
A Distance Model for Rhythms

Jean-Francois Paiement paiement@idiap.ch

Yves Grandvalet Yves.Grandvalet@utc.fr

IDIAP Research Institute, Case Postale 592, CH-1920 Martigny, Switzerland

Samy Bengio bengio@google.com

Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

Douglas Eck douglas.eck@umontreal.ca
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Abstract

Modeling long-term dependencies in time se-
ries has proved very difficult to achieve with
traditional machine learning methods. This
problem occurs when considering music data.
In this paper, we introduce a model for
rhythms based on the distributions of dis-
tances between subsequences. A specific im-
plementation of the model when consider-
ing Hamming distances over a simple rhythm
representation is described. The proposed
model consistently outperforms a standard
Hidden Markov Model in terms of conditional
prediction accuracy on two different music
databases.

1. Introduction

Reliable models for music would be useful in a broad
range of applications, from contextual music genera-
tion to on-line music recommendation and retrieval.
However, modeling music involves capturing long-term
dependencies in time series, which has proved very dif-
ficult to achieve with traditional statistical methods.
Note that the problem of long-term dependencies is
not limited to music, nor to one particular probabilis-
tic model (Bengio et al., 1994).

Music is characterized by strong hierarchical depen-
dencies determined in large part by meter, the sense
of strong and weak beats that arises from the inter-
action among hierarchical levels of sequences having
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nested periodic components. Such a hierarchy is im-
plied in western music notation, where different levels
are indicated by kinds of notes (whole notes, half notes,
quarter notes, etc.) and where bars establish measures
of an equal number of beats. Meter and rhythm pro-
vide a framework for developing musical melody. For
example, a long melody is often composed by repeating
with variation shorter sequences that fit into the met-
rical hierarchy (e.g. sequences of 4, 8 or 16 measures).
It is well know in music theory that distance patterns
are more important than the actual choice of notes in
order to create coherent music (Handel, 1993). In this
work, distance patterns refer to distances between sub-
sequences of equal length in particular positions. For
instance, measure 1 may be always similar to measure
5 in a particular musical genre. In fact, even random
music can sound structured and melodic if it is built by
repeating random subsequences with slight variation.

Many algorithms have been proposed for audio beat
tracking (Dixon, 2007; Scheirer, 1998). Probabilistic
models have also been proposed for tempo tracking
and inference of rhythmic structure in musical audio
(Whiteley et al., 2007; Cemgil & Kappen, 2002). The
goal of these models is to align rhythm events with
the metrical structure. However, simple Markovian as-
sumptions are used to model the transitions between
rhythms themselves. Hence, these models do not take
into account long-term dependencies. A few generative
models have already been proposed for music in gen-
eral (Pachet, 2003; Dubnov et al., 2003). While these
models generate impressive musical results, we are not
aware of quantitative comparisons between models of
music with machine learning standards, as it is done
in Section 3 in terms of out-of-sample prediction ac-
curacy. In this paper, we focus on modeling rhyth-
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mic sequences, ignoring for the moment other aspects
of music such as pitch, timbre and dynamics. How-
ever, by capturing aspects of global temporal struc-
ture in music, this model should be valuable for full
melodic prediction and generation: combined with an
audio transcription algorithm, it should help improve
the poor performance of state-of-the-art transcription
systems; it could as well be included in genre classifiers
or automatic composition systems (Eck & Schmidhu-
ber, 2002); used to generate rhythms, the model could
act as a drum machine or automatic accompaniment
system which learns by example.

Our main contribution is to propose a generative
model for distance patterns, specifically designed for
capturing long-term dependencies in rhythms. In Sec-
tion 2, we describe the model, detail its implemen-
tation and present an algorithm using this model for
rhythm prediction. The algorithm solves a constrained
optimization problem, where the distance model is
used to filter out rhythms that do not comply with
the inferred structure. The proposed model is evalu-
ated in terms of conditional prediction error on two
distinct databases in Section 3 and a discussion fol-
lows.

2. Distance Model

In this Section, we present a generative model for
distance patterns and its application to rhythm se-
quences. Such a model is appropriate for most music
data, where distances between subsequences of data
exhibit strong regularities.

2.1. Motivation

Let xl = (xl
1, . . . , x

l
m) ∈ R

m be the l-th rhythm se-
quence in a dataset X = {x1, . . . ,xn} where all the
sequences contain m elements. Suppose that we con-
struct a partition of this sequence by dividing it into
ρ parts defined by yl

i = (xl
1+(i−1)m/ρ, . . . , x

l
im/ρ) with

i ∈ {1, . . . , ρ}. We are interested in modeling the dis-
tances between these subsequences, given a suitable
metric d(yi, yj) : R

m/ρ × R
m/ρ → R. As was pointed

out in Section 1, the distribution of d(yi, yj) for each
specific choice of i and j may be more important when
modeling rhythms (and music in general) than the ac-
tual choice of subsequences yi.

Hidden Markov Models (HMM) (Rabiner, 1989) are
commonly used to model temporal data. In princi-
ple, an HMM is able to capture complex regularities
in patterns between subsequences of data, provided
its number of hidden states is large enough. However,
when dealing with music, such a model would lead to

a learning process requiring a prohibitive amount of
data: in order to learn long range interactions, the
training set should be representative of the joint dis-
tribution of subsequences. To overcome this problem,
we summarize the joint distribution of subsequences
by the distribution of distances between these sub-
sequences. This summary is clearly not a sufficient
statistics for the distribution of subsequences, but its
distribution can be learned from a limited number of
examples. The resulting model, which generates dis-
tances, is then used to recover subsequences.

2.2. Decomposition of Distances

Let D(xl) = (dl
i,j)ρ×ρ be the distance matrix asso-

ciated with each sequence xl, where dl
i,j = d(yl

i, y
l
j).

Since D(xl) is symmetric and contains only zeros on
the diagonal, it is completely characterized by the up-
per triangular matrix of distances without the diago-
nal. Hence,

p(D(xl)) =

ρ−1
∏

i=1

ρ
∏

j=i+1

p(dl
i,j |Sl,i,j) (1)

where

Sl,i,j = {dl
r,s| (1 < s < j and 1 ≤ r < s)
or (s = j and 1 ≤ r < i)} .

(2)

In words, we order the elements column-wise and do
a standard factorization, where each random variable
depends on the previous elements in the ordering.
Hence, we do not assume any conditional indepen-
dence between the distances.

Since d(yi, yj) is a metric, we have that d(yi, yj) ≤
d(yi, yk) + d(yk, yj) for all i, j, k ∈ {1, . . . , ρ}. This in-
equality is usually referred to as the triangle inequality.
Defining

αl
i,j = min

k∈{1,...,(i−1)}
(dl

k,j + dl
i,k) and

βl
i,j = max

k∈{1,...,(i−1)}
(|dl

k,j − dl
i,k|) ,

(3)

we know that given previously observed (or sampled)
distances, constraints imposed by the triangle inequal-
ity on dl

i,j are simply

βl
i,j ≤ dl

i,j ≤ αl
i,j . (4)

One may observe that the boundaries given in Eq. (3)
contain a subset of the distances that are on the con-
ditioning side of each factor in Eq. (1) for each indexes
i and j. Thus, constraints imposed by the triangle in-
equality can be taken into account when modeling each
factor of p(D(xl)): each dl

i,j must lie in the interval im-
posed by previously observed/sampled distances given
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in Eq. (4). Figure 1 shows an example where ρ = 4.
Using Eq. (1), the distribution of dl

2,4 would be condi-

tioned on dl
1,2, d

l
1,3, d

l
2,3, and dl

1,4, and Eq. (4) reads

|dl
1,2−d

l
1,4| ≤ dl

2,4 ≤ dl
1,2 +dl

1,4. Then, if subsequences

yl
1 and yl

2 are close and yl
1 and yl

4 are also close, we
know that yl

2 and yl
4 cannot be far. Conversely, if sub-

sequences yl
1 and yl

2 are far and yl
1 and yl

4 are close,
we know that yl

2 and yl
4 cannot be close.

Figure 1. Each circle represents the random variable asso-
ciated with the corresponding factor in Eq. (1), when ρ = 4.
For instance, the conditional distribution for dl

2,4 possibly
depends on the variables associated to the grey circles.

2.3. Modeling Relative Distances Between

Rhythms

We want to model rhythms in a music dataset X con-
sisting of melodies of the same musical genre. We
first quantize the database by segmenting each song
in m time steps and associate each note to the near-
est time step, such that all melodies have the same
length m1. It is then possible to represent rhythms by
sequences containing potentially three different sym-
bols: 1) Note onset, 2) Note continuation, and 3) Si-
lence. When using quantization, there is a one to one
mapping between this representation and the set of all
possible rhythms. Using this representation, symbol 2
can never follow symbol 3. Let A = {1, 2, 3}; in the
remaining of this paper, we assume that xl ∈ Am for
all xl ∈ X .

When using this representation, dl
i,j can simply be cho-

sen to be the Hamming distance (i.e. counting the
number of positions on which corresponding symbols
are different.) One could think of using more gen-

1This hypothesis is not fundamental in the proposed
model and could easily be avoided if one would have to
deal with more general datasets.

eral edit distance such as the Levenshtein distance.
However, this approach would not make sense psycho-
acoustically: doing an insertion or a deletion in a
rhythm produces a translation that alters dramatically
the nature of the sequence. Putting it another way,
rhythm perception heavily depends on the position on
which rhythmic events occur. In the remainder of this
paper, dl

i,j is the Hamming distance between subse-
quences yi and yj .

We now have to encode our belief that melodies of the
same musical genre have a common distance structure.
For instance, drum beats in rock music can be very
repetitive, except in the endings of every four mea-
sures, without regard to the actual beats being played.
This should be accounted for in the distributions of
the corresponding dl

i,j . With Hamming distances, the

conditional distributions of dl
i,j in Eq. (1) should be

modeled by discrete distributions, whose range of pos-
sible values must obey Eq. (4). Hence, we assume that
the random variables (dl

i,j − βl
i,j)/(α

l
i,j − βl

i,j) should
be identically distributed for l = 1, . . . , n. As an ex-
ample, suppose that measures 1 and 4 always tend to
be far away, that measures 1 and 3 are close, and that
measures 3 and 4 are close; Triangle inequality states
that 1 and 4 should be close in this case, but the de-
sired model would still favor a solution with the great-
est distance possible within the constrains imposed by
triangle inequalities.

All these requirements are fulfilled if we model di,j −
βi,j by a binomial distribution of parameters (αi,j −
βi,j , pi,j), where pi,j is the probability that two sym-
bols of subsequences yi and yj differ. With this choice,
the conditional probability of getting di,j = βi,j + δ
would be

B(δ, αi,j , βi,j , pi,j) =
(

αi,j − βi,j

δ

)

(pi,j)
δ(1 − pi,j)

(αi,j−βi,j−δ) ,
(5)

with 0 ≤ pi,j ≤ 1. If pi,j is close to zero/one, the
relative distance between subsequences yi and yj is
small/large. However, the binomial distribution is not
flexible enough since there is no indication that the
distribution of di,j − βi,j is unimodal. We thus model
each di,j −βi,j with a binomial mixture distribution in
order to allow multiple modes. We thus use

p(di,j = βi,j + δ|Si,j) =
c

∑

k=1

w
(k)
i,j B(δ, αi,j , βi,j , p

(k)
i,j )

(6)

with w
(k)
i,j ≥ 0,

∑c
k=1 w

(k)
i,j = 1 for every indexes i and

j, and Si,j defined similarly as in Eq. (2). Parameters

θi,j = {w
(1)
i,j , . . . , w

(c−1)
i,j } ∪ {p

(1)
i,j , . . . , p

(c)
i,j }
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can be learned with the EM algorithm (Dempster
et al., 1977) on rhythm data for a specific music style.

In words, we model the difference between the ob-
served distance dl

i,j between two subsequences and the
minimum possible value βi,j for such a difference by a
binomial mixture.

The parameters θi,j can be initialized to arbitrary val-
ues before applying the EM algorithm. However, as
the likelihood of mixture models is not a convex func-
tion, one may get better models and speed up the
learning process by choosing sensible values for the
initial parameters. In the experiments reported in Sec-
tion 3, the k-means algorithm for clustering (Duda
et al., 2000) was used. More precisely, k-means was
used to partition the values (dl

i,j − βl
i,j)/(α

l
i,j − βl

i,j)
into c clusters corresponding to each component of the

mixture in Eq. (6). Let {µ
(1)
i,j , . . . , µ

(c)
i,j } be the cen-

troids and {n
(1)
i,j , . . . , n

(c)
i,j } the number of elements in

each of these clusters. We initialize the parameters θi,j

with

w
(k)
i,j =

n
(k)
i,j

n
and p

(k)
i,j = µ

(k)
i,j .

We then follow a standard approach (Bilmes, 1997)
to apply the EM algorithm to the binomial mixture
in Eq. (6). Let zl

i,j ∈ {1, . . . , c} be a hidden variable

telling which component density generated dl
i,j . For

every iteration of the EM algorithm, we first compute

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j) =

ψk,i,j,l
∑c

t=1 ψt,i,j,l

where θ̂i,j are the parameters estimated in the previous
iteration, or the parameters guessed with k-means on
the first iteration of EM, and

ψk,i,j,l = ŵ
(k)
i,j B(dl

i,j , α
l
i,j , β

l
i,j , p

(k)) .

Then, the parameters can be updated with

p
(k)
i,j =

∑n
l=1(d

l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)

∑n
l=1(α

l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)

and

w
(k)
i,j =

1

n

n
∑

l=1

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j).

This process is repeated until convergence.

Note that using mixture models for discrete data is
known to lead to identifiability problems. Identifiabil-
ity refers here to the uniqueness of the representation
(up to an irrelevant permutation of parameters) of any
distribution that can be modeled by a mixture.

Estimation procedures may not be well-defined and
asymptotic theory may not hold if a model is not iden-
tifiable. However, the model defined in Eq. (6) is iden-
tifiable if αi,j −βi,j > 2c−1 (Titterington et al., 1985,
p.40). While this is the case for most di,j , we observed
that this condition is sometimes violated. Whatever
happens, there is no impact on the estimation because
we only care about what happens at the distribution
level: there may be several parameters leading to the
same distribution, some components may vanish in the
fitting process, but this is easily remedied, and EM be-
haves well.

As stated in Section 1, musical patterns form hierarchi-
cal structures closely related to meter (Handel, 1993).
Thus, the distribution of p(D(xl)) can be computed
for many numbers of partitions within each rhythmic
sequence. Let P = {ρ1, . . . ρh} be a set of numbers of
partitions to be considered by our model, where h is
the number of such numbers of partitions. The choice
of P depends on the domain of application. Following
meter, P may have dyadic2 tree-like structure when
modeling music (e.g. P = {2, 4, 8, 16}). Let Dρr

(xl)
be the distance matrix associated with sequence xl di-
vided into ρr parts. Estimating the joint probability
∏h

r=1 p(Dρr
(xl)) with the EM algorithm as described

in this section leads to a model of the distance struc-
tures in music datasets. Suppose we consider 16 bars
songs with four beats per bar. Using P = {8, 16}
would mean that we consider pairs of distances be-
tween every group of two measures (ρ = 8), and every
single measures (ρ = 16).

One may argue that our proposed model for long-term
dependencies is rather unorthodox. However, simpler
models like Poisson or Bernoulli process (we are work-
ing in discrete time) defined over the whole sequence
would not be flexible enough to represent the particu-
lar long-term structures in music.

2.4. Conditional Prediction

For most music applications, it would be particularly
helpful to know which sequence x̂s, . . . , x̂m maximizes
p(x̂s, . . . , x̂m|x1, . . . , xs−1). Knowing which musical
events are the most likely given the past s − 1 obser-
vations would be useful both for prediction and gen-
eration. Note that in the remaining of the paper, we
refer to prediction of musical events given past obser-
vations only for notational simplicity. The distance
model presented in this paper could be used to predict

2Even when considering non-dyadic measures (e.g. a
three-beat waltz), the very large majority of the hierarchi-
cal levels in metric structures follow dyadic patterns (Han-
del, 1993) in most tonal music.
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any part of a music sequence given any other part with
only minor modifications.

While the described modeling approach captures long
range interactions in the music signal, it has two short-
comings. First, it does not model local dependen-
cies: it does not predict how the distances in the
smallest subsequences (i.e. with length smaller than
m/max(P)) are distributed on the events contained
in these subsequences. Second, as the mapping from
sequences to distances is many to one, there exists
several admissible sequences xl for a given set of dis-
tances. These limitations are addressed by using an-
other sequence learner designed to capture short-term
dependencies between musical events. Here, we use
a standard Hidden Markov Model (HMM) (Rabiner,
1989) displayed in Figure 2, following standard graph-
ical model formalism. Each node is associated to a
random variable and arrows denote conditional depen-
dencies. Learning the parameters of the HMM can be
done as usual with the EM algorithm.

Figure 2. Hidden Markov Model. Each node is associated
to a random variable and arrows denote conditional de-
pendencies. During training of the model, white nodes are
hidden while grey nodes are observed.

The two models are trained separately using their re-
spective version of the EM algorithm. For predicting
the continuation of new sequences, they are combined
by choosing the sequence that is most likely according
to the local HMM model, provided it is also plausible
regarding the model of long-term dependencies. Let
pHMM(xl) be the probability of observing sequence xl

estimated by the HMM after training. The final pre-
dicted sequence is the solution of the following opti-
mization problem:















max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

subject to

h
∏

r=1

p(Dρr
(xl)) ≥ P0 ,

(7)

where P0 is a threshold. In practice, one solves a La-
grangian formulation of problem (7), where we use log-

Algorithm 1 Simple optimization algorithm to max-
imize p(x̂i, . . . , x̂m|x1, . . . , xi−1)

Initialize x̂s, . . . , x̂m using Eq. (9)
Initialize end = false

while end = false do

Set end = true

for j = s to m do

Set x̂j = arg max
a∈A

[log pHMM(x∗|x1, . . . , xs−1) +

λ
∑h

r=1 log p(Dρr
(x1, . . . , xs−1,x

∗))]
where x∗ = (x̂s, . . . , x̂j−1, a, x̂j+1, . . . , x̂m)

if x̂j has been modified in the last step then

Set end = false

end if

end for

end while

Output x̂s, . . . , x̂m.

probabilities for obvious computational reasons:

maxx̃s,...,x̃m
[log pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

+λ
∑h

r=1 log p(Dρr
(xl))] ,

(8)
where tuning λ has the same effect as choosing a
threshold P0 in Eq. (7) and can be done by cross-
validation.

Multidimensional Scaling (MDS) is an algorithm that
tries to embed points (here “local” subsequences) into
a potentially lower dimensional space while trying to
be faithful to the pairwise affinities given by a “global”
distance matrix. Here, we propose to consider the pre-
diction problem as finding sequences that maximize
the likelihood of a “local” model of subsequences un-
der the constraints imposed by a “global” generative
model of distances between subsequences. In other
words, solving problem (7) is similar to finding points
between which distances are as close as possible to a
given set of distances (i.e. minimizing a stress func-
tion in MDS). Naively trying all possible subsequences
to maximize (8) leads to O(|A|(m−s+1)) computations.
Instead, we propose to search the space of sequences
using a variant of the Greedy Max Cut (GMC) method
(Rohde, 2002) that has proven to be optimal in terms
of running time and performance for binary MDS op-
timization.

The subsequence x̂s, . . . , x̂m can be simply initialized
with

(x̂s, . . . , x̂m) = max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

(9)
using the local HMM model. Then, Algorithm 1 car-
ries on complete optimization.
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For each position, we try every admissible symbol of
the alphabet and test if a change increases the proba-
bility of the sequence. We stop when no further change
can increase the value of the utility function. Obvi-
ously, many other methods could have been used to
search the space of possible sequences x̂s, . . . , x̂m, such
as simulated annealing (Kirkpatrick et al., 1983). We
chose Algorithm 1 for its simplicity and the fact that
it yields excellent results, as reported in the following
section.

3. Experiments

Two rhythm databases from different musical genres
were used to evaluate the proposed model. Firstly, 47
jazz standards melodies (Sher, 1988) were interpreted
and recorded by the first author in MIDI format. Ap-
propriate rhythmic representations as described in Sec-
tion 2.3 have been extracted from these files. The com-
plexity of the rhythm sequences found in this corpus is
representative of the complexity of common jazz and
pop music. We used the last 16 bars of each song to
train the models, with four beats per bar. Two rhyth-
mic observations were made for each beat, yielding ob-
served sequences of length 128. We also used a subset
of the Nottingham database 3 consisting of 53 tradi-
tional British folk dance tunes called “hornpipes”. In
this case, we used the first 16 bars of each song to train
the models, with four beats per bar. Three rhyth-
mic observations were made for each beat, yielding
observed sequences of length 192. The sequences from
this second database contain no silence (i.e. rests),
leading to sequences with binary states.

The goal of the proposed model is to predict or gener-
ate rhythms given previously observed rhythm pat-
terns. As pointed out in Section 1, such a model
could be particularly useful for music information re-
trieval, transcription, or music generation applica-
tions. Let εt

i = 1 if x̂t
i = xt

i, and 0 otherwise, with
xt = (xt

1, . . . , x
t
m) a test sequence, and x̂t

i the output
of the evaluated prediction model on the i-th posi-
tion when given (xt

1, . . . , x
t
s) with s < i. Assume that

the dataset is divided into K folds T1, . . . , TK (each
containing different sequences), and that the k-th fold
Tk contains nk test sequences. When using cross-
validation, the accuracy Acc of an evaluated model
is given by

Acc =
1

K

K
∑

k=1

1

nk

∑

t∈Tk

1

m− s

m
∑

i=s+1

εt
i . (10)

Note that, while the prediction accuracy is simple to

3http://www.cs.nott.ac.uk/~ef/music/database.htm.

estimate and to interpret, other performance criteria,
such as ratings provided by a panel of experts, should
be more appropriate to evaluate the relevance of music
models. We plan to define such an evaluation protocol
in future work. We used 5-fold double cross-validation
to estimate the accuracies. Double cross-validation is
a recursive application of cross-validation that enables
to jointly optimize the hyper-parameters of the model
and evaluate its generalization performance. Standard
cross-validation is applied to each subset of K−1 folds
with each hyper-parameter setting and tested with the
best estimated setting on the remaining hold-out fold.
The reported accuracies are the averages of the results
of each of the K applications of simple cross-validation
during this process.

For the baseline HMM model, double cross-validation
optimizes the number of possible states for the hidden
variables. 2 to 20 possible states were tried in the re-
ported experiments. In the case of the model with dis-
tance constraints, referred to as the global model, the
hyper-parameters that were optimized are the num-
ber of possible states for hidden variables in the local
HMM model (i.e. 2 to 20), the Lagrange multiplier
λ, the number of components c (common to all dis-
tances) for each binomial mixture, and the choice of
P, i.e. which partitions of the sequences to consider.
Values of λ ranging between 0.1 and 4 and values of
c ranging between 2 and 5 were tried during double
cross-validation. Since music data commonly shows
strong dyadic structure following meter, many subsets
of P = {2, 4, 8, 16} were allowed during double cross-
validation.

Note that the baseline HMM model is a poor bench-
mark on this task, since the predicted sequence, when
prediction consists in choosing the most probable sub-
sequence given previous observations, only depends on
the state of the hidden variable in position s, where s
is the index of the last observation. This observation
implies that the number of possible states for the hid-
den variables of the HMM upper-bounds the number of
different sequences that the HMM can predict. How-
ever, this behavior of the HMM does not harm the
validity of the reported experiments. The main goal
of this quantitative study is to measure to what extent
distance patterns are present in music data and how
well these dependencies can be captured by the pro-
posed model. What we really want to measure is how
much gain we observe in terms of out-of-sample predic-
tion accuracy when using an arbitrary model if we im-
pose additional constraints based on distance patterns.
That being said, it would be interesting to measure the
effect of appending distance constraints to more com-
plex music prediction models (Pachet, 2003; Dubnov
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Table 1. Accuracy (the higher the better) for best models
on the jazz standards database.

Observed Predicted HMM Global

32 96 34.5% 54.6%

64 64 34.5% 55.6%

96 32 41.6% 47.2%

Table 2. Accuracy (the higher the better) for best models
on the hornpipes database.

Observed Predicted HMM Global

48 144 75.1% 83.0%

96 96 75.6% 82.1%

144 48 76.6% 80.1%

et al., 2003) in future work.

Results in Table 1 for the jazz standards database
show that considering distance patterns significantly
improves the HMM model. One can observe that the
baseline HMM model performs much better when try-
ing to predict the last 32 symbols. This is due to the
fact that this database contains song endings. Such
endings contain many silences and, in terms of accu-
racy, a useless model predicting silence at any position
performs already well. On the other hand, the end-
ings are generally different from the rest of the rhythm
structures, thus harming the performance of the global
model when just trying to predict the last 32 symbols.
Results in Table 2 for the hornpipes database again

show that the prediction accuracy of the global model
is consistently better than the prediction accuracy of
the HMM, but the difference is less marked. This is
mainly due to the fact that this dataset only contains
two symbols, associated to note onset and note con-
tinuation. Moreover, the frequency of these symbols is
quite unbalanced, making the HMM model much more
accurate when almost always predicting the most com-
mon symbol.

In Table 3, the set of partitions P is not optimized
by double cross-validation. Results are shown for dif-
ferent fixed sets of partitions. The best results are
reached with “deeper” dyadic structure. This is a good
indication that the basic hypothesis underlying the
proposed model is well-suited to music data, namely
that dyadic distance patterns exhibit strong regulari-
ties in music data. We did not compute accuracies for
ρ > 16 because it makes no sense to estimate distribu-
tion of distances between too short subsequences.

Table 3. Accuracy over the last 64 positions for many sets
of partitions P on the jazz database, given the first 64
observations. The higher the better.

P Global

{2} 49.3%

{2, 4} 49.3%

{2, 4, 8} 51.4%

{2, 4, 8, 16} 55.6%

4. Conclusion

The main contribution of this paper is the design
and evaluation of a generative model for distance pat-
terns in temporal data. The model is specifically
well-suited to music data, which exhibits strong reg-
ularities in dyadic distance patterns between subse-
quences. Reported conditional prediction accuracies
show that such regularities are present in music data
and can be effectively captured by the proposed model.
Moreover, learning distributions of distances between
subsequences really helps for accurate rhythm predic-
tion. Rhythm prediction can be seen as the first step
towards full melodic prediction and generation. A
promising approach would be to apply the proposed
model to melody prediction. It could also be read-
ily used to increase the performance of transcription
algorithms, genre classifiers, or even automatic com-
position systems.

The choice of the HMM to initialize the model is not
optimal. However, this has no impact on the validity
of the reported results, since our goal was to show the
importance of distance patterns between subsequences
in rhythm data. In order to sample to models to gen-
erate subjectively good results (Pachet, 2003; Dubnov
et al., 2003), one could use other benchmark and ini-
tialization techniques, such as repetition of common
patterns.

Finally, besides being fundamental in music, modeling
distance between subsequences should also be useful in
other application domains, such as in natural language
processing. Being able to characterize and constrain
the relative distances between various parts of a se-
quence of bags-of-concepts could be an efficient means
to improve performance of automatic systems such as
machine translation (Och & Ney, 2004). On a more
general level, learning constraints related to distances
between subsequences can boost the performance of
”short memory” models such as the HMM.
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