
Modulation frequency features for

phoneme recognition in noisy speech

Sriram Ganapathy, Samuel Thomas, and Hynek Hermansky

Idiap Research Institute, Rue Marconi 19, 1920 Martigny, Switzerland

Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Email: ganapathy@idiap.ch, tsamuel@idiap.ch, hermansky@ieee.org

1



Ganapathy, JASA-EL

Abstract

In this letter, a new feature extraction technique based on modulation spec-

trum derived from syllable-length segments of sub-band temporal envelopes

is proposed. These sub-band envelopes are derived from auto-regressive

modelling of Hilbert envelopes of the signal in critical bands, processed by

both a static (logarithmic) and a dynamic (adaptive loops) compression.

These features are then used for machine recognition of phonemes in telephone

speech. Without degrading the performance in clean conditions, the proposed

features show significant improvements compared to other state-of-the-art

speech analysis techniques. In addition to the overall phoneme recognition

rates, the performance with broad phonetic classes is reported.

c© “2008” Acoustical Society of America

PACS numbers: 43.72.Ne, 43.72.Ar
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1. Introduction

Conventional speech analysis techniques start with estimating the spectral content of

relatively short (about 10-20 ms) segments of the signal (short-term spectrum). Each es-

timated vector of spectral energies represents a sample of the underlying dynamic process

in production of speech at a given time-frame. Stacking such estimates of the short-term

spectra in time provides a two-dimensional (time-frequency) representation of speech that

represents the basis of most speech features (for example [Hermansky, 1990]). Alternatively,

one can directly estimate trajectories of spectral energies in the individual frequency sub-

bands, each estimated vector then representing the underlying dynamic process in a given

sub-band. Such estimates, stacked in frequency, also forms a two-dimensional representation

of speech (for example [Athineos et al., 2004]).

For machine recognition of phonemes in noisy speech, the techniques that are based on

deriving long-term modulation frequencies do not preserve fine temporal events like onsets

and offsets which are important in separating some phoneme classes. On the other hand,

signal adaptive techniques which try to represent local temporal fluctuation, cause strong

attenuation of higher modulation frequencies which makes them less effective even in clean

speech [Tchorz and Kollmeier, 2004].

In this letter, we propose a feature extraction technique for phoneme recognition that

tries to capture fine temporal dynamics along with static modulations using sub-band tem-

poral envelopes. The input speech signal is decomposed into 17 critical bands (Bark scale

decomposition) and long temporal envelopes of sub-band signals are extracted using the

technique of Frequency Domain Linear Prediction (FDLP) [Athineos and Ellis, 2007]. The

sub-band temporal envelopes of the speech signal are then processed by a static compres-

sion stage and a dynamic compression stage. The static compression stage is a logarithmic

operation and the adaptive compression stage uses the adaptive compression loops proposed

in [Dau et al., 1996]. The compressed sub-band envelopes are transformed into modulation

frequency components and used as features for hybrid Hidden Markov Model - Artificial Neu-

ral Network (HMM-ANN) phoneme recognition system [Bourlard and Morgan, 1994]. The

proposed technique yields more accurate estimates of phonetic values of the speech sounds

than several other state-of-the-art speech analysis techniques. Moreover, these estimates are
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much less influenced by distortions induced by the varying communication channels.

2. Feature extraction

The block schematic for the proposed feature extraction technique is shown in Fig. 1.

Long segments of speech signal are analyzed in critical bands using the technique of

FDLP [Athineos and Ellis, 2007]. FDLP forms an efficient method for obtaining smoothed,

minimum phase, parametric models of temporal rather than spectral envelopes. Being an

auto-regressive (AR) modelling technique, FDLP captures the high signal-to-noise ratio

(SNR) peaks in the temporal envelope. The whole set of sub-band temporal envelopes,

which are obtained by the application of FDLP on individual sub-band signals, forms a two

dimensional (time-frequency) representation of the input signal energy.

The sub-band temporal envelopes are then compressed using a static compression scheme

which is a logarithmic function and a dynamic compression scheme [Dau et al., 1996]. The

use of the logarithm is to model the overall nonlinear compression in the auditory system

which covers the huge dynamical range between the hearing threshold and the uncomfortable

loudness level. The adaptive compression is realized by an adaptation circuit consisting of

five consecutive nonlinear adaptation loops [Dau et al., 1996]. Each of these loops consists of

a divider and a low-pass filter with time constants ranging from 5 ms to 500 ms. The input

signal is divided by the output signal of the low-pass filter in each adaptation loop. Sudden

transitions in the sub-band envelope that are very fast compared to the time constants of the

adaptation loops are amplified linearly at the output due to the slow changes in the low pass

filter output, whereas the slowly changing regions of the input signal are compressed. This

is illustrated in Fig. 2, which shows (a) a portion of 1000 ms of full-band speech signal, (b)

the temporal envelope extracted using the Hilbert transform, (c) the FDLP envelope, which

is an all-pole approximation to (b) estimated using FDLP, (d) logarithmic compression of

the FDLP envelope and (e) adaptive compression of the FDLP envelope.

Conventional speech recognizers require speech features sampled at 100 Hz (i.e one feature

vector every 10 ms). For using our speech representation in a conventional recognizer,

the compressed temporal envelopes are divided into 200 ms segments with a shift of 10

ms. Discrete Cosine Transform (DCT) of both the static and the dynamic segments of
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temporal envelope yields the static and the dynamic modulation spectrum respectively. We

use 14 modulation frequency components from each cosine transform, yielding modulation

spectrum in the 0 − 70 Hz region with a resolution of 5 Hz. This choice is a result of series

of optimization experiments (which are not reported here).

3. Experiments and results

The proposed features are used for a phoneme recognition task on the HTIMIT database

[Reynolds, 1997]. We use a phoneme recognition system based on the Hidden Markov Model

- Artificial Neural Network (HMM-ANN) paradigm [Bourlard and Morgan, 1994] trained on

clean speech using the TIMIT database downsampled to 8 kHz. The training data consists of

3000 utterances from 375 speakers, cross-validation data set consists of 696 utterances from

87 speakers and the test data set consists of 1344 utterances from 168 speakers. The TIMIT

database, which is hand-labeled using 61 labels is mapped to the standard set of 39 phonemes

[Pinto et al., 2007]. For phoneme recognition experiments in telephone channel, speech data

collected from 9 telephone sets in the HTIMIT database are used, which introduce a variety

of channel distortions in the test signal. For each of these telephone channels, 842 test

utterances, also having clean recordings in the TIMIT test set, are used. The system is

trained only on the original TIMIT data, representing clean speech without the distortions

introduced by the communication channel but tested on the clean TIMIT test set as well as

the HTIMIT degraded speech.

The results for the proposed technique are compared with those obtained for several other

robust feature extraction techniques namely RASTA [Hermansky and Morgan, 1994], audi-

tory model based front-end (Old.) [Tchorz and Kollmeier, 2004], Multi-resolution RASTA

(MRASTA) [Hermansky and Fousek, 2005], and the Advanced-ETSI (noise-robust) dis-

tributed speech recognition front-end [ETSI, 2002]. The results of these experiments on the

clean test conditions are shown in the top panel of Table 1. The conventional Perceptual

Linear Prediction (PLP) feature extraction used with a context of 9 frames [Pinto et al.,

2007] is denoted as PLP-9. RASTA-PLP-9 features use 9 frame context of the PLP fea-

tures extracted after applying the RASTA filtering [Hermansky and Morgan, 1994]. Old.-9

refers to the 9 frame context of the auditory model based front-end reported in [Tchorz and
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Kollmeier, 2004]. The ETSI-9 corresponds to 9 frame context of the features generated by

the ETSI front-end. The FDLP features derived using static, dynamic and combined (static

and dynamic) compression are denoted as FDLP-Stat., FDLP-Dyn. and FDLP-Comb. re-

spectively (Sec.2). The performance on clean conditions for the FDLP-Dyn. and Old.-9

features validates the claim in [Tchorz and Kollmeier, 2004] regarding the effects of the dis-

tortions introduced by adaptive compression model on the higher signal modulations. The

experiments on clean conditions also illustrate the gain obtained by the combination of the

static and dynamic modulation spectrum for phoneme recognition. The bottom panel of

Table 1 shows the average phoneme recognition accuracy (100 - PER, where PER is the

phoneme error rate [Pinto et al., 2007]) for all the 9 telephone channels. The proposed

features, on the average, provide a relative error improvement of about 10% over the other

feature extraction techniques considered.

4. Discussion

Table 2 shows the recognition accuracies of broad phoneme classes for the proposed

feature extraction technique along with a few other speech analysis techniques. For clean

conditions, the proposed features (FDLP-Comb.) provide phoneme recognition accuracies

that are competent with other feature extraction techniques for all the phoneme classes.

In the presence of telephone noise, the FDLP-Stat. features provide significant robustness

for fricatives and nasals (which is due to modelling property of the signal peaks in static

compression) whereas the FDLP-Dyn. features provide good robustness for plosives and

affricates (where the fine temporal fluctuations like onsets and offsets carry the important

phoneme classification information). Hence, the combination of these feature streams results

in considerable improvement in performance for most of the broad phonetic classes.

5. Summary

We have proposed a feature extraction technique based on the modulation spectrum.

Sub-band temporal envelopes, estimated using FDLP, are processed by both a static and a

dynamic compression and are converted to modulation frequency features. These features

provide good robustness properties for phoneme recognition tasks in telephone speech.
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Table 1. Recognition Accuracies (%) of individual phonemes for different feature extraction tech-

niques on clean and telephone speech

Clean Speech

PLP-9 R-PLP-9 Old.-9 MRASTA ETSI-9 FDLP-Stat. FDLP-Dyn. FDLP-Comb.

64.9 61.2 60.3 63.9 63.1 63.1 59.7 65.4

Telephone Speech

PLP-9 R-PLP-9 Old.-9 MRASTA ETSI-9 FDLP-Stat. FDLP-Dyn. FDLP-Comb.

34.4 46.2 45.3 47.5 47.7 50.8 48.7 52.7
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Table 2. Recognition Accuracies (%) of broad phonetic classes obtained from confusion matrix

analysis on clean and telephone speech

Clean Speech

Class PLP-9 MRASTA FDLP-Stat. FDLP-Dyn. FDLP-Comb.

Vowel 83.3 81.9 82.7 81.3 83.8

Diphthong 75.1 73.0 70.7 67.9 74.2

Plosive 81.6 80.5 79.5 78.2 81.6

Affricative 69.1 68.8 64.6 62.5 69.9

Fricative 81.8 80.1 80.0 77.8 81.9

Semi Vowel 72.2 71.6 70.7 69.5 73.5

Nasal 80.4 79.2 80.8 77.7 82.4

Telephone Speech

Class PLP-9 MRASTA FDLP-Stat. FDLP-Dyn. FDLP-Comb.

Vowel 61.1 74.2 77.5 77.6 79.8

Diphthong 51.1 68.2 63.4 61.7 67.2

Plosive 46.9 52.5 56.1 59.0 59.0

Affricative 28.0 38.5 35.7 36.9 39.8

Fricative 63.3 70.7 78.5 74.0 79.4

Semi Vowel 55.8 61.3 60.5 60.7 63.8

Nasal 35.4 57.7 66.6 64.9 68.7
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List of figures

1 Block schematic for the sub-band feature extraction - The steps involved are

critical band decomposition, estimation of sub-band envelopes using FDLP,

static and adaptive compression, and conversion to modulation frequency

components by the application of cosine transform.

2 Static and dynamic compression of the temporal envelopes: (a) a portion

of 1000 ms of full-band speech signal, (b) the temporal envelope extracted

using the Hilbert transform, (c) the FDLP envelope, which is an all-pole

approximation to (b) estimated using FDLP, (d) logarithmic compression of

the FDLP envelope and (e) adaptive compression of the FDLP envelope.
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