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Abstract. A major component in the development of any speech recog-
nition system is the decoder. As task complexities and, consequently,
system complexities have continued to increase the decoding problem
has become an increasingly significant component in the overall speech
recognition system development effort, with efficient decoder design con-
tributing to significantly improve the trade-off between decoding time
and search errors. In this paper we present the“Juicer”(from transducer)
large vocabulary continuous speech recognition (LVCSR) decoder based
on weighted finite-State transducer (WFST). We begin with a discussion
of the need for open source, state-of-the-art decoding software in LVCSR
research and how this lead to the development of Juicer, followed by a
brief overview of decoding techniques and major issues in decoder de-
sign. We present Juicer and its major features, emphasising its potential
not only as a critical component in the development of LVCSR systems,
but also as an important research tool in itself, being based around the
flexible WFST paradigm. We also provide results of benchmarking tests
that have been carried out to date, demonstrating that in many respects
Juicer, while still in its early development, is already achieving state-
of-the-art. These benchmarking tests serve to not only demonstrate the
utility of Juicer in its present state, but are also being used to guide
future development, hence, we conclude with a brief discussion of some
of the extensions that are currently under way or being considered for
Juicer.

1 Introduction

Speech recognition technology draws on a number of sources of knowledge and
integrates these in the speech decoder to estimate the most likely word sequence
from the given acoustical evidence. Typically these knowledge sources are repre-
sented in the form of hidden Markov models (HMM), pronunciation lexica, and
N-gram language models. The means for combining these knowledge sources and
efficient decoding of the acoustic input is a demanding task and a range of opti-
misation techniques and heuristics are employed to achieve lower computational
and memory requirements with minimal sacrifice to recognition accuracy [1]. In
this paper we present the “Juicer” decoding software that has been developed at
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IDIAP. The decoder is based on weighted finite-state transducer (WFST) theory,
permitting simple decoder design through the efficient composition of a static
decoding network.

We begin the paper with a short preamble, presenting our motivation for
developing the Juicer decoder, followed in Section 3 by a brief overview of decoder
technology and the primary design considerations, thus leading to Section 4 in
which we present the Juicer system. In Section 5 we then follow-up with some
preliminary benchmarking tests that have been carried out to date and in Section
6 an overview of future development directions for Juicer. Section 7 gives some
brief concluding remarks concerning the material presented.

2 Why another speech decoder?

Over the years many decoding software packages employing a number of different
decoding strategies and sporting varying capabilities have been made available
to the research community and public at large, often in open source form. To
name a few, there is HVite as part of HTK [4], Sphinx [10], NOWAY [7] not
to forget IDIAP’s own earlier effort, TODE [14]. One feature that all these
decoders have in common is that they employ the acoustic, phonetic, lexical and
linguistic knowledge sources in a manner that is hard-wired into the decoder
architecture, thus making modifications to the decoder non-trivial. This can
make the incorporation of new research into the decoder a significant undertaking
(and possibly even infeasible for a given decoder architecture) and, as a result
of this, it means that advancements to the state-of-the-art in speech recognition
are often not included in the decoder and are rather used for rescoring decoder
output, where their impact is likely to be more limited.

Not all decoder architectures suffer from such limitations. In recent years con-
siderable effort has been invested in the development of more flexible decoder
architectures based upon the theory of weighted finite-state transducers [13, 2]
in which the decoding network is compiled independently of the decoder, thus
enabling a more flexible approach to the incorporation of the various speech
recognition knowledge sources. This approach also has some significant draw-
backs, in particular, the memory demands for the compilation of static decoding
networks for LVCSR systems can quickly grow beyond the capabilities of most
machines, but efforts have also been made to alleviate this problem [9, 2]. While
there has been significant efforts made towards developing decoder technology
based upon WFST, unfortunately for the research community, to the best of our
knowledge the availability of a state-of-the-art, open source decoder based upon
WFST is yet to be realised.

There are many research groups around the world that are conducting signif-
icant research in LVCSR, many using their own in house recognition engine or
relying on cooperation with industry for their decoder technology. In the present
research environment, with many institutions and companies partnering up in
European and international projects such as AMI and DARPA GALE, there is
an increasing motivation for using systems and technologies that can be easily
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integrated and compared. In this respect there are no ‘standard’ recognition sys-
tem configurations and file formats, but maintaining compatibility with widely
accepted technologies, using modular system and software design and using open
source distribution framework can help engender collaborative speech recogni-
tion research environments.

Thus far, we have identified key motivating factors for the development of new
speech decoding software. In the remaining sections we present a brief overview
of speech decoding technology and, more specifically, the Juicer decoder which
was developed in response to these factors.

3 LVCSR speech decoding

3.1 The decoding problem

Simply stated, the decoding problem in speech recognition is to find the most
likely word sequence, Wn

1 = w1, w2, . . . , wn, given a sequence of acoustic obser-
vation vectors, OT

1 = o1, o2, . . . , oT , derived from the speech signal. This can be
expressed by the equation:
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where Wn
1 sequence of words from a vocabulary of size NW , and ST

1 is any state
sequence of length T .

Thus, our knowledge sources are incorporated into the decoder architecture
by way of an hierarchical organisation:

– P (Wn
1 ) comprises the language model (LM) which represents our prior lin-

guistic knowledge independently of the observed acoustic information. Typ-
ically, language modelling is carried out using stochastic N-gram in which
word probabilities are only dependent on the N − 1 predecessors:

– P (OT
1 |W

n
1 ) represents our model of the lexical, phonetic, and acoustic knowl-

edge:
• The lexical knowledge comprises the known words along with their pro-

nunciation. Multiple pronunciations may be included, possibly with a
prior probability for each pronunciation variant.

• The phonetic knowledge describes the fundamental units in the pro-
nunciation lexicon. These units are usually modelled in the context of
their neighbours to account for the systematic, contextual variation that
occurs in naturally spoken speech, even across word boundaries.

• Acoustic knowledge is represented by way of the state emission prob-
ability density functions associated with each state of each context-
dependent phoneme. In practice, various parameter tying schemes are
used in emission PDF estimation to improve model of robustness.
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A complete search of the solution space is practically infeasible, hence, a
number of approaches have been developed to solve the decoding problem in
a tractable fashion. One such approach is the time-synchronous search, which
under the Viterbi criterion approximates the solution to Equation 2 by only
searching for the most probable state sequence:

Ŵ ≈ arg max
W n
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n
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}

(3)

Thus, decoding involves the time-synchronous search of a network of hy-
potheses, where at each time step only the best hypothesis arriving at each state
is retained. To further improve efficiency only the most likely hypotheses are
extended to the next time step. Such hypothesis pruning can greatly improve
efficiency, but at the cost of possibly introducing search errors. Two common
pruning approaches are beam search pruning, in which hypotheses with likeli-
hood scores falling more than a fixed amount below the highest scoring path are
disregarded; and histogram pruning in which an upper threshold on the maxi-
mal number of active hypotheses at any time step is enforced, once again the
hypotheses below this threshold being discarded [17]. It is worth observing that
different decoding architectures tend to lend themselves to more or less effective
pruning, thus making pruning an important feature in decoder design.

Another issue in decoder design is the expansion of the network which dic-
tates the allowable hypothesis extensions, st → st+1. This can either be carried
out statically or dynamically at run-time. Static network expansion offers sev-
eral advantages, in particular, the full optimisation of the decoding network and
decoupling of the network expansion and decoder, but there are significant chal-
lenges in developing network expansion strategies that are not prohibitively de-
manding on memory resources. Converse to static network expansion, dynamic
network expansion forms an integral part of the speech decoder, enabling the
handling of large scale decoding tasks as the decoding network is only ever par-
tially expanded. A consequence of this is the need to incorporate a number of
sub-optimal network composition techniques that can be applied on-the-fly [17,
1]. This requires the integration of network expansion and decoder, leading to
a more complex and less flexible design. A compromise to these two extremes,
involving a hybrid of these two extremes, is also possible.

There is a great deal of literature available detailing the various decoding
approaches and their key attributes, interested readers are referred to [1] which
gives a comprehensive overview of the major decoding strategies and further
references to prominent articles in the field.

3.2 WFST and speech decoding

While the use of static networks in speech decoding is far from being a new idea,
the explicit use of weighted finite-state transducers is relatively recent. Pioneered
by Mohri and others at AT&T [11], the key advantage behind the use of WFSTs
for speech decoding is that it enables the integration and optimisation of all
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knowledge sources within the same generic representation. This provides a more
efficient framework for carrying out speech recognition and also enables greater
ease for the integration of new knowledge sources in various stages of the system
hierarchy. In this section we briefly describe the key features of WFST theory
and its application to speech decoding.

Overview of WFST

A weighted finite-state transducer is a finite-state automaton with state tran-
sitions labelled with input and output symbols and each transition having an
associated weighting. Sequences of input symbols are thus mapped to sequence
of output symbols with a weighting value which is calculated over all valid paths
through the transducer, where each path weight is a function of all the state-
transition weights associated with that path. An example of a simple WFST is
shown in Figure 1. WFST algorithms comprise a number of fundamental oper-
ations for composition and optimisation, which are briefly summarised below.
Further details of the algebraic notation and algorithms for WFST can be found
in [13, 11].

Composition Composition is used to combine transducers of different levels of
representation. The operation C = A ◦ B specifies the composition of two
transducers A and B with input/output symbols x/y and y/z, respectively,
into a single transducer, C, with input/output symbols x/z and weights
calculated to give the same weighting to all possible input/output sequences
as the original separate transducers.

Determinization A transducer is deterministic if and only if each of it’s states
has at most one transition for any given input label and there are no epsilon

input labels3. Determinization, denoted det(C), serves to reduce redundancy
in the network thus reducing the time taken to match paths with input
sequences.

Minimisation A minimised automata, D = min(C), is equivalent to automata
C and has the least number of states and the least number of transitions
among all deterministic automata equivalent to C. As the weighting of tran-
sitions tends to result in all transitions being distinct classical minimisa-
tion techniques tend to be ineffective. In order to alleviate this problem the
WFST network first undergoes weight pushing in which all transitions in the
transducer are reweighted to facilitate minimisation. Typically this involves
a shifting of transition weights to the beginning of the network, but there
is no overall effect on the total weights associated with paths through the
network.

3 epsilon (ǫ) labels consume no input or produce no output.
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Fig. 1. An example of a simple WFST: one path through the network would have input
label sequence abcd, output label sequence XY ZW and weight f(0.1, 0.2, 0.5, 0.1)

Application to LVCSR

The application of WFST in LVCSR requires the representation of each of
the knowledge sources as weighted finite state automata, which subsequently
undergo composition and can then be optimised using the determinization and
minimisation to produce a compact and efficient decoding network, as previ-
ously described. Typically, separate transducers are constructed for the N-gram
language model, G, the lexicon, L, and the context dependency expansion, C.
Though not currently supported in Juicer, HMM state level topology, H, and
phonological information, P , can also be incorporated into the network structure:

N = H ◦ C ◦ P ◦ L ◦ G (4)

In order to ensure that the entire transducer can be determinized it is necessary
to undertake some additional steps:

1. In order to make the lexicon and grammar composition L◦G determinizable,
the addition of an auxiliary phone symbol marking word endings in the
lexicon is necessary, giving L̃. This auxiliary symbol must then be repeated
in the transducers below lexical level (eg. C̃, P̃ and H̃) which at completion
of determinization/minimisation undergo an erasing operation, πǫ, which
replaces the auxiliary symbols with ǫ-labels.

2. Similarly, the context dependency transducer is generally not deterministic
as there may be multiple state transitions with the same input symbol (rep-
resenting the different contexts in which that symbol can occur). Building of
a compact context dependency transducer can be achieved by creating the
inverse of the context dependency transducer, which can be simply deter-
minized and then inverting the resultant transducer.

Thus, the composition and optimisation of the entire static network can be
expressed as follows:

N = πǫ(min(det(H̃ ◦ det(C̃ ◦ det(P̃ ◦ det(L̃ ◦ G)))))) (5)

Further to this, additional steps may need to be taken when dealing with large
vocabularies, NW & 50k, and long span language models, N ≥ 3. Several ap-
proaches to this end have been investigated by researchers, including language
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model pruning, finite-state language model approximation, “on-the-fly” compo-
sition techniques and dynamic transducer composition, similar to that employed
in traditional dynamic network generation based decoders, though still employ-
ing the general WFST framework. These issues will be further touched upon in
the benchmarking and future development sections in this paper.

4 An overview of Juicer

The Juicer decoder uses a time-synchronous Viterbi search based on the token-
passing algorithm with beam-search and histogram pruning, as previously de-
scribed in this paper. At run time the decoder dynamically expands the model-
level transducer network into a state-level network that is suitable for finding the
best state-level path subject to knowledge source constraints, hence, optimisa-
tion is not yet carried out to take advantage of further state-level redundancies
arising from HMM parameter sharing. The package consists of a number of com-
mand line utilities in addition to the Juicer decoder itself; more specifically, a
number of tools are provided for the generation, composition and optimisation of
the ASR knowledge sources (language model, pronunciation dictionary, acoustic
models) into a single WFST that is input to the decoder. For the composition
and optimisation of WFST resources Juicer relies on the functionality of the
AT&T Finite State Machine Library [12] and/or MIT FST toolkit [6]. Figure 2
illustrates the modular organisation of the Juicer utilities.

The major features of Juicer and its utilities are summarised as follows;
further details can be found in the user manual [15]:

– juicer: decoding search engine
• Flexible WFST-based Viterbi decoder (decoding network fully indepen-

dent of decoding engine implementation)
• Beam-search (global, model-end) and histogram pruning
• Lattice generation in AT&T FSM format
• Word-level or model-level output with timing information

– gramgen: language model WFST generation
• Simple word-loop with start/end silence
• ARPA Naval Resource Management style word-pair grammar
• ARPA MIT-LL text format N-gram (arbitrary N, subject to memory

limitations)
– lexgen: dictionary WFST generation

• Multiple pronunciations, with optional pronunciation probabilities
• Tee models are handled via optional silence/short pause in the dictionary

– cdgen: acoustic model/context dependency WFST generation
• Monophone, word-internal n-phones (tri/quin/...), cross-word triphones
• HTK MMF file format support
• Hybrid HMM/ANN decoding supported (using LNA-format posterior

files)
– build-wfst: WFST composition and optimisation

• Calls to AT&T and MIT FST routines
• Supports optional determinization and minimisation of the final trans-

ducer (the most memory demanding step)
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Fig. 2. High level architecture of the Juicer decoding package.

5 Benchmarking experiments

Benchmarking of Juicer was carried out with two main aims; the first was to
assess its performance purely from the word error rate versus pruning efficiency
standpoint, and the second was to investigate its capabilities in the context of a
very large vocabulary task with long span language models in which the size of
the network was going to be a limiting factor.

For the first step of experiments, a system developed using the WSJ1 contin-
uous speech recognition corpus [16]. Three-state, cross-word triphone, decision
tree state-clustered CDHMM models were trained using HTK on the “si tr s”
set of 38,275 utterances. Models were trained from 39 dimensional MF-PLPs
including delta and delta-delta features, with speaker side-based cepstral mean
and variance normalisation. The pronunciation dictionary was based off that
used for AMI RT05s system [5]. The standard MIT bigram and trigram backed-
off language models were used with the 20k development test set “si dt 20” from
WSJ1 database, consisting of 503 utterances. Figure 3 shows the results for the
various systems tested.

We can see that HDecode is achieving better performance in terms of beam-
width versus word-error rate, but quickly converge within a fraction percent by a
beam width of 200. We postulate that this result derives from HDecode’s use of
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Fig. 3. Results for WSJ 20k task, showing WER versus main beam-width. Sizes of
trigram transducer with Juicer (thousands of arcs): C = 9929, L = 50, G = 15619 and
C ◦ L ◦ G = 33378

multiple tokens per state,4 which can be beneficial to performance by enabling
the generation of more active hypothesis for the given beam width. A comparison
of real-time factors could also give more insight into the differences between the
two decoders, but remained outside the scope of our initial benchmarking tests
as decoding experiments were conducted at different sites.

For the second set of experiments the AMI RT05s system was used. First-
pass decoding in this system uses three-state cross-word triphone models and
50k lexicon with backed-off trigram language model comprising some 29 million
bigrams and 40 million trigrams, ensuring that static composition of these re-
sources was going to be a formidable task. In order to compare the practicality
of constructing a decoding network for such a system, pruned versions of the
AMI language model were produced and compiled along side the full LM. Table
1 shows the outcome of the composition experiments.

We see that the size of the network grows significantly with more relaxed
pruning, and in the unpruned case the final composition stage failed! In light
of the size of the language model transducer this was not at all surprising and
this behaviour has also been reflected in the use of relatively aggressively pruned
language models in some of the published literature [13]. Despite this, we were
interested in evaluating the performance of Juicer against HDecode on the RT05s

4 We were unable to disable this functionality.
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Language FSM Number of arcs (thousands) Time
Model Software G L C L ◦ G C ◦ L ◦ G (hrs)

Pruned-08 AT&T + MIT 4,145 127 1,065 7,008 14,945 0:30
Pruned-09 MIT 13,692 127 1,065 23,160 50,654 1:44
Pruned-10 MIT 35,895 127 1,065 59,626 120,060 5:38
Unpruned MIT 98,288 127 1,065 DNF DNF 10:33

Table 1. Network composition experiments for AMI RT05s system. DNF – did not
finish. Pruned-XX – language model pruning factor XX, where all N-grams are pruned
that reduce language model perplexity on the training data by less than 10−XX relative.
The AT&T toolkit could only be used for the smallest language model as the library
is not available with a 64-bit compilation.

recognition task using a heavily pruned LM. The results are shown in Table 2.
We see that despite the heavy pruning of the LM (in fact, this LM is more
heavily pruned than all those shown in Table 1) the results are still resectable,
with only 5% relative increase in WER. Future benchmarking experiments will
look into profiling the relationship between WER and language model pruning,
including the effect that this has on decoding speed and lattice generation and
rescoring accuracy.

System TOT Sub Del Ins

P1.HDecode 41.1 21.1 14.7 5.3
P1.Juicer 43.5 23.0 13.7 6.8
P2.HDecode 33.1 15.9 13.4 3.9
P2.Juicer 34.5 16.9 13.6 4.0

Table 2. % WER results on RT05s individual headset microphone task for HDecode
(full LM) and Juicer (Pruned-07 LM). The P1 system uses ML trained models, the P2
system includes VTLN, MPE trained models, and HSLDA feature transform. Further
details of the evaluation system can be found in [5]

6 Future development

The results of early benchmarking experiments indicate that Juicer is currently
severely hampered when used for large vocabulary tasks with large, high-order
N-gram language models. Hence, a priority of future development is to extend
its ability with higher-order language models, however, the problem of meeting
memory requirement of such tasks through the brute force approach is seemingly
unsurmountable. This is a consequence of the fact that, during composition, the
size of the resultant transducer can be as big as the product of its constituents
[8]. As we have demonstrated, for cases of higher-order language models, the
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composition algorithm, as well as the following optimisation procedure, can easily
fail due to lack of memory. Even if the final transducer could be successfully
generated, the size may still be too large for decoding to be carried out on a
conventional PC.

One of the possible solutions to this problem is to perform on-the-fly trans-
ducer composition during decoding. Acoustical, phonetic and lexical resources
may still be composed and optimised off-line, while the language model trans-
ducer is locally, dynamically composed at run time [3, 18, 8]. By using this ap-
proach, we can avoid composing part of the search space which is not traversed
by any hypotheses. In addition, the total size of the constituent transducers
will be much smaller than the integrated transducer. This approach carries cer-
tain disadvantages in terms of introducing extra overheads during decoding and
transducer optimisation operations can not be performed on the full transducer
possibly leading to sacrifice to performance.

Future development of Juicer will aim to assess dynamic transducer com-
position along side alternative schemes, including the investigation of improved
static composition techniques developed as part of the FSA toolkit, which have
been demonstrated to achieve much more memory efficient composition [9] and
multiple-pass decoding strategies that enable more sparse language models to
be used on the first pass. Furthermore, the implementation of on-the-fly trans-
ducer composition still permits a flexible decoder architecture and need not be
necessary in all applications.

7 Concluding remarks

In this paper we have presented the Juicer speech recognition decoder devel-
oped at IDIAP. The decoder employs a statically built decoding network based
upon weighted finite-state transducer theory. In benchmarking experiments we
have demonstrated some of the capabilities of the decoder, in particular, we have
shown that on a medium vocabulary task performance with HDecode compares
favourably with moderate to wide pruning settings, while on a large vocabulary
task some of the drawbacks of the current system were identified, although in
spite of this, respectable WER was still able to be achieved. We have also de-
scribed some of our future plans for Juicer development, more specifically, those
aimed at addressing the issues raised during benchmarking. Presently, the Juicer
decoder and utilities, including source code, are only available to AMI partners,
but we envisage that the decoder and utilities will soon be made available to the
wider research community.
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