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Abstract— This paper introduces a novel contextual model for
the recognition of people’s visual focus of attention (VFOA)
estimation in meetings from audio-visual perceptual cues. More
specifically, instead of independently recognizing the VFOA of
each meeting participant from his own head pose, we propose
to jointly recognize the participants’ visual attention in order
to introduce context dependent interaction models that relates
to group activity and the social dynamics of communication.
Meeting contextual information is represented by the location of
people, conversational events identifying floor holding patterns,
and a presentation activity variable. By modeling the interactions
between the different contexts and their combined and sometimes
contradictory impact on the gazing behavior, our model allows
to handle VFOA recognition in difficult task-based meetings in-
volving artifacts, presentations, and moving people. We validated
our model through rigorous evaluation on a publicly available
and challenging dataset of 12 real meetings (five hours of data).
The results demonstrated that the integration of the presentation
and conversation dynamical context using our model can lead to
significant performance improvements.

Index Terms— Visual focus of attention, conversational events,
multi-modal, contextual cues, dynamic Bayesian network, head
pose, meeting analysis.

I. INTRODUCTION

In human societies, meetings whether formal or informal
are important daily life activities. It is the place where several
people come together to exchange and disseminate informa-
tion, discuss some predefined topics, come to an agreement
and take important decisions. Due to this importance, there
has been a recurrent development of technology oriented tools
to support meeting effectiveness such as meeting browsers
[1] or the use of automatic speech transcription to perform
automatic content linking [2] (i.e. relevant documents are
automatically retrieved according to the discussed topic) or
create summaries [3]. At the same time, meetings are arenas
where people interact and communicate, laugh, argue, feel
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and express emotions. Thus, following social scientists [4],
computer scientists have explored more deeply the social
aspects of meetings through automatic analysis of different
non-verbal communication cues. For instance, decomposing
meetings in different phases based on turn-taking patterns and
meeting activities cues [5] or extracting people’s status or
role [6] can lead to the design of efficient tools for computer
enhanced human-to-human interactions.

Analyzing meetings requires the ability to understand the
behaviors that are exhibited during human interaction. Among
these behaviors, gaze represents one of the fundamental non-
verbal communication cues with functions such as establishing
relationships, expressing intimacy, and exercising social con-
trol. The role of gaze as a turn holding, taking or yielding
cue to regulate the course of interaction has been emphasized
by social studies [7]. For instance, speakers use their gaze to
indicate whom they address and secure the listeners’ attention
[8], while listeners turn their gaze towards speakers to show
their attentiveness and to find suitable time windows to interact
[4]. Thus, an appropriate perception and usage of such gazing
codes is important for smooth communication. Kulyk ez al.
[9] showed that real-time feedback about meeting participants’
gaze activities positively affects the participants’ behavior,
resulting in improved group cohesiveness and participant sat-
isfaction. In video conferencing situations, where the lack of
perception of non-verbal signals (especially the gaze) can lead
to communication misunderstandings [10], studies have been
conducted towards the enhancement of gaze perception [11]
to favor the engagement of remote participants.

Researchers have investigated the recognition of gaze in
meetings. Roughly speaking, the eye-gaze tracking systems
that are used in human computer interaction [12] are not
appropriate for analyzing the conversation of several people
in a room. They can be intrusive or interfere with natural con-
versation because they restrict head mobility and orientation.
As an alternative, head pose can be used as an approximation



for gaze, as supported by psycho-visual evidence [13] and
empirically demonstrated by Stiefelhagen er al. [14] in a
simple setting. However, in realistic scenarios, the level of
head pose ambiguities (the same head pose can be used to
look at different targets) makes the recognition of the visual
focus of attention (VFOA) solely from head pose a difficult
task [15].

Using context for VFOA recognition. When analysing group
interactions, context plays an important role as the same non-
verbal behavior can have a different interpretation depending
on the context. In general, the context relates to the set of
circumstances in which an event takes place and which are
relevant to derive a precise understanding of this event. For
VFOA recognition, the circumstances correspond to whatever
can attract or affect the gaze of people, and can be classified
into two main categories: a social interaction context (how
people are conversing), and a task context (what are the people
or the group doing). The knowledge of these contexts can
improve head pose interpretation in two ways. First, by setting
priors on the VFOA targets to indicate which targets are more
likely in a given context. For instance, humans tend to look
more at a speaking person than a non-speaking one. And
second, by automatically discovering which head orientations
correspond to looking at some given targets. From a compu-
tational perspective, this means that we can reliably adapt a
prior head pose-target correspondance model by observing for
some time a person’s behavior and the context.

In the past, only the conversation context has been in-
vestigated for VFOA recognition, mainly by exploiting the
gaze/speaking turn relationships discussed above. For instance,
Stiefelhagen et al. [14] directly used people’s speaking statuses
as conversation context, while Otsuka et al. [16] introduced
the notion of conversation regimes driving jointly the sequence
of utterances and VFOA patterns of people, and applied their
model to short meetings involving only conversation.
However, there are other important events and situations which
can significantly influence gaze and should be taken into
account, and have never been considered so far. For instance,
participants do not usually remain in their seats during an
entire meeting. They can stand up to make presentations or
use the white board. In such cases, introducing the location of
people as a context is mandatory since it has a direct impact
on the gazing direction of people. Furthermore, most meetings
involve documents or laptops as well as projection screen for
presentations. This calls for the exploitation of task-oriented
contexts linked to the use of these artifacts for automatic
inference of VFOA in groups, since the usage of artifacts
significantly affects the person’s gazing behavior and is more
representative to a typical meeting scenario. This is the so
called situational attractor hypothesis of Argyle [17]: objects
involved in a task that people are solving attract their visual
attention, thereby overruling the trends for eye gaze behavior
observed in non-mediated human-human conversations. For
instance, Turnhout et al. [18] reported that two people inter-
acting with an information kiosk artificial agent looked much
less at their partner when addressing him than in normal dyadic
interactions. Similar impact of artifacts on gaze behavior was

also reported in the analysis of task-based meeting data [19].
For instance, during presentation people usually look at slides
not at speakers. Thus, generalizing state-of-the-art VFOA
recognition systems designed for conversation-only meetings
[14], [16], [20] to handle work meetings involving mobile
targets and artifacts is not straightforward. The aim of this
paper is to investigate new models towards such generalization.

Contributions. This paper addresses the joint recognition of
people’s VFOA in task-based meetings. This is achieved using
meeting contextual models in a dynamic Bayesian network
(DBN) framework, where the social context is defined by
conversational events identifying the set of people holding the
floor and the location of people in the room, and the task
context is defined by a presentation activity variable. Our main
contributions are:

e a model for which the influence of normal face-to-face
conversation on gaze patterns is modulated by context to
account for the change of persons’ location in the room
and the continuous change of gaze and conversational
behavior during presentations.

« an explicit prior model on the joint VFOA which captures
shared attention, and a fully automatic cognitive model to
associate a person’s head pose to a given VFOA target;

o the use of the model for the recognition of VFOA in
task-based meetings, and its evaluation on a significant
amount of data from a publicly available database; and

¢ a detailed analysis of the effects of the different con-
textual information and modeling steps on recognition
performance, including the benefit of using context for
model adaptation.

Experiments on five hours of meeting data from the AMI
Corpus [21] indicate that the use of context increases the
VFOA recognition rates by more than 15% with respect to
using only the head pose for estimation, and by up to 5%
compared to the sole use of the conversational context (i.e.
with no presentation context and shared attention prior).

The paper is organized as follows. Section II discusses
related work. Section III introduces the set-up, task, and
data used for evaluation, while Section IV describes our
DBN observations. Section V discusses our approach for
context modeling, and gives an overview of our DBN model.
Section VI details the components of this DBN model and
our inference scheme. Section VII presents our results, and
Section VIII concludes the paper.

II. RELATED WORK

Multi-person VFOA and conversational event recognition
relates to the automatic recognition of human interactions
amongst small groups in face to face meetings. In the fol-
lowing, we review work along three different threads that
researchers have taken to conduct such analysis. The first one
relates to the temporal segmentation of meetings in different
group activities. A second one relates to floor control and
addressee recognition, which involves focus of attention as
an important cue. A third important thread corresponds to
approaches which directly investigate the recognition of the
VFOA in meetings.



Turn taking patterns are one of the most important cues
to analyze conversations in general, particularly in meetings.
During interactions, conversations evolves through different
communication phases characterizing the state and progress
of a collaborative work. Based on this assumption, several
researchers have investigated the automatic segmentation of
meetings into different group activities such as monologue,
discussion, presentations, etc, from audio-visual cues. For
instance, McCowan et al. [5] explored the use of several
DBNs to fuse the different data streams, where a stream
corresponds to audio or visual features extracted from the
group of meeting participants. Zhang et al. [22] improved the
robustness of the model by using a layered approach, where
the first layer modeled the activities of each participant and the
second layer identifies the group activities. A major difference
between these works and our approach is that group activities
were modeled by global statistics over various feature streams
and did not include explicit models of individual behavior
interactions or context modeling. An exception is the work
of Dai et al [23], who proposed to use a dynamic context
for multi-party meeting analysis. Meetings events, including
individual behaviors like speaking, were organized into a
hierarchical structure. Higher level were defined based on
lower level events and multi-modal features, while lower level
events are detected using the higher level events as context.
However, no results on individual behaviors were reported.

Floor control and addressee are two multi-modal interac-
tion phenomenons involving gaze and speech that play a
significant role in conversation analysis. When investigating
audio-only features, a natural and common way to describe
the conversation status is to define “floor holding” pattern
variables, as done by Basu [24]. More generally, Chen et al.
[19] investigated the combination of gaze, gesture, and speech
for floor control modeling, i.e. the underlying mechanisms on
how people compete for or cooperate to share the floor. By
analyzing meetings of the VACE corpus, they showed that
discourse markers occur frequently at the beginning of a turn,
and mutual gaze occurs when a speaker is transmitting the
floor to a listener. However, no automatic processing for floor
estimation was reported.

Addressee detection (detecting to whom the speech is
intended) has been studied in the context of artificial agents
(information kiosk [18], robots [25]) interacting with multiple
people, in order to differentiate between human-to-human and
human-to-agent addressing. For instance, Katzenmeir et al.
[25] used a Bayesian scheme to combine speech features
and head pose to solve the task, but no attempt to model
the dynamics of the interaction was done. Few researchers
have investigated the identification of addressee in multi-party
conversations. Jovanovic et al. [26] evaluated the combination
of several manually extracted cues using a DBN classifier for
addressee recognition on the task-based AMI corpus meetings.
They reported that specific lexical features worked best to
detect addressee, and that the speaker’s gaze is correlated with
his addressees, but not as strongly as in other works [20]
due to the different seating arrangements and the presence of
attentional ‘distractors’ (table, slide-screen) affecting the gaze
behavior as an addressing cue [18]. No results with automatic

feature extraction are reported.

Finally, more related to our research are the investigations
about the recognition of the VFOA (”who looks at whom or
what”) from video (mainly head pose estimated from videos)
[14], [15], [27] or audio-visual data [14], [20], [28]. Stiefel-
hagen et al. [14] proposed a method to recognize people’s
focus solely from their head pose using a Gaussian mixture
model in which each mixture component corresponds to a
given focus. A similar approach was used by Siracusa et al.
[28] who investigated identifying speakers and people’s VFOA
in an information kiosk setting from a microphone array and
a stereo rig. In our previous work [15], we proposed to use an
HMM model along with an unsupervised parameter adaptation
scheme, and a cognitive gaze model for parameter setting.
Applied to task-based meetings, the results showed the benefit
of the approach but were lower than those reported in other
studies due to the data complexity. Very recently, Voit et al.
[29] introduced a new dataset to investigate the recognition of
the VFOA of one person seated in a lecture room and involving
moving people. Initial results evaluated on a single person data
were reported.

Contextual information has been exploited as well. In their
work, Stiefelhagen et al. [14] proposed to linearly combine the
VFOA recognition from head pose with a VFOA recognizer
relying on the speaking statuses of all participants, but this
led to only a 2% recognition rate increase, probably due to
the simplicity of their setting (4 people equally spaced around
a table). Otsuka et al. [16], [20] were the first to propose
a joint modeling of people’s VFOA. They introduced the
notion of conversation regimes (e.g. a ‘convergence’ regime
where people gaze at the speaker; or a ‘dyadic’ one where
two people look at each other) modeling the interactions
between the utterances and the VFOA patterns of all meeting
participants. Regimes were considered as hidden variables
along with people’s VFOA, and were inferred from people’s
speaking statuses and head poses using a Markov chain Monte
Carlo (MCMC) optimization scheme. However, no explicit
prior on the joint focus was used, and like other previous
works, the model could not handle moving people or exploit
context other than speech cues. In addition, all models require
the setting of head poses associated with gaze directions.
Although these values, which can be numerous (we have 36
of these in our case), can have a high impact on performance,
most works set these values manually [14], [16], [20] or semi-
automatically [15]. Finally, both Otsuka [16] and Stiefelhagen
[14] used a four-participants meeting setup with VFOA targets
restricted to the other participants, which differs significantly
from our complex task-based meetings involving artifacts,
presentations and moving people. Thus, in addition to the
modeling, our paper presents a thorough investigation of the
VFOA contextual recognition in challenging, but real and
natural meetings.
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Meeting recording setup. The first image shows the central view that is used for slide change detection. The second and the third image show the

side cameras that are used for head pose tracking. The last image shows a top view of the meeting room to illustrate seats and focus target positions. Seat
numbers and color codes will be used to report the VFOA recognition results of people seated at these locations.

ITI. DATASET AND TASK
A. Setup and Dataset description

Our data source is the Augmented Multi-party Interactions
(AMI) corpus'. In this corpus, recorded meetings followed a
general task-oriented scenario, in which four people with dif-
ferent roles (project manager, marketing expert, user interface
and system designer) were involved in the creation and design
of a television remote control. The phases of the design process
were discussed in a series of four meetings, where the partici-
pants presented their contributions according to their expertise.
During these meetings, people had natural behaviors, taking
notes, using laptops, making presentations with a projection
screen, and possibly manipulating a prototype of the remote
control. The twelve meetings of this corpus for which VFOA
annotation was available were used. Twenty different people
were involved in the recordings, making the head pose tracking
a challenging task. The meeting durations ranged from 15
minutes to 35 minutes, for a total of 5 hours. With respect
to the dynamic aspect of the AMI Corpus meeting, 23% of
the time there was a person standing to make a presentation.

Fig. 1 shows the physical set-up of the meeting room.
Amongst the available sensors, we used the video streams from
the two cameras facing the participants (the two center images
in Fig. 1) and of a third camera capturing a general view of the
room (Fig. 1-left). As audio sensors, we used the close-talk
microphones.

B. VFOA recognition Task and Data analysis

Task: Our objective is to estimate the VFOA of seated people.
Although we address the problem of looking at moving people,
the reverse problem of estimating the VFOA of moving people
has not been considered in this work. A main reason is that the
head poses estimated from the central camera are too noisy to
be exploited.

Although in principle the VFOA is defined by continuous 3D
eye gaze directions, studies have shown that humans tend to
look at specific targets (location/objects, humans) which are
of immediate interest to them [30]. Thus, we have defined the
VFOA of a person seated at seat k as an element belonging
to a finite set of visual targets Fj. This set is composed of
the 3 other participants P as well a set of 4 other targets
O ={Table, White Board, Slide Screen, Unfocused}. The label
"Table’ is used whenever people would look at the table and

'www.idiap.ch/mmm/corpora/ami

anything on it (e.g. their laptop), while the label *Unfocused’
is used when the person is not visually focusing on any of the
other targets. It is important to note here that, while according
to our VFOA definition the number of semantic targets a
person can look at is 7, the number of physical locations he
can look at is larger to account for the fact that standing people
can occupy different places in the room. More precisely, when
people stand-up to make a presentation, we assume that they
are located in one of the 3 areas A, B or C, as shown in Fig. 1
(left).

Data annotation analysis: The meeting participants’ VFOA
were annotated based on the set of VFOA labels defined
above. Annotators used a multimedia interface, with access
to the sound recordings and all camera views including close-
up view cameras. The VFOA annotations had high coding
agreement among annotators (see [31] page 80). We computed
the VFOA ground truth statistics, where we have grouped
the VFOA labels corresponding to participants into a single
label ‘people’. Looking at people only represents 39% of the
data, while looking at the table, slide screen, or white-board
represents respectively 30% and 24%, and 2.7% of the data.
These statistics show that the usual face to face conversation
dynamics where people mainly look at the speakers did not
hold. Artifacts such as the table and the projection screen
play an important role that has to be taken into account to
understand the conversation dynamics in our meeting scenario.
This places our work in a different context as compared to
previous studies which have investigated VFOA recognition in
scenarios involving only short discussions and no contextual
objects [14], [20]. Natural behaviors such as people looking
downwards (at the Table) without changing their head pose
while listening to a speaker, are less frequent in these shorter
meetings than in our data, as we noticed when comparing
with our previous study on 7 to 10 min long meetings
[15]. In addition, in [14], [20], the only targets are other
meeting participants. As some targets are more difficult to
recognize than others, this difference will have effects on the
performance. This is indeed the case for the label ‘Table’ due
at least to the downward looking natural behavior described
above, and to the fact that, in contrast to [14], [20], we can
no longer rely only on the head pan but also need to use the
head tilt -which is known to be more difficult to estimate from
images- to distinguish different VFOA targets.



IV. MULTI-MODAL FEATURES FOR VFOA MODELING

The VFOA recognition and the identification of context
relies on several observation cues: people speaking activities,
head poses, and locations, and a presentation activity feature.

Audio Features 5F: The audio features are extracted from
close-talk microphones attached to each of the meeting par-
ticipant. At each time step t the speaking energy of participant
k is thresholded to give the speaking status s¥ which value is
1 if participant k is speaking and O otherwise. To obtain more
stable features, we smoothed the instantaneous speaking status
by averaging them over a temporal window of W frames. Our

audio feature for person k is thus 5% = W Z ~wor sfH,
that is the proportion of time person k is speakmg durlng w

frames.

The head poses of. To estimate people’s head location
and pose, we relied on an improved version of the method
described in [32]. The approach is quite robust especially
because head tracking and pose estimation are considered as
two coupled problems in a Bayesian probabilistic framework
solved through particle filtering techniques. We applied our
method to automatically track people when they are visible in
our mid-resolution side-view cameras (see center images of
Fig.1). At each time ¢, the tracker outputs the head locations
in the image plane and the head poses of (characterized by
a pan and tilt angle) of each participant k visible in the side
view cameras. Note that when a person is standing at the slide-
screen or whiteboard, his head pose was not estimated (and
his VFOA as well).

People location xf: We assumed that the location z¥ of a
participant k is a discrete index which takes four values: seat k
when he is seated, or the center of one of the three presentation
areas A, B or C showed in Fig.1. This variable is extracted
in the following simple way. People are tracked from the side
view camera using our head pose tracking algorithm when
they are seated, they stand-up, or they come back to their seat.
When people are away from their seats to make presentations
(when they are not visible on the side cameras anymore), they
are assumed to stand in one of the area A, B or C. In this
case, they are localized from the central camera view using
area motion energy measures defined as the proportion of
pixels in the image area whose absolute intensity differences
between consecutive image is above a threshold. The motion
energy measures are computed for each of the standing area
and the standing person location is estimated as the area with
the highest energy or his previous standing location when the
energy measures of all standing areas are too small (the person
stays still).

The projection screen activity a;: As motivated in the next
Section, we used the time that elapsed since the last slide
change occurred® as slide activity feature a;. Thus, we need
to detect the instants of slide changes, from which deriving a,

2 A slide change is defined as anything that modifies the slide-screen display.
This can correspond to full slide transitions, but also to partial slide changes,
or to switch between a presentation and some other content (e.g. the computer
desktop).

is straightforward. Slide changes are detected by processing
the image area containing the slide screen in the video from
the central view camera (cf Fig. 1). We exploited a compressed
domain method [33] which recovered 98% of the events with
very few false alarms. The method relies on the residual coding
bit-rate, which is readily extracted from compressed video
recordings. This residual coding bit rate captures the temporal
changes which are not accounted for by the block translational
model. Slide transitions do not involve translational motion,
thus inducing high residual coding bit-rate. Thus, we estimated
slide changes by detecting, in the slide area, temporally
localized peaks of residual coding bit rate. This allowed us
to eliminate false alarms due to people passing in front of the
projection screen. Note that similar results were achieved using
motion energy measures as described for person localization.
The main advantage of [33] is that it runs 50 times faster than
real-time.

V. CONTEXT MODELING

We use a Dynamic Bayesian Network (DBN) to address
contextual VFOA recognition. From a qualitative point of
view, a DBN expresses the probabilistic relationships between
variables and reflects the assumptions we make on the way
random variables are generated and their stochastic dependen-
cies. Thus, the design of our DBN model requires us to define
the variables representing the context and how they influence
the VFOA recognition.

One typical approach for contextual event recognition is
to use an Input-Output Hidden Markov Model (IO-HMM).
In this model all observation variables related to the VFOA
behavior (other than the head pose, which is the primary
observable for VFOA recognition) are used to form the con-
text. They influence the recognition of person k’s VFOA at
time ¢ (denoted fF) by allowing the modeling of a contextual
dynamical process p(fF|fF ,,as, z¢,s:) and of a contextual
observation model p(of|fF, as, ¢, s) relating the head pose
of the person to his visual focus. Learning such contextual
models is often difficult, especially if the variables defining the
context are continuous values. In [34], we modeled separately
the influence of each cue on their related VFOA targets (i.e.
speaking cues would model how a person looks at other people
and the slide activity variable would influence the gazing at
the slide screen), but the interdependencies between cues were
not taken into account. Also, while such an IO-HMM model
can be computationally effective [34], its structure may not
reflect our understanding of the ‘logical’ interactions between
the VFOA and the context, and in several cases, it might be
useful to introduce hidden variables to define the context. This
happens when some context of the variable of interest is more
conveniently represented by a semantic concept that can not
be observed directly but whose impact on the VFOA events
is more intuitive, or that represents a less noisy and discrete
version of observations. The conversational event that we
will introduce later is such an example. Note that the hidden
context variables need to be estimated. While such estimation
usually relies on appropriate contextual observations, it also
depends on the VFOA variables themselves, reflecting that



Fig. 2. Dynamic Bayesian network model. Observation are shaded, hidden
variable are unshaded.

context and VFOA events are two interrelated concepts: on
the one hand, context guides the estimation of the VFOA; on
the other hand, people’s VFOA can play the role of bottom-up
observations to infer the context. For instance, when somebody
is speaking, it is more probable that people will look at him;
conversely, if a person is the visual focus of several other
people, the chances that he is actually speaking are higher.
The DBN for VFOA recognition that we propose follows
several of the above modeling considerations. It is given in
Fig. 2, and qualitatively explained in the next subsection.

A. VFOA context modeling

We defined two main types of VFOA context: the inter-
action context, and the task context. Below, we introduce the
variables we used to define context and their role in the model.

Interaction context: The interaction context is defined by the
understanding of the activities of others and their impact on the
VFOA. In meetings, it is mainly dictated by the self-regulatory
structure of the discourse, where the behavior of one person
is constrained by the overall behavior of others. In our model,
it is taken into account through the following elements.

Location context: Localizing people is essential in determining
where a person needs to look in order to gaze at particular
people. Knowing the number of participants influences the
number of potential targets to take into account, while the
location indicates how much the person has to turn his head.
This context will be taken into account in the observation
likelihood term p(of|fF,z;) of the DBN.

Conversation context and conversational events: The behavior
of people is characterized by two main variables: whether they
speak, and where they look (their VFOA). Thus, all of these
variables (the speaking status of all people, (s.);—;. 4 and the
VFOA of others, ( ftl)z:1..4,z¢k ) could be used to define the
conversational interaction context of person k£’s VFOA in a 10-
HMM fashion, as introduced earlier. However, such contextual
information is partly hidden (the VFOA state of others are
unknown), and due to the large dimension of such context,
the modeling of the statistical relationships between all these
variables and a person’s VFOA might not be intuitive and
become challenging.

Thus, to condense and model the interactions between peo-
ple’s VFOA and their speaking statuses, we introduce as
conversation context a discrete hidden variable e¢; € &

called ’conversational event’. It provides the state of the
current meeting conversation structure, defined by the set
of people currently holding the floor. Since we are dealing
with meetings of up to 4 people, the set £ comprises 16
different events E;. In practice, however, what matters and
characterizes each event (e.g. to define the VFOA context
models, see Section VI-B) are the conversation type ty(E;) €
{silence, monologue, dialog, discussion} and the size of the
set Z(E;) of people actively involved in the event (e.g. the
main speakers for a dialog).

The role of the conversational event variable can be deduced
from our DBN structure (Fig. 2). The main assumption is
that the conversational event sequence is the primary hidden
process that governs the speaking patterns and influences the
dynamics of gaze (i.e. people’s utterances and gaze patterns
are independent given the conversational events). Given a con-
versational event, the speaker (or speakers) is clearly defined,
which allows a simple modeling of the speaking observation
term p(S¢|e;). At the same time, through our modeling of
the VFOA dynamics term p(f:|f;—1, es, at), the conversational
event will directly influence the estimation of a person’s gaze
by setting a high probability for looking at the people actively
involved in the conversational event.

Task-based context: modeling presentation context for
VFOA recognition. People do not always gaze at the current
speaker due to the presence of visual attractors associated with
the task being performed either by the individual or by the
group [17]. Modeling such task context is thus important to
overrule or modulate the VFOA trends associated with normal
conversations. In work meetings, slide-based presentation is an
important example of such a group task where people often
look at the slide rather than the speaker.

One approach to model presentation context consists of using
a binary variable to identify when people are involved in a
presentation. This approach has been used in [5], [22], where
the goal is to identify the different meeting group activities and
use them as context to guide other processing [23]. However,
although presentations may last for several tens of minutes,
the influence of presentation context on the VFOA behavior
manifests itself mainly when new information is displayed.
Intuitively, right after a slide change people look at the slide
and then progressively get back to normal conversation mode.
This timing and progressive effect, which lasts for around 100
seconds after each slide change, is clearly visible in our data,
as demonstrated by the graphs in Fig. 6. Thus, the use of a
binary indicator variable as presentation context for VFOA
recognition is too crude. Instead, we proposed to use the time
as that elapsed since the last slide change, and one novelty of
our approach is to model the impact of this timing information
on the gaze pattern dynamics p(f:|f:—1,es, a;) of our DBN,
as described in Section VI.

B. System overview

Our approach can also be defined from a system perspective,
which introduces other aspects to the modeling (related to
parameters setting and adaptation). A system representation is
depicted in Fig. 3. The main part is the DBN model we have
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Fig. 4. Meeting event frequency given the time since the last slide change.

just described. This model takes as input a set of observation
variables as well as the initial values for the model parameters
A, from which the set of the hidden variables are inferred, and
an estimate of X is given. The observations comprise the head
pose of all participants o; = (o}, 07,03, 0%), their location
x, their speaking time within a temporal sliding window
5 = (5},52,5},5}), and the presentation activity variable a;.
The hidden variables comprise the joint VFOA state f; =
(fL, f2, f2, f1) of all participants and the conversational event
e; € €. Importantly, the graph in Fig. 3 enhances the fact that
some prior probability p(A) on the DBN parameters has to
be defined. In particular, defining a prior on the parameters
relating the people’s head pose observations to their gaze at
different VFOA target appeared to be crucial to automatically
adapt the DBN model to the specific head orientations of
individuals in meeting. To set these prior values, we used an
improved version of the cognitive gaze model we presented in
[15], as described later in Section VI-D.

VI. JOINT MULTI-PARTY VFOA MODELING WITH A DBN

To estimate people’s joint focus, we rely on a DBN cor-
responding to the graphical model displayed in Fig. 2, and
according to which p(fi.7,e1.7, A, 01.7, $1.7, a1.1, T1.7) the
joint distribution of all variables can be factorized up to a
proportionality constant as:

p(\)

=

P(0t|ft, zt)p(§t|et)p(ft|ft—la €t, at)p(€t|6t—1, at)
(1

where the different probabilistic terms are described in the
following.
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Fig. 5. Shared focus: distribution of frames where n persons are focused on
the same VFOA target. Light bars: distribution ¢, assuming people VFOA
are independent. Dark bars: distribution d,, measured on the data.

A. Conversational events dynamics

We assumed the following factorized form for the conver-
sational events dynamics:

p(€t|et71>at) :p(et‘etfl)p(et‘at)' )

The first term p(e;|e;—1) models the conversational event tem-
poral transitions. It was defined to enforce temporal smooth-
ness, by assuming that the probability to remain in the same
event was 3 times higher than to transit to any other event. The
second term models the prior probability of the conversational
events given the slide context. To avoid over-fitting to specific
meeting situations, we assumed that it only depends on the
conversation event types. Fig. 4 gives the plot of the priors
learned from our data. As can be seen, monologues and dialogs
are more frequent than silences and group discussions. Also,
silences are much more probable right after and a long time
after a slide change, while monologues exhibit the reverse
behavior.

B. The VFOA dynamics

We assume the following factorized form for the VFOA
dynamics:

p(felfim1,ee,at) o< @(fo)p(fil fi1)p(felas,er)  (3)

where the different terms are described below.

1) The shared focus prior ®(f;): This term models peo-
ple’s inclination to share VFOA targets’. Fig. 5 depicts the
distribution of frames w.r.t. the number of people that share
the same focus. As can be seen in this figure, people more
often share the same focus than if their focus was considered
independent. Thus, we have set ®(f;) as:

B(f) = B(SF(f}) = n) oc 2 @)
where SF(f;) denotes the number of people that share the
same focus in the joint state f;, and d,, and ¢, are defined in
Fig. 5. Qualitatively, the shared focus prior will favor states
with shared focus according to the distribution observed on
training data.

3The factorization made in Eq.3 assumes that p(ft|fe—1) and p(ft|at, et)
model the effect of the conditional variables on the current focus, and the
group prior ®(f¢) models all the other dependencies between the VFOA of
the meeting participants.



2) The joint VFOA temporal transition p(fi|fi—1): It is
modeled assuming the independence of people’s VFOA states
given their previous focus, i.e. p(fi|fi—1) = Hi:l p(fEIFE ).
The VFOA dynamics of person k is modeled by a transition
table B, = (bk,i,j)s with bk,i,j = p(ftk = Jlftkfl = Z)
These tables are automatically adapted during inference with
prior values for these transitions defined to enforce temporal
smoothness (cf Section VI-D).

3) The VFOA meeting contextual priors p(fi|as, e;): The
introduction of this term in the modeling is one of the main
contribution of the paper. It models the prior on focusing
at VFOA targets given the meeting context (conversational
event, slide activity). To define this term, we first assume the
conditional independence of people’s VFOA given the context:

4

p(felas, er) o Hp(ftk‘ataet)- &)

k=1

We then have to define the prior model p(ff = l|a; = a,e; =
e) of any participant. Intuitively, this term should establish
a compromise between the known properties that: (i) people
tend to look at speaker(s) more than at listeners, (ii) during
presentations, people tend to look at the projection screen;
(iii) the gazing behavior of the persons directly involved in
a conversation event (for example two speakers in a dialog)
might be different than that of the other people. Thus, what
matters for the learning is the event type, and whether the
subject (whose focus we model) and his human visual targets
are involved or not in the event. We thus introduce the
following notations: ki(k,e) is a function that maps into
{inv,not_inv} and which defines whether participant k is
involved or not in the conversational event e; i(l,e) is a
function that maps a VFOA target [ to its type in F7 =
{slide, table, un focused, inv, not_inv}, as a function of the
event e. Defining 7 is straightforward: i(l,e) = [ if | €
{slide, table, un focused}, and i(l,e) = ki(l,e) if [ is a
human visual target. Then, we learn from training data the
table T'(i, ki, ty,a) = p(i|ty, a, ki) providing the probability
for a participant whose involvement status in a conversational
event of type ty is ki, of looking at a VFOA target type @
(either an environmental target or a participant involved in
the event), given the event type and the time a since the
last slide change. Then, the prior model is simply defined as:
p(fF =lla; = a,e; = e) x T(i(l,e), ki(k,e),ty(e),a).

The table T'(¢, ki, ty, a) can be learned directly by accumulat-
ing the corresponding configuration occurrences in the training
set and normalizing appropriately. Then, to obtain smoother
versions of the contextual priors, we fitted by gradient descent
functions of the form

T(i, ki, ty, a) = gi giey(a) = 91e”"2% + 9, (6)

to the tables learned from training data. In practice, we noticed
that this family of exponential functions, depending on the
parameters ¥;, ¢ = 1,...,3 (one set for each configuration
(i, ki, ty)) provided a good approximation of the observed
exponential increase or decrease of probability as a function
of the elapsed time a. Fig. 6a gives an example of the fit.

Fig. 6b,c give interesting examples of the fitted priors* when
the conversational event is of type ty = dialog. For the target
"Table’, we can see that its probability is always high and
not very dependent on the slide context a. However, whether
the person is involved or not in the dialog, the probability of
looking at the projection screen right after a slide change is
very high, and steadily decreases as the time a since last slide
change increases. A reverse effect is observed when looking
at people: right after a slide change, the probability is low, but
this probability keeps increasing as the time a increases as
well. As could be expected, we can notice that the probability
of looking at the people involved in the dialog is much higher
than looking at the side participants. For the later target, we
can notice a different gazing behavior depending on whether
the person is involved in the dialog or not: people involved in
the dialog focus sometimes at the side participants whereas a
side participant seldom looks at the other side participants.

C. Observation models

They correspond to the terms p(§;|e;) and p(o¢|f:), and are
described below.

1) The speaking proportion observation model: This audio
model is defined as:

4
p(Siler = Ey) = [[ BGE: Ly, LA =m58)) (D)
k=1

were we have assumed that people’s speaking proportion 3¥

are independent given the event E;, and B(z,p,q) denotes
a Beta distribution defined as B(z,p,q) oc 2P~1(1 — z)971.
The parameter 7; 1, is the expected probability that person k
speaks during the W frames defining the event F;, while L
controls the skewness of the distribution. The values of 7;
were set by assuming that the speakers in an event would
equally hold the floor around 95 % of the time while non
speakers would provide back-channels 5% of the time. For
instance, for a dialog between person 2 and 3 (event Fg), we
have ng = [0.05,0.475,0.475,0.05]. We set L = 10 to have
not too peaky conversational event likelihoods.

2) The head pose observation model: This term p(o¢| fi, z;)
is the most important term for gaze estimation, since people’s
VFOA is primarily defined by their head pose. Assuming that
given their VFOA state, people’s head poses (defined by pan
and tilt angles) are independent, this term can be factorized as
p(os|frs 1) = [Tiey p(OF|fF, ). To define p(of|fF, z:), the
observation model of person k, notice that we have to model
what should be the head pose when person k is looking in
the 9 directions corresponding to: the 3 objects (table, slide
screen, white board); a person in any of the 3 other seats,
and a person in any of the 3 standing locations. However,
at a given time instant, from the 6 latter directions, only the
ones occupied by people represent potential directions. Thus,
in order to distinguish between looking at semantic targets and
looking in a given direction, we introduce the function d(%, x)
that indicates which direction corresponds to looking at target

4This example was learned from data involving only seated people, where
there is no gazing at the white-board.
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1 given the location context x. For static objects, there is a
unique direction. For a person 4, this direction depends on his
location x*. Assuming that for a given direction the spread of
head poses can be modeled by a Gaussian, we have:

P(OF|fF =i, 24) = N(0F; (i w)s Shodiien)s (8

where puy, q(;,2,) represents the mean head pose when the
person at seat k looks in the direction indexed by d(i,x:),
and X, q(;,4,) i the Gaussian covariance. Alternatively, when
the person is unfocused, we model the pose distribution as a
uniform distribution p(of|fF = unfocused ) = u.

D. Priors on the model parameters

We can define some prior knowledge about the model by
specifying a distribution p(A) on the model parameters. In
this paper, we are only interested in the estimation of the
parameters involving the VFOA state variable, and all other pa-
rameters were set or learned a priori (as described in previous
subsections). This is motivated by the fact that the head poses
defining gazing behaviors is more subject to variations due to
people’s personal way of gazing at visual targets [15]. Thus,
the parameters to be updated during inference were defined as
A= (Ag)k=1,... 4, With A, = (By, i, L), i.e. for each person
k, the VFOA dynamics By, and the means pg, = (g, ;)j=1...9
and covariance matrices ¥ = (X, ;) =1...9 defining the head
pose observation model. We describe below some elements on
the definition of the prior model. More details can be found
in the supplementary material.

VFOA transition probability prior. We use a Dirichlet
distribution D on each row of the transition matrices, and
defined the prior values of the transition parameters by ; ; to
enforce smoothness in the VFOA sequences, i.e. we set a high
probability (0.9) to remain in the same state and spread the
remaining probability on the transitions to the other VFOA
targets.

Head pose prior. The prior for the Gaussian mean yy, ; and
covariance matrix Xy, ; is the Normal-Wishart distribution. The
parameters for this distribution were set as in [15], and we only
detail the setting of my, ;, the prior values of the means iy, ;.

Defining the m; ; using a Cognitive model. Due to the
complexity of our task, there are 36 prior (pan,tilt) head pose
values my, ; (4 persons times 9 potential gaze directions) that

mref  g4reference
ko N N
direction
m,, head pose
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aze
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Fig. 8. Relationship between the gaze direction associated with a VFOA
target and the head pose of a participant. Assuming that the participant has a
preferred reference gazing direction (e.g. in front of him), the gaze rotation
towards the VFOA target is made partly by the head and partly by the eye.
Following [15], we used x = 0.5 for the pan and x = 0.4 for the tilt.

- mzsf )

we need to set and which play a crucial role in the model.
Hence, setting the parameters manually as in Otsuka et al
[16] becomes tedious and prone to errors. In this paper, we
employ a fully automatic approach. It builds upon our previous
model ([15], [35]) which relies on studies in cognitive sciences
about gaze shift dynamics [30], [36]. These investigations have
shown that, to achieve a gaze rotation towards a visual target
from a reference position, only a constant proportion x of
the rotation is made by the head, while the remaining part is
made by the eyes, as illustrated in Fig. 8. Thus, denoting by
m; the reference direction of person k, by mi’ " the gaze
direction associated with looking at place j, the corresponding
head pose mean my, ; is defined by:

gaze ref)

Mp,j — mzef = /i(m,w —my, (12)

The gaze directions can be computed given the approximate
position of the people and objects in the room. To set the
reference direction m’,;ef , we considered two alternatives.
Manual reference setting: the first alternative, used in [15],
was to set it manually, by assuming that the reference direction
roughly lies at the middle between the VFOA target extremes.
For seat 1 and 2, this corresponds to looking straight in front
of them (e.g. for seat 1, looking towards seat 2, see Fig. 1).
For seat 3, and 4, this corresponds to looking at the nearest
person to the slide screen on the opposite side (e.g. for seat
4, looking at seat 1).

Automatic reference setting: The reference direction corre-
sponds to the average head pose of the recording. This
approach still follows the idea that the reference splits a
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Fig. 7. Approximate inference algorithm.

person’s gazing space, but allows to adapt the reference to
each individual. From another point of view, it can be seen as
the head direction which minimizes the energy to rotate the
head during the meeting.

E. Bayesian model inference

The estimation of the the conversational events ej.r, the
joint VFOA fi.7, and the model parameters A from the ob-
servations (ay.r, $1.7,01.17,T1.7) 1S Obtained by maximizing
the posterior probability p(fl;T, e1.7, )\|a1;T, $1.7,01.T, xl;T).
Given our model, exact inference can not be conducted. Thus,
we exploited the hierarchical structure of our model to define
an approximate inference method consisting in the iteration
of two main steps: estimation of the conversational events
given the VFOA states, and conversely, estimation of the
VFOA states and model parameters given the conversational
events. This procedure guarantees at each time step to increase
the joint posterior probability distribution. Similar inference
procedures have been proposed in [37] for switching linear
dynamic systems. Fig. 7 summarizes the different steps of our
algorithm.

Conversational event estimation: It is conducted with a
Viterbi algorithm at two places. First, in the initialization
step: conversational events are inferred solely from the speak-
ing variables and the slide context (see Eq.9). Second, in
the iterative loop, the re-estimation is done by maximizing
p(61;T|f1;T7 s1.7,a1.7), see Eq.11. VFOA states play the role
of observations and the corresponding term p(f;|es, a;) allows
us to take into account that for a given joint VFOA state,
some conversational events are more probable than others.
For example, when all the participant are looking at a given
participant it is more likely that this person is speaking.

VFOA states and model parameters estimation. This
is done in step 2a, by maximizing the probability
p(fi.1, Aérr, s1.1,01.7,a1.7, x1.7). The inference is con-
ducted by exploiting the maximum a posteriori (MAP) frame-
work of [38], which consists in first estimating the optimal
model parameters by maximizing the parameter likelihood
given the observations. Then, given these parameters, Viterbi
decoding can be used to find the optimal VFOA state sequence.
Given our choice of prior, the MAP procedure relies on an EM
algorithm similar to the one used in HMM model parameter
learning. It is described in the supplementary material, where

details are given on how to adapt the standard MAP procedure
to take into account the prior on the joint VFOA state (i.e.
the term ®(f;)) and the presence of moving targets. Below,
we enhance the important role of context in this adaptation
procedure.
Typically, in the E-step of the MAP algorithm, we compute
the expected value ”yf’t for participant k to look at target ¢ at
time ¢ given the observations and the current parameter values:
v =p(fF = ilof.p, 1, arer, w1, Ar) (13)
and in the M-step, re-estimate parameters using these expec-
tations. Qualitatively, in the re-estimation, prior values are
combined with data measurements to obtain the new values.
For instance, assuming there is no moving person in the
meeting, we have:

T _k k
T, + Zt:l Vi,tOt

T )
T+ Et:l '72th

Hii = (14)

i.e. ug. 4 is a linear combination of the prior values my, ; and of
the pose observations of which most likely corresponds to the
target ¢ according to wﬁt. With respect to our previous work
[15], the only but crucial difference lies in the computation
of the expectations ’sz,r While in [15], this term was only
depending on the pose values (i.e. v¥, = p(fF = i|of., \)),
here the expectation takes into account the contextual informa-
tion (slide, conversation, location), see Eq.13, which increases
the reliability that a given measurement is associated with the
right target in the parameter adaptation process, leading to
more accurate parameter estimates.

VII. EVALUATION SETUP AND EXPERIMENTS

This section describes our experiments. Results will be
presented on two types of meetings: first the static meetings
(4 recordings involving 12 different participants, one hour 30
minutes) in which people were remaining seated during the
entire meeting; then the dynamics meetings (8 recordings with
20 different people, 3h30 min) involving moving people. This
allows us to distinguish and enhance the differences between
these two specific situations. Visual illustrations are provided
at the end of the Section.



A. Experimental setup and protocol

Our experimental setup and the data used for evaluation
were described in Section III-A.

Performance measure: The performances of our algorithms
are measured in term of frame based VFOA recognition
rate (FRR), i.e. the percentage of frames that are correctly
classified. The FRR is computed as the average of meeting
FRR. The evaluation protocol we followed is a leave-one-out:
in turn one of the recordings is kept aside as evaluation data,
while the other recordings are used to learn model parameters,
mainly the contextual prior p(fF|as, e;).

Algorithms: Several alternative algorithms have been eval-
uated and are presented in the next Section. Unless stated
otherwise, the following components were used: the dynamics
are given by Eq.3, but the prior ® on the joint VFOA was
not used by default (as discussed later); the cognitive model
with automatic reference gaze setting (see Section VI-D); head
pose adaptation was used, i.e. joint inference of VFOA states,
conversational events, and head pose model parameter was
conducted (cf Section VI-E); the model parameters values
were the ones provided in Section VI

Significance tests: We used the McNemar test to evaluate
whether the difference between the recognition results of two
algorithms is statistically significant. This standard test looks
only at the samples where the two algorithms give different
results [39]. It accounts for the fact that some data are easier or
more difficult (e.g. when the head tracker provides erroneous
results) to recognize than others, and allows us to check
whether a given improvement is consistent or not. That is,
does an algorithm provides almost systematically the same or
a better answer. In practice, to ensure independence between
VFOA samples, we extracted meetings chunks of 5 minutes
separated by one minute intervals’. We then performed on
these chunks a variant of the McNemar test that can account
for correlated data (in the chunks) [39]. According to this
test, all the differences between two parameterizations of the
algorithm happen to be significant at a p value of 0.01.

B. Results on static meetings

We first provide overall results, and then discuss the impact
of different aspects of the model on the results (explicit joint
VFOA prior, context, adaptation, model parameters), including
a discussion and comparison with the state-of-the-art.

1) Overall results: Table 1 presents the results obtained
with our contextual model. As a comparison, it also provides
the recognition results obtained when recognizing the VFOA
independently for each person, using the head pose only (this
method will be referred to as the head pose only’ model) As
can be seen, our task and data is quite challenging, due mainly
to our scenario and the behavior of people, and to the noisiness
of the head pose estimation (some heads are rather difficult to
track given the image resolution). We can also notice that the
task is more challenging for people at seat 3 and 4, with on

SWe showed with a Chi-square independence test that VFOA samples apart
by more than one minute can be considered as independent.

average a FRR of 8 to 10% less than for seat 1 and 2. This
is explained by the fact that the angular spread of the VFOA
targets spans a pan angle of around only 90 degrees for seats 3-
4 vs 180 degrees for seats 1-2, thus introducing more potential
confusion in the pose defining the VFOA targets.

When using the contextual model, the recognition improves
significantly, passing from 38.2% to 55.1%, with almost all
participants having more than 50% recognition rate except for
the person at seat 3 in the 3rd recording® The influence of
the speaking activities through the conversational events and
of the slide context on the VFOA estimation (and adaptation
process), is beneficial, esp. for seat 3 and 4, by helping to
reduce some of the VFOA ambiguities.

Fig. 9 gives the average confusion matrices in the two cases
for seat 1 and 3 for all recordings. They confirm the higher
degree of VFOA confusion for seat 3 (and 4) w.r.t. 1 (and
2) for both the methods, and the general improvement when
using context (brighter diagonals and darker off-diagonal terms
overall).

2) Influence of modeling factors: We discuss here several
elements of the model that can influence the results. The
results of these variations are presented in Table II.

Group prior: A first novelty of this paper is to introduce an
explicit prior ®(f;) on the joint focus of all meeting partic-
ipants, which models the tendency for people to look at the
same VFOA target. Table II displays the results obtained when
adding such a prior to the models with and without context.
When this term is used without context, it leads to an important
7.7% increase of the recognition result, demonstrating the
validity of the group behavior assumption. However, used in
conjunction with the context, we obtain a more modest 0.5%
gain’. Indeed, the context we have defined accounts for the
group effect (encouraging individual people to look at the
current speaker or at a recent slide change) to a great extent.
The other situations where people share the same visual target
(e.g. when somebody refers to a specific object, like an object
on the table or part of a slide which was displayed long ago)
are probably too rare to lead to a substantial improvement.
Since the use of this group prior has a high computational
cost we did not use this term in the other experiments.

Influence of the different contexts: We evaluated the con-
tribution of the conversation and presentation contexts to
the recognition. When only the slide context is used, the
conversational events and speaking nodes are removed from
the DBN, and p(f:|et, a:) reduces to p(f¢|at), i.e. a prior on
looking at VFOA targets as a function of a;. When only speech
is used, the presentation context is removed, and p(fi|es, a;)
reduces to p(fi|e;), i.e. a prior on looking at the table, the
slide, and at people in function of their involvement in the
conversational event. As can be seen, using the slide context
increases the recognition by around 5% (FRR=45.7%), while

The low performance for this person can be explained by higher head pose
tracking errors, as assessed visually, because this person appearance was not
well represented in the training data of the head pose tracking appearance
models.

"Note that this increase was statistically significant, as the group prior
improved the recognition result of 14 out of 16 people.



head-pose only (no contextual cues) with contextual cues
recordings || seat 1 | seat 2 | seat 3 | seat 4 | average || seat 1 | seat 2 | seat 3 | seat 4 | average
1 48.8 53.1 30.5 29.3 40.4 59.3 67.9 53.9 58.4 59.9
2 552 34.8 222 36 37 67.2 50.5 471 54.8 54.9
3 37.1 35.8 18.3 33.6 31.2 70.4 47.5 21.6 58.6 49.5
4 24 58.4 47.9 46.6 442 53 59.3 62.3 494 56
[ average [ 413 [ 455 [ 297 [ 364 | 382 [ 625 [ 563 [ 463 | 553 [ 551 |
TABLE I

OVERALL VFOA RECOGNITION PERFORMANCE ON STATIC MEETINGS, WITHOUT (LEFT) AND WITH (RIGHT) CONTEXTUAL MODEL.
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VFOA recognition confusion matrices without context (a and c¢) and with context (b and d), for seat 1 (a and b) and 3 (c and d). For each seat, the

VFOA target order in the matrix is organized by increasing pan values, and the table is put as the last VFOA target. Si,7 = 1,2, 3,4 stand for seat 1,2,3,4;
S D stands for slide screen, and T'B stands for the table. More confusions are exhibited for seat 3, and context reduces confusion overall.

[ Model [ seat T [ seat 2 | seat 3 [ seat 4 [ average |
Contextual with group prior ¢ 61.7 56.1 48.5 55.9 55.6
Contextual 62.5 56.3 46.3 55.3 55.1
Head pose only with group prior ® 47.1 50.0 40.1 46.6 459
Head pose only 41.3 45.5 29.7 36.4 38.2
Contextual: slide only 50.7 48.7 38.3 452 45.7
Contextual: speech/convers. events only 62.5 48.8 43.6 48.1 50.7
Contextual: no adaptation 53 52.5 443 53.9 50.9
Head pose only: no adaptation 48.8 44.5 329 38.8 40.0
Contextual: manual head pose reference 62.8 56.4 47.3 48.1 53.6
Contextual: W=Isec 62.3 56.2 46.2 56.5 55.3
Contextual: W=9sec 62.1 55.43 45.8 55.5 54.7

TABLE II

VFOA RECOGNITION RESULTS ON STATIC MEETINGS FOR DIFFERENT MODELING FACTORS. ONLY FACTORS WHICH DIFFER FROM THE DEFAULT

ALGORITHM/PARAMETERS (DENOTED CONTEXTUAL’ MODEL), SEE SECTION VII-A, ARE GIVEN.

the use of the conversation context increases the results by
around 10% (FRR=50.7%) w.r.t. the case without context.
One explanation for the difference in impact is that the slide
context mainly increases the recognition of a single VFOA
target, the slide screen (which is already well recognized for
seats 1 and 2), while the conversational events improve pose
parameter adaptation and set the priors on 3 targets, i.e. the
3 other participants, which represent 40% of the VFOA gaze
data. This effect is illustrated in Fig. 10 which depicts the
recognition rates per VFOA target category as a function of
the context®

Importantly, our overall results (FRR=55.1%) shows that
modulating the conversational prior by the slide context allows
for 4.4% further improvements, justifying the need for the
introduction of such group task context. Interestingly enough,
we can notice in Fig. 10 that the joint use of conversational

8Notice that the recognition rate for the *Table’ label has greatly increased
w.r.t. the no context (head pose only) case. This directly derives from the fact
that, in the contextual case, the different models for p( ft|et, at) learned from
the data include prior on the Table (see Fig. 6 for instance), which is not the
case of the no context model shown here.
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Fig. 10. Effects of different VFOA contexts on the recognition rates of the
static meetings, per category.

events and slide context further and significantly increases the
slide screen recognition accuracy w.r.t. the sole use of the
slide context. It shows that the model is not simply adding
priors on the slide or people targets according to the slide and
conversational variables, but that this is the temporal interplay
between these variables, the VFOA, and the adaptation process
(as shown below) which makes the strength of the model.
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Model adaptation: Recognition improvements w.r.t. the head-
pose only case can be mainly attributed to two related aspects
of our model: first, context variables introduce direct prior on
the VFOA targets when inferring the VFOA states; second, we
perform the joint inference of the VFOA and conversational
events along with the head pose model parameters (i.e. the
unsupervised adaptation of these parameters, cf Section VI-
D). To distinguish between the two, we removed the adaptation
process, by setting the model parameters to their prior values.

The results are given in Table II. As can be seen, unsu-
pervised adaptation slightly degraded the results in the no
context case, while it allowed a 4.2% gain in the contextual
case. Indeed, in the no context case, where adaptation is solely
based on the head pose observations, there is a risk that the
model parameters drift to wrong values due to the complexity
of our experimental setup with high potential ambiguities in
the head poses defining the VFOA targets. In particular, due to
these ambiguities, the mean pose value p, ; associated with the
VFOA target ¢ can drift to the mean of another target j, thus
introducing important recognition errors. This is illustrated in
Fig. 11, which compares the adapted mean pose values to the
empirical means of the data. For instance, on the Fig. 1la
example, the prior value for looking at seat 4 (black [J) is
wrongly adapted (black A) towards the measured pose for
looking at seat 3 (blue () rather than to its corresponding
pose (black (), while the prior pose value for looking at seat
3 does not evolve (the blue [J and A are at the same place).
As a result, for the person of this example, looking at seat 3
will mainly be interpreted as looking at seat 4. A similar effect
can be seen for the second example in Fig. 11b: the pose prior
value [ for the green target adapts (green A) toward the data
of the red target (red Q).

When the contextual model is used, such situations are
avoided, since during inference, head poses observations are
better associated with the correct VFOA target thanks to the
contextual prior, as explained in Section VI-E, resulting in
better adapted means (see the 7 symbols for the above cases
in Fig. 11) and overall better results.

Cognitive model head pose reference: We introduced a fully
automatic approach to define our gaze model and in particular
to set the reference pose used to build the relationship between
a person’s gaze and his head pose (cf Section VI-D). As
a comparison, Table II provides the results when using our
previous manual approach [15]. As can be seen, the automatic
approach performs 1.5% better than the manual one. Although
significant, this difference is mainly due to the performance

increase of one person, for whom the automatic method,
being person dependent, corrects a bias introduced by the
head pose tracker and produces better head pose prior values.
Excluding this person, the performance increase is only of
0.2%. Nevertheless, this is an interesting result, as this shows
the robustness of the automatic approach w.r.t. the variability
of people gazing behavior and meeting content.

Window size for measuring speech activity: Results are re-
ported in Table II for window sizes of 1s, 9s (default parameter
is 5s). As can be seen, the rates are slowly decreasing as the
window size increases. This can be explained by the fact that
larger speaking conversational window sizes favors the recog-
nition of more dialog and discussion events which i) spreads
the focusing prior on more participants than in monologues,
and ii) loses accurate information about when these partic-
ipants speak. Overall, this slightly reduces the relevance of
the events’ influence on the VFOA. In other words, using
smaller windows, the conversational events capture the floor
holding and floor exchange events, whereas larger windows
provide a higher level description of the ongoing conversation
activity, as was targeted in the investigations about meeting
action recognition [5], [40]. Interestingly, this suggests that
participants’ interactions and the overall meeting structure of
turn taking and non-verbal patterns should be described within
a framework involving different temporal scales.

Comparison with the state-of-the art: In our previous
work [34], we used an IO-HMM structure to model the
context. Instantaneous speaking statuses were used to model
the tendency to look at speaking people, whereas the slide
variable influenced the probability of looking at the slide. A
result of 46.7% was achieved on our data. Several factors
explain the difference: first, our IO-HMM did not model
the interaction between contextual cues (speech and slide);
secondly, as explained in Section V, the context in the I0O-
HMM directly imposes its prior for VFOA estimation, whereas
with the DBN, the conversational event context and the VFOA
are jointly decoded; lastly, a contextual adaptation process was
not exploited. Comparing VFOA results with other works is
quite difficult, since with the exception of our data, there is no
public dataset. In addition, performance is highly dependent
on many factors different from the model, such as the setup
and placement of people, the type of meetings, the accuracy
of head pose estimation, etc. For instance, recognition rates
of 75% and 66% were reported in [14] and [16] respectively,
but this was measured in 4 persons’ short pure conversation



meetings with only the 3 other participants as VFOA targets.
Nevertheless, our results obtained using the conversation con-
text only model can be considered as representative of state-
of-the-art performance, since it models the integration between
speech cues and VFOA, as done in [14] or Otsuka et al [16].
As we have seen before, the use of the slide-based presentation
activity context, along with the addition of a group prior on
focus, leads to a significant increase of 4.9%, definitively
showing the interest of our new model.

C. Results on dynamic meetings

Our model can recognize the VFOA of (seated) people even
when they look at people that move during the meeting. This
allows us to handle meetings with less restrictions than what
had been considered so far in the literature.

The model was tested on 8 recordings (for a total of 3h30
min), where to the contrary of the static meetings, participants
were mostly standing up to make their slide-based presenta-
tions. Table III reports the main results obtained on these data.
Despite the challenging conditions, as can be seen from the
results obtained without the use of context, the performance
are close to the static case (52.3% vs 55.1%). The conclusions
drawn with the static case still apply here, although one can
notice that overall the differences in performance between the
different experimental conditions have shrunk. For instance,
the addition of the slide context to the conversation context
(i.e the full model) increased performance by 1.4% w.r.t.
the conversation context alone (4.1% in the static case).
We can also notice that the use of the group prior slightly
degrades the overall performance. However, the details shows
that results are similar when all people are seated, and that
the degradation comes mainly from the standing presentation
situations. This can be explained by the fact that we have one
less measurement (from the presenter) in such cases, which
weakens the reliability of the group prior. In addition, the
issue of the focus ambiguity during presentation discussed in
the next paragraph also applies for the group prior.

Table III further shows that the results are lower during
presentation periods. Indeed, the person standing either in front
of the white board or projection screen highly increases the
confusion between the visual targets since i) the presenter and
the slide screen are the two predominant VFOA targets; ii)
they are located in almost the same gazing direction; iii) this
direction corresponds to profile views of the seated persons,
where head pose estimates are noisier (head pan variations
induce only little visual change for profile views, see Fig. 12).
Thus, context plays a major role to remove ambiguities.
However, as the presentation or conversation context alone
favors only one type of focus (either the slide screen or the
presenter) to the detriment of the other main VFOA target, our
full model is able to reach appropriate compromises between
the two context types, leading to overall better results in
these periods. Finally, results when nobody is standing (last
column of Table III) show that, as expected, in the absence
of presentations, conversation context is the main source of
improvement.

Finally, notice that although this did not happen in our
meetings, our approach can easily handle people returning to

different seats, as long as the tracking is done properly. The
main point to take into account in such cases would be to
conduct the gaze model adaptation for each seat that a person
occupies.

D. Qualitative discussion of the performance

Beyond the recognition accuracy, qualitative analysis of
the results is often useful to understand the behavior of
the algorithm. The supplementary material provides several
videos and a plot depicting on a one minute segment the
recognized conversational events along with the ground truth
(GT) and recognized VFOA. It shows that the estimated VFOA
sequences are smoother than in the GT: while the average
duration between two changes of gaze is 3 seconds in the GT,
it is 5.4 seconds in the recognized sequences. This is due to
the VFOA dynamics which favor smooth VFOA sequences,
in combination with the fact that most of the very brief gaze
changes are the effect of glances done through eye-shift only,
with no or very subtle head rotation.

Fig. 12 compares several examples of the results obtained
with and without context. In the first row, person 3 is
commenting a displayed slide; while the presentation context
allows to correct the recognized VFOA of person 4, the
conversation context simultaneously allows to correct the focus
of person 1. The second row illustrates the positive effects
of the conversation context on person 1, and of parameter
adaptation (on person 3). It also illustrates the typical issue
raised by the addition of the table as one VFOA target: due
to a slightly over-estimated head tilt, and although the pan
value is well estimated, the estimated VFOA for person 4 is
"Table’. Although the contextual model sometimes helps to
correct this effect, improvement should come from a more
accurate tilt estimate or the use of contextual cues related to
the table activity (manipulation of an object or laptop). Note
that the table was not used as a target in previous work [14],
[20] and only the pan angle was used to represent the gaze.

Finally, the last row illustrates the result of our model in
the dynamic situation.

VIII. CONCLUSION

We presented a DBN for the joint multi-party VFOA and
conversational event recognition in task-oriented meetings,
from head pose estimated from mid-resolution images and
multi-modal contextual information. The model represents
the social communication dynamics linking people’s VFOA
and their floor holding status, while taking into account the
influence of the group activity (here slide-based presentations)
on the conversation and gaze behaviors. In addition, the use
of people’s locations as context allowed us to handle looking
at people moving to the white-board to make presentations.
Context was shown to provide informative priors on people’s
focus, and favor a correct adaptation of the parameters relating
people’s head pose to their focus. Experiments on a 5 hour
challenging dataset involving 20 different people demonstrated
the benefits of taking into account all types of context (conver-
sation, presentation activity, persons’ locations) for the VFOA



Model seat 1 | seat 2 | seat 3 | seat 4 | average || presentation | all seated
Contextual 55.9 58.2 48.3 46.6 523 473 54.5
Contextual with group prior ® 54.6 56.2 48.0 49.1 52.0 46.4 54.4
Head pose only 379 40.6 31.2 31.9 35.4 34.2 35.9
Contextual: slide presentation only 53.1 54.7 447 42 48.6 44.3 51.0
Contextual: conversational events only 55.3 56.3 45.6 46.5 50.9 44.4 54.3
Contextual: no adaptation 56.8 54.2 49.1 40.7 50.2 434 53.0

TABLE III

VFOA RECOGNITION RESULTS FOR THE DYNAMIC MEETINGS AND DIFFERENT MODELING FACTORS. THE LAST TWO COLUMNS PROVIDE THE FRAME

RECOGNITION RATES COMPUTED DURING PRESENTATIONS (ONE PERSON STANDING) AND DURING THE REST OF THE MEETINGS (ALL PEOPLE ARE
SEATED). BY DEFAULT, THE GROUP PRIOR P IS NOT USED.
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Fig. 12. Rows 1 and 2: effect of the contextual cues on the VFOA recognition. First column without context, second column with context. Last row: a result
example on dynamic meetings. The box surrounding people’s head and the arrows denotes the head location and pose estimated using our tracking system.
Their color gives the estimated focus of the corresponding person VFOA (see color codes in Fig. 1), which is further stressed by the tag above the person’s
head. On the body of each person, a tag gives his seating location. A semi-transparent white square indicates when a person is speaking.

recognition, achieving a recognition rate of 55% on static
meetings, and 52.3% on the dynamic ones.

Several research directions can be investigated to improve
performance of our model. First, better head pose estimates
-e.g. by processing higher resolution images- would lead to
better performances, as we showed in [15]. Secondly, other
contextual activity cues could easily be introduced in the
model, such as for instance, when people manipulate objects,
or, importantly in meetings nowadays, the use of laptops.
Although their automatic extraction might not be trivial, they
would deliver valuable information to disambiguate the visual
target “Table’ from other focuses. Finally, investigations would
be needed to see whether (and how) taking into account
more subtle findings from social psychology related to gaze
behaviors (e.g. looking at speakers is more important at
the beginning or end of utterance/monologues) or people’s
personality (e.g. introversion) could have a significant impact
on the VFOA recognition accuracy.
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