 "${1##*-}" == 'help'] && cat << EOF && exit 1
USAGE: ${0##*/} <command> [<...>]
SYNOPSIS:
Wrapper for (supported) Pacemaker/Libvirt commands:
ha-..., havc-... (HAVC)

locate, crm (crm)
domstate, start, shutdown, destroy, console, vncdisplay (virsh)
top (virt-top)

EOF

Arguments
MY COMMAND="${1}"; shift

Functions

Locate the given Libvirt domain (aka. Pacemaker resource)
function crm locate {
MY DOMAIN="${1}"
[-z "${MY _DOMAIN}"] && echo "ERROR: Missing domain argument" >&2 && return 1
MY NODE="$(ssh admin.havc "crm resource --locate --quiet --resource ${MY DOMAIN}")"
[-z "${MY_NODE}"] && echo "ERROR: Unable to locate resource/domain" >&2 && return 1
echo "${MY NODE}"

Main
case "${MY COMMAND}" in

'locate')
MY DOMAIN="${1}"; shift
MY NODE="$(crm locate "${MY DOMAIN}")"
e=$?; [${e} -ne 0] && exit ${e}
echo "INFO: '${MY DOMAIN}' is running on HAVC node '${MY NODE}.havc'"
exit 0

o

'domstate'|'start'|'shutdown'|'destroy'|'vncdisplay')
MY_DOMAIN="${1}"; shift
MY NODE="$(crm locate "${MY DOMAIN}")"

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

- ! L -
P [P=m Bt d i

RESEARCH INSTITUTE

75

e=$?; [${e} -ne 0] && exit ${e}

MY SSH OPTIONS=''

echo "INFO: virsh --connect qgemu://${MY NODE}/system ${MY COMMAND} ${MY DOMAIN}" >&2
o="¢$(eval ssh ${MY SSH OPTIONS} ${MY NODE}.havc "virsh ${MY_ COMMAND} ${MY DOMAIN}")"
e=$7?

e=$?; [${e} -ne 0] && exit ${e}

["${MY_COMMAND}" == 'vncdisplay'] && o="${MY NODE}.havc${o}"

echo "${o}"

exit 0

o

'console')
MY DOMAIN="${1}"; shift
MY NODE="$(crm locate "${MY DOMAIN}")"
e=$?; [${e} -ne 0] && exit ${e}
MY SSH OPTIONS="''
echo "INFO: virsh --connect gemu://${MY_NODE}/system ${MY_COMMAND} ${MY_DOMAIN}" >&2
eval ssh -t ${MY NODE}.havc "virsh ${MY COMMAND} ${MY DOMAIN}"
exit $7?

o

'gemu-monitor-command"')
MY DOMAIN="${1}"; shift
MY NODE="$(crm locate "${MY DOMAIN}")"
e=$?; [${e} -ne 0] && exit ${e}
MY SSH OPTIONS=''
echo "INFO: virsh --connect qgemu://${MY NODE}/system ${MY COMMAND} ${MY DOMAIN} --hmp $@" >&2
eval ssh -t ${MY NODE}.havc "virsh ${MY COMMAND} ${MY DOMAIN} --hmp $@"
exit $7?

o

'crm')
ssh -t admin.havc 'crm'
exit $7?

o

"top')
MY DOMAIN="${1}"; shift
MY _NODE="$(crm locate "${MY DOMAIN}")"
e=$?; [${e} -ne 0] && exit ${e}
ssh -t ${MY NODE}.havc 'virt-top'
exit 0

o

"havc-enable')
echo "ERROR: Shamelessly refusing to wrap this command (${MY_ COMMAND})" >&2
echo "ERROR: Please invoke it directly (not via ${0##*/})" >&2
exit 1

2014.10.24, updated 2015.07.08 public report

Cédric Dufour

|
? IC" I a HAVC-II - Idiap Private Cloud
° Technical Inside-Out 76

RESEARCH INSTITUTE I

r

"ha-'*| "havc-"'*)
ssh -t admin.havc "${MY COMMAND} $@"
exit $7?
*)
echo "ERROR: Unsupported command (${MY COMMAND})" >&2
exit 1

esac

2014.10.24, updated 2015.07.08 public report Cédric Dufour

