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1. Introduction

Recovering 3D human poses from marker-free images is a ver
important research subject in computer vision community. Th
success of pose recovery can directly benefit many application
such as video motion capture, natural human–computer interac
tion, and potentially many more.

Pose recovery aims at inferring the hidden pose parameter from
the observed visual feature. This is challenging because th
mapping from visual features to 3D poses is very complex an
multi-modal. If poses are inferred only from monocular image
the 2D–3D ambiguity is more severe.

In this paper, we propose a new examplar based 3D pose recov
ery approach. The framework is shown in Fig. 1. The exampla
database contains visual features and corresponding ground-trut
poses. For each novel frame, the observed visual features are use
to retrieve a set of pose candidates. Then, the optimal pose se

quence is estimated from the pose candidates using dynamic pro-

o
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81d
gramming, which exploits both feature cue and temporal cue t
ensure the smoothness of the recovered poses. Within the abov
framework, we make two contributions, as described below.

1077-3142/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2010.11.007

⇑ Corresponding author.
E-mail address: cchen@idiap.ch (C. Chen).
Please cite this article in press as: C. Chen et al., 3D human pose recovery fro
(2010), doi:10.1016/j.cviu.2010.11.007
new examplar-based approach to recover 3D human poses from monocula
ture of each frame, pose retrieval is first conducted in the examplar databas
idates. Then, dynamic programming is applied on the pose candidates t

sequence. We make two contributions within this framework. First, w
t feature selection algorithm to select effective visual feature component
trace-ratio criterion which measures the score of the selected feature compo
rion is efficiently optimized to achieve the global optimum. The selecte
d of the original full feature set to improve the accuracy and efficiency of pos
ution, we propose to use sparse representation to retrieve the pose cand
visual feature is expressed as a sparse linear combination of the exampla
resentation ensures that semantically similar poses have larger probabilit
tiveness of our approach is validated quantitatively through extensiv
tic and real data, and qualitatively by inspecting the results of the real tim
ted.

� 2010 Elsevier Inc. All rights reserve

1.1. Visual feature selection

Visual feature plays an important role in pose recovery, and w
would like the visual features to be discriminative with respect t
3D poses as much as possible. To this end, a lot of features hav
been proposed using cues from silhouettes, edges and so on. Typ
ically, each feature type contains multiple components. Whil
most previous work uses all components of a particular featur
type, in this paper we propose to select the optimal subset of fea
ture components for pose recovery. First, the feature selection cr
terion is formulated in a trace-ratio form that measures th
consistency of the intrinsic data relationships. Then, an efficien
optimization step is performed to find the global optimal compo
nent subset. By using the selected components instead of a
components, we can improve both accuracy and efficiency.

� Accuracy. Different visual feature components behave differ
ently with regard to pose discrimination. For example, for Fou
rier descriptor [1], it has been shown that pose understandin
depends more on some frequencies than on others [2]. By per
forming feature selection, we are able to discard irrelevant (o
even misleading) components, achieving better accuracy.
� Efficiency. By performing feature selection, we are able to wor

with only a small proportion of the complete feature set. This
more efficient, because we only need to extract the selecte
m image by efficient visual feature selection, Comput. Vis. Image Understand.

http://dx.doi.org/10.1016/j.cviu.2010.11.007
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ose
feature components from images. In addition, because the
feature dimension is reduced, subsequent procedures can be
accelerated.

There exists some other work on feature selection for pose
covery. For example, Ren et al. [3] and Chen et al. [4] employ
aboost to select effective features. However, Adaboost requires

large amount of computation, and it cannot guarantee that the
bal optimum is reached. On the other hand, our feature selec-
n approach identifies the globally optimal feature subset in a

uch faster way.

. Pose retrieval via sparse representation

An important step in our examplar-based approach is pose re-
eval. Because the mapping from visual features to poses is mul-
modal, it is not desirable to simply use the topmost match.
stead, a set of pose candidates is retrieved for each frame. Tradi-
nally, this is often performed by nearest neighbor (NN) method

–5]. In this paper we propose to use sparse representation [6,7].
ecifically, the visual feature vector of a novel frame is reasonably
proximated using only a small percentage of features in the
amplar database. Compared to NN, sparse representation tends

select poses that are more semantically relevant. Another
vantage is that the neighborhood size for sparse representation
adaptive rather than fixed.
We perform extensive experiments on both synthetic and real

ta, using various types of visual features. The experimental re-
lts show that compared to previous methods, our method
hieves higher accuracy in pose recovery and significantly re-
ces the computation time.
The paper is organized as follows. After summarizing the re-

arch background in Section 2, we introduce visual feature selec-
n in Section 3. Section 4 presents pose retrieval via sparse

presentation and sequential optimization by dynamic program-
ing. Experiments are given in Section 5 and conclusions are in
ction 6.

Fig. 1. Our examplar based p
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Related work

This paper performs pose recovery by feature selection, and
us is related to the two fields summarized below.

. Image based pose recovery

There have been numerous publications on image based human
se recovery [8–10]. The approaches can be divided as generative
ease cite this article in press as: C. Chen et al., 3D human pose recovery from ima
010), doi:10.1016/j.cviu.2010.11.007
odel based) and discriminative (learning based). Generative
ethods exploit the fact that although the mapping from visual
tures to poses is hidden and complex, the reverse mapping is of-

n well-posed. Therefore, pose recovery is tackled by optimizing
object function that encodes the pose-feature correspondence

1], or by sampling posterior pose probabilities [12,13]. On the
her hand, discriminative methods directly learn a mapping from
ual features to pose parameters. The mapping is often approxi-

ated using regression models [14]. Alternatively, one can directly
ly on a dense training database, leading to the so-called ‘‘exam-
ar-based’’ methods [15,3,5,16].

Generally speaking, generative methods are more accurate, but
e computation is often expensive. On the other hand, discrimina-
e methods are more efficient. There also exist some hybrid

ethods [17,18].
Our work in this paper is based on the examplar-based pose

covery framework, with contributions in visual feature selection
d pose retrieval.

. Visual features for human motion analysis

A lot of features have been proposed for human motion analy-
. Many are based on silhouettes, such as Fourier descriptor [1],
ape contexts [19,20], geometric signature [21], Hu moments
2], Poisson features [23] and so on. There are also features based
edges or gradients, such as histogram of oriented gradients [24],

lational edge distribution [25] and various SIFT-like features
6,27]. Hierarchical features have also been proposed, such as

AX [28], Vocabulary Tree [30], Hyperfeatures [29] or Spatial
ramid matching [31]. Space-time interest points [32–34] are also
ploited.
Since there are many feature choices, a question naturally arises:

w to determine the most suitable features for pose recovery? This
n be answered in two ways. On one hand, comparative studies are
nducted to evaluate the performance of different feature types.
r example, Poppe and Poel [35] compare Fourier descriptor, shape
ntexts and Hu moments in 3D pose recovery. Chen et al. [36] com-
re various silhouette-based features. On the other hand, another
p is to select effective feature components via machine learning.

r example, Ren et al. [3] select silhouette feature components from
uge pool of Harr-like features. Chen et al. [4] perform feature com-
nent selection using Adaboost.
Another approach related to feature selection is subspace learn-

g (also known as dimension reduction). It aims to find the trans-
rmation from the original feature space to a low dimensional
bspace that retains most of the discriminative information.
ough the dimension in the learned subspace is usually much

er than the input feature dimension, the full feature set still

recovery framework.
ge by efficient visual feature selection, Comput. Vis. Image Understand.
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169 has to be extracted for novel data to obtain its subspace embed-
170 ding. In feature selection framework, however, given a novel data
171 sample, we only need to extract the selected feature components,
172 making feature extraction and subsequent procedures much faster.
173 Moreover, the time complexity of most subspace learning
174 algorithms is O(d3), where d is the dimension of input feature
175 space. Our feature selection algorithm, however, is faster
176 (O(d log(d))).

177 3. Visual feature selection for pose discrimination

178 3.1. Formulation

179 Suppose we have a set of N data samples U = {/1,/2, . . . ,/N} in
180 the examplar database. Each data sample is /i = (xi,yi), where
181 xi 2 Rd is the image feature vector and yi 2 Rp is the ground-truth
182 3D pose parameter. Let C ¼ fc1; c2; . . . cdg be the set of feature com-
183 ponents, where ci is the ith component. Our goal is to select a fea-
184 ture component subset eC � C consisting of d0 ¼ jeCj ðd0 < dÞ
185 components (dimensions), where j.j represents the cardinality of
186 n
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ðxi ;xjÞ2P
i j eC eC i j a i j

s:t: eC � C and jeCj ¼ d0; ð7Þ 258258

259which can be written more compactly as:
260

maxeC
Tr STeCUbSeC� �
Tr STeCUaSeC� � ; s:t: eC � C and jeCj ¼ d0; ð8Þ

262262

263where Tr(.) is the trace operator. Ua in the above equation is defined
264as:
265

Ua ¼
X
ði;jÞ2P

ðxi � xjÞðxi � xjÞT faðyi; yjÞ
� �

; ð9Þ
267267

268and Ub is defined similarly.
269The Brute force search for the optimal subset eC in (8) is clearly
270prohibitive, because the searching space is factorial on the number
271of feature components. We propose to use an efficient algorithm
272that searches for the global optimal eC iteratively [37]. The proce-
273dure is summarized in Fig. 2. For details, please refer to Appendix
274A or [37]. It is easy to deduce from Fig. 2 that the computation
275complexity of the algorithm is O(d log(d)).
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a set. For each possible eC, there is a corresponding feature selectio
function:

~x ¼ geC ðxÞ; ð1

where x 2 Rd is the original visual feature vector, and ~x 2 Rd0 is th
selected feature.

The principle of our approach is to select features such tha
close data in the pose space are also close in the feature spac
and vice versa. To encode the data relationships, we randomly gen
erate a set P containing M data pairs P ¼ fðxi1; xj1Þ; . . . ; ðxiM;xjMÞ
where xip 2U and xjp 2U are two different data points from th
training set. In addition, we define a function fa(yi,yj) that reflect
the pairwise pose similarity. That is, fa(yi,yj) is large if and only
yj and yj are similar. Similarly, we also define a function fb(yi,y
encoding pairwise data dissimilarity. That is, fb(yi,yj) is large
and only if yi and yj are dissimilar.

Using the above notation, our principle can be formulated i
two ways. First, similar poses (i.e. fa(yi,yj) is large) should corre
spond to close features, and hence we want to minimizP
ðxi ;xjÞ2P kgeC ðxiÞ � geC ðxjÞk2faðyi; yjÞ

� �
. On the other hand, dissimila

poses (i.e. fb(yi,yj) is large) should correspond to faraway feature

and hence we want to maximize
P
ðxi ;xjÞ2P kgeC ðxiÞ � geC ðx�

k2fbðyi; yjÞÞ. One way to combine the two above goals into a singl
criterion is to define an objective function as the ratio between th
two:

max

P
ðxi ;xjÞ2P

geC ðxiÞ � geC ðxjÞ
��� ���2

fbðyi; yjÞ
� �

P
ðxi ;xjÞ2P

geC ðxiÞ � geC ðxjÞ
��� ���2

faðyi; yjÞ
� � ;

s:t: eC � C and jeCj ¼ d0: ð2

3.2. Pairwise pose (dis)similarity functions

Now we detail how to define the pairwise functions fa (yi,yj) an
fb(yi,yj). They should be defined using dpose(yi,yj), which is the dis
tance function in the pose parameter space. dpose(yi,yj) is generall
calculated by the difference of 3D marker coordinates or rotationa
joint angles, depending on the motion data format. (Please see Sec
tion 5.1.2 for a explanation of pose distance used in the exper
ments of this paper.)
Please cite this article in press as: C. Chen et al., 3D human pose recovery fro
(2010), doi:10.1016/j.cviu.2010.11.007
A simple definition is by thresholding:

faðyi; yjÞ ¼
0; if dposeðyi; yjÞ > s;
1; if dposeðyi; yjÞ 6 s;

(

fbðyi; yjÞ ¼
1; if dposeðyi; yjÞ > s;
0; if dposeðyi; yjÞ 6 s;

( ð3

where s is the threshold on pose distance.
The functions in (3) consider each similar or dissimilar pose pa

with the same weight, and we call them hard pairwise functions. I
fact, this has some disadvantages. For example, within the simila
pairs, some pairs may be more ‘‘similar’’ than others, and the
should play a more important role. In order to address this consid
eration, we propose the following soft pairwise functions:

fa yi; yj

� �
¼ exp �dposeðyi; yjÞ=r2

� �
;

fb yi; yj

� �
¼

0; if dposeðyi; yjÞ 6 s;

dposeðyi; yjÞ=dmax
� �2

; if dposeðyi; yjÞ > s;

(
ð4

where dmax is the maximum value of all pose pairs in P.

3.3. Optimization

Now we describe the optimization of the feature selection crite
m imag
in (2). For the ease of presentation, we note that the featur
ction function can be written in matrix form as:

g ðxÞ ¼ ST x; ð5
eC eC
where SeC 2 Rd�d0 is the selection matrix corresponding to the fea
ture subset eC. Suppose the selected subset is defined aeC ¼ fcI1 ; cI2 ; . . . ; cId0

g, where I1; . . . ; Id0 are the indices of selected fea

components. Then SeC is defined as:h i
SeC ¼ sI1 ; sI2 ; . . . ; sId0
; ð6

where the kth column sIk
is defined as: sIk

¼ ½0Ik�1;1;0d�Ik
�T . wher

0n is the row vector of n zeros. That is, all components of sIk
excep
Ith
k one are zero.

Substituting (5) into (2), the criterion can be written as:P T T
� �
maxeC ðxi ;xjÞ2P
ðxi � xjÞ SeCSeC ðxi � xjÞfbðyi; yjÞP
ðx � x ÞT S ST ðx � x Þf ðy ; y Þ
� � ;
e by efficient visual feature selection, Comput. Vis. Image Understand.
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Pl
(2
Pose recovery via sparse representation and dynamic
ogramming

Using the feature selection algorithm introduced in the previous
ction, we get the best feature component subset for pose recov-
y. Therefore, pose retrieval in Fig. 1 is conducted using the vector
selected feature components instead of the full feature set. Be-
use the mapping from visual features to poses is highly compli-
ted and multi-modal, we cannot expect that a single topmost
atch will always correspond to the correct pose. Instead, for each
me, we retrieve a set of pose candidates using the sparse repre-

ntation approach. Then, sequential optimization is performed by
namic programming to generate a continuous pose sequence
sed on the candidates of each frame.

. Pose retrieval via sparse representation

We employ sparse representation (SR) [6,38] to find the pose
ndidates for each frame. It is reported in [6] that SR generally
tperforms nearest neighbor method. Another advantage of SR
that the neighborhood size (number of candidates) is adaptive
ther than fixed.
Let eX ¼ ½~x1; ~x2; . . . ; ~xN� 2 Rd0�N denote the matrix of all visual
tures in the examplar database, and let ~xt 2 Rd0 be the novel vi-

al feature of frame t whose 3D pose candidates are to be re-
eved. ~xt can be approximated as a combination of examplar
tures:

Fig. 2. Visual feature selection algorithm.
� wt;1~x1 þwt;2~x2 þ � � � þwt;N ~xN ¼ eXwt; ð10Þ

ere wt,1, . . ., wt, N P 0 are the positive reconstruction weights of
and wt = [wt,1, . . . ,wt,N]T is the reconstruction weight vector.

e residual error is k~xt � eXwtk.
On one hand, we want the residual error to be small. On the

her hand, we expect the reconstruction weight vector wt to be
arse, i.e. ~xt should be reasonably approximated by only a small
bset of examplar visual features. If no constraint was enforced
the sparsity, then ~xt would be approximated with a very small

sidual error by dense weights that are not informative on the
trinsic data relationship. Therefore, our goal is to solve the fol-

ing problem:

¼ arg min ~xt � eXwt

��� ���þ cjwt j1
� �

; s:t: wt;1; . . . wt;N P 0; ð11Þ

ere j.j1 is the L1 norm. The optimization in (11) can be solved effi-
ntly by Lasso [39]. In this way, for each frame, we retrieve a set of

Fig
pa
fea
an

ease cite this article in press as: C. Chen et al., 3D human pose recovery from ima
010), doi:10.1016/j.cviu.2010.11.007
se candidates as the items in the examplar database with non-
ro weights.
The regularizer c in Eq. (11) controls the weight of the sparsity

nstraint and consequently influences the average number of
ighbors for each data sample. In this paper we fix c = 50, which
oduces around 10–20 neighbors for each data sample averagely.

. Sequential optimization via dynamic programming

The next step is to conduct sequential optimization from the
se candidates of each frame to get a continuous pose sequence.
e use a graph model depicted in Fig. 3 to illustrate the problem.
de yt,c represents the cth pose candidate of frame t, and wt,c is

e corresponding weight derived from (11). Nodes from succes-
e frames are connected by edges with weights. Using this model,
define a path H as:

¼ hð1Þhð2Þ . . . hðTÞ; ð12Þ

ere h(t) is the index of pose candidate at frame t which is se-
ted as the recovered pose. Different cues are used to recover

e best path.

Feature cue. yt,h(t) should be consistent with the visual feature at
frame t. This is encoded in the weight wt,h(t). For frame t, the
normalized weights are used as the feature score fh(t):

fhðtÞ ¼ wt;hðtÞ
X

c

wt;c

,
; ð13Þ

Temporal cue. The recovered poses from successive frames
should not change abruptly. That is, dpose(yt,h(t), yt+1,h(t+1)) should
be relatively small. This is encoded in edge weights (transition
scores). From frame t to t + 1, the transition score oh(t),h(t+1) is:

ohðtÞ;hðtþ1Þ ¼ exp �dpose yt;hðtÞ; ytþ1;hðtþ1Þ

� �
=r2

� �
; ð14Þ

ere r is a parameter (we set r = 5 in this paper). Using the above
odel, the score of a path H is the total feature scores of all nodes it
sses by, plus the total transition scores of all edges it traverses:

scoreðHÞ ¼
XT

t¼1

fhðtÞ þ a
XT�1

t¼1

ohðtÞ;hðtþ1Þ; ð15Þ

ere a is the weighting parameter controlling the importance of
poral cue. As extremes, if a = 0, then temporal cue is not
. 3. Graph model for sequential optimization. This figure shows a segment of
th H = . . .h(t � 1)h(t)h(t + 1). . ., where h(t � 1) = 2, h(t) = 3 and h(t + 1) = 1. The
ture scores and transition scores are annotated beside the corresponding nodes
d edges, respectively.

ge by efficient visual feature selection, Comput. Vis. Image Understand.
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429� Occupancy map [41]: Human body’s bounding box is divided
430evenly into 12 � 8 cells, and the percentages of foreground pix-
431els in each cell are used as features. This generates 12 � 8 = 96
432feature components.
433� Contour signature [21]: It is defined by some geometric quantity
434measured along the silhouette border, which starts from the
435topmost point and is followed in a clockwise manner. We use
436the following three measures: coordinates, distances to cen-
437troid, and tangent angles. For each silhouette, we uniformly
438sample 64 points along the contour. Therefore the total dimen-
439sion is 128 + 64 + 128 = 320.
440� Fourier descriptor [1]: It consists of the normalized Fourier coef-
441ficients at different frequencies obtained by applying Discrete
442Fourier Transform to the contour signatures introduced above.
443It contains 62 + 32 + 62 = 156 feature components.
444� Hu moments [22]: They consist of seven moment based features
445calculated by treating the shape as a two-dimensional density
446distribution.
447� Shape contexts [19,20]: We use the histogram of shape contexts
448constructed from 12 angular bins and five radial bins, and the
449size of codebook is 100.
450� Poisson features [23]: We use 30 moment based features calcu-
451lated on local Poisson features.

s used in image synthesis.
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considered at all, and for each frame we just select the candidat
with the highest feature score. If a ?1, then feature cue is not con
sidered. In this paper we set a = 1. The global optimal pose path ca
be efficiently found by dynamic programming. In practice, there ar
some differences, depending on whether the image sequence
available all at once or incrementally.
� Batch system. If all video frames from 1 to T are known befor

sequential optimization, the global optimal path can be recov
ered. Note that under this model it is very convenient to incor
porate user defined constraints. For example, user may specif
the correct pose for a frame. This can be treated as hard con
straints by forcing the path to pass the specified nodes. Th
makes the maintenance of pose paths very intuitive.
� Online system. For online systems, such as real-time human

computer interaction, at each time t, we can derive the optima
path up to frame t, and the traversed pose at frame t is displaye
to the user as the recovered pose. Note that when new frames a
time t + 1, t + 2, . . . arrive, the optimal path before time t ma
change, and this may cause discontinuity in the online pose dis
play. However, the action of ‘‘changing the history’’ occurs onl
occasionally and can be viewed as automatic correction from
errors when additional information is available (see Sectio
5.4 in the experiments).

5. Experiments

Now we present experimental results. Conceptually, the ap
proach proposed in this paper consists of three parts: visual featur
selection, pose retrieval, and sequential optimization. In the fo
lowing we evaluate each part and show their effectiveness. Speci
ically, Sections 5.1 and 5.2 evaluate our visual feature selectio
method. Section 5.3 fixes the visual features and sequential optim
zation strategy, and evaluates our pose retrieval method via spars
representation. Section 5.4 fixes the visual features and pose retrie
val method, and evaluates our sequential optimization strateg
Finally, Section 5.5 demonstrates the effectiveness of the propose
approach as a whole by implementing real systems.

In the following, both Sections 5.1 and 5.2 use HumanEva data
set [40] to evaluate feature selection, where Section 5.1 uses syn
thetic images to evaluate the impact of unusual appearances, an
Section 5.2 uses real images to evaluate in practical situations wit
noise.

5.1. Evaluating feature selection on synthetic data

5.1.1. Data
HumanEva contains data of five motion types, namely boxin

gestures, jog, throw-catch and walking performed by three subject

Fig. 4. Character
Please cite this article in press as: C. Chen et al., 3D human pose recovery fro
(2010), doi:10.1016/j.cviu.2010.11.007
For each motion type and each subject, there are three trials. Trial
contains synchronized video and motion data, and is split as train
ing partition and validation partition. Trial 2 contains only vide
data and is used for testing. Trial 3 contains only motion dat
and is used for learning motion priors. In this subsection, we us
the motion data (3D poses) from trial 3 of all subjects, and the cor
responding images are synthesized by retargeting the poses to 3
characters.

Due to the high frame rate and the repetitive nature of motion
the dataset contains a lot of very similar poses. In order to mak
pose recovery more efficient, we generate only a subset of the 3
poses. First, we rotate all 3D poses in the data to 0� yaw angl
(i.e. in frontal view respect to the camera). Then, k-means
employed on the resulting poses with k = 300. For each of thes
300 pose configuration, we generate 24 poses by cycling the yaw
angle from 0� to 345� with 15� interval. Thus we generat
300 � 24 = 7200 poses. Then, each pose is targeted to eigh
characters by MotionBuilder (see Fig. 4). In this way, we generat
7200 � 8 = 57,600 images. They typically have unusual appear
ances (e.g. exaggerated head, helmet, gun in hand).

The ground-truth poses of these 57,600 images are triviall
known. The image features are based on silhouettes and ar
composed of several feature types as follows (see [36] for a mor
detailed discussion of these features):
m image by efficient visual feature selection, Comput. Vis. Image Understand.
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452

453 We end up with 716 feature components in total, from which
454 feature selection is performed.

455 5.1.2. Evaluation metric
456 Here we describe the evaluation metric in the context of pose
457 retrieval. First, the images of a given experiment are divided as
458 training and testing. For each testing image, its visual feature vec-
459 tor is calculated, and pose candidates are retrieved from the train-
460 ing data as described in Section 4.1. Then, the retrieval error is
461 evaluated independently for each testing image by measuring the
462 weighted distance between the ground-truth pose and the pose
463 candidates. Suppose the ground-truth pose for a testing image is
464 y. Let y0cði ¼ c; . . . ;CÞ denote the pose candidates, and let
465 fc(i = 1, . . . ,C) be the corresponding scores defined as:
466

fc ¼ wc

X
c

wc

,
; ð16Þ

468468
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er
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535the soft pairwise (dis)similarity functions notably outperforms
536the hard functions when the number of selected components is
537less than 200, indicating that soft functions are more robust in

Fig. 5. Evaluation results on synthetic images using single character.

6 C. Chen et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx

YCVIU 1703 No. of Pages 11, Model 5G

30 November 2010

Pl
(2
ere wc is the weights recovered by sparse representation. Then,
e retrieval error is defined as:

ror ¼
XC

c¼1

fcdposeðy; y0cÞ; ð17Þ

ere dpose(., .) calculates the pose distance. Here we use the built-
pose distance function provided in HumanEva. Specifically,

= 15 virtual markers are defined as {mi(y)}, i = 1, . . ., M, where
ðyÞ 2 R3 is a function of pose that returns the coordinate of the

marker in the local coordinate frame centered at the root seg-
ent on the body. Then, the distance between two poses is calcu-
ed as the average Euclidean distance between corresponding

arkers:

ose y; y0c
� �

¼ 1
M

XM

i¼1

miðyÞ �miðy0cÞ
�� ��: ð18Þ

te that body orientations (yaw angles) are not aligned. Therefore,
ses under different yaw angles have large distance. This is rea-
nable for view-independent pose recovery.

.3. Compared methods
We compare several feature selection methods as below.

All components: All the 716 feature components are used. This is
the baseline.
Subset selection (hard): Feature selection is performed using the
method proposed in Section 3, using the hard pairwise func-
tions as defined in Eq. (3), where the cut-off threshold s is set
to 80 mm.
Subset selection (soft): Feature selection is performed using the
soft pairwise functions as in defined in Eq. (4), where s is set
to 80 mm.
Adaboost (no weights): Feature selection is performed by
Adaboost as in [4]. Weights of the selected features are
discarded.
Adaboost (weights) Feature selection is performed using
Adaboost as described above. Each selected feature component
is scaled by the corresponding weight.

.4. Results using a single character
First, we evaluate the methods using data of a single character.
the 57,600 images, there are 7200 images belonging to the stan-

rd Humanoid subject. These 7200 images are randomly divided
to 3600 for training and 3600 for testing. This is a relatively easy
enario, since the same subject appears in both training and test-
g. From the 3600 training data, we randomly generate 10,000
irs for feature selection. Then, the evaluation is performed on

ease cite this article in press as: C. Chen et al., 3D human pose recovery from ima
010), doi:10.1016/j.cviu.2010.11.007
e testing images. The results are plotted in Fig. 5. It can be seen
at our feature selection method outperforms others. Hard and
ft pairwise (dis)similarity functions generate comparable results
this case. We can also conclude that for Adaboost, the weights of
lected features play an important role. If the weighs are not used,
e error is notably larger.

.5. Results using multiple characters
Now we consider the evaluation on all the 57,600 images of the
ht characters as displayed in Fig. 4. This is clearly more difficult

an the single-character case, as the appearances of different
aracters differ a lot. We use the 28,800 data samples from char-
ters Agragor, BBallPlayer, Edward and Gaulix for training and the
maining 28,800 samples of Gaunt, Humanoid, Mia and Roger for
sting. That is, no character appears in both the training and test-
g data. This significantly increases the difficulty. In this way we

phasize on the generality, which is extremely important for im-
e based pose recovery. From the 28,800 training images, 100,000
irs are randomly generated for feature selection. The other set-
gs are the same as the single-character case presented above.
The results are shown in Fig. 6. It can be seen that our subset

lection algorithm generates the best performance. In this case,
Fig. 6. Evaluation results on synthetic images using multiple characters.

ge by efficient visual feature selection, Comput. Vis. Image Understand.
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538 dealing with different human appearances. For Adaboost, the
539 weights of selected features are still important as we observed in
540 Section 5.1.4.
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577person in the image is equally split into H �W cells. For each cell,
578we construct K bins representing K directions in the image plane.
579Then, the gradient of each pixel inside the bounding box is calcu-
580lated, and the gradient direction of each pixel contributes to the
581corresponding direction bin of the cell it belongs to. In this way,
582H �W � K feature components are extracted for each image.
583We set K = 9, i.e. each direction bin corresponds to a range of
58420�. The setting of H and W is not so easy. It specifies the resolution
585at which the gradients are accumulated. Because the aspect ratio of
586human bounding box is roughly 0.5, we adopt several configura-
587tions: (H,W) = (2,1), (4,2), (8,4), (16,8). This produces a total of
5881530 hierarchical feature components, on which feature selection
589is applied.
590The evaluation metric is the same as in Section 5.1.2, and Fig. 8
591shows the results. When the number of selected components is rel-
592atively small (680), Adaboost achieves lower error. However, in
593such cases neither Adaboost nor our method generates satisfactory
594performance (the error is even higher than baseline). When the
595number of selected components is larger, our method shows its
596advantage. The soft pairwise functions outperform the hard ones
597in most cases, but when the number of components is large, their
598performances are comparable.

Fig. 7. Comparison of computation time in training stage.

g
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Note that in Figs. 5 and 6, as the number of selected component
exceeds 200, the error slightly increases. This is because, as th
number gets larger and larger, irrelevant components get selected
impairing the discriminative power. This is consistent with th
spirit of feature selection: select discriminative components, an
leave behind the components that are ineffective or even mislead
ing. As an extreme, when the number of selected component
equals 716, all components are selected, and feature selection sim
ply degenerates to the baseline.

5.1.6. Comparison on computation time
As said in Section 3, our subset selection algorithm is very fas

as its complexity is O(d log(d)). On the other hand, Adaboost
much slower. Adaboost requires d

0
rounds to select d

0
component

In each round, we have to calculate the error rate of each of the
components, where the computation of each component involve
classifying the M data pairs. Therefore, the computation complex
ity is O(d � d

0 �M).
Fig. 7 compares the mean computation time in training stage i

the settings of Section 5.1.5. On average, our method is aroun
1000 times faster than Adaboost.

5.2. Evaluating feature selection on real data

In this subsection we evaluate our the feature selection metho
using the real images from HumanEva dataset, where all the sub
jects S1, S2 and S3 are included. HumanEva utilizes seven camera
Because we are recovering poses from monocular images, we onl
use the images from camera C1. We use the training partition o
the original dataset as the training data, and the validation part
tion as the testing data.1 The original testing data is not used, a
the ground-truth pose data is not provided. Note that we exclud
the poses in HumanEva which are marked as invalid by the datase
publisher. We generate 4729 training and 4848 testing data sam
ples altogether. Each sample contains the image and the corre
sponding ground-truth 3D pose.

In contrast to the previous subsection, instead of silhouette
based visual features, here we use HoG [24,16], which is calculate
from the original image.2 Specifically, the bounding box of th

1 Many other evaluations [42,36] use the same configuration, where the testin
partition is not used because ground-truth is not available.
2 et
simi e
appl Fig. 9. Comparison of sparse representation and nearest neighbor method.

Ple
(20
Actually, we could still use the silhouette-based features as in Section 5.1 and g
lar results. In this section we use HoG to demonstrate that our method can b
ied to various types of visual features.
ase cite this article in press as: C. Chen et al., 3D human pose recovery fro
10), doi:10.1016/j.cviu.2010.11.007
Fig. 8. Evaluation results on real images.
m image by efficient visual feature selection, Comput. Vis. Image Understand.
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(2
. Evaluating pose retrieval via sparse representation

In this subsection we compare performance of our sparse repre-
ntation approach with the nearest neighbor method in the task

pose retrieval. The training data is the same as in Section
.4, i.e. 3600 samples belonging to Humanoid character. The test-

g data is the real data from HumanEva dataset (same as in Sec-
n 8). Fig. 10 gives an example of subject S1, where she walks
a 360� circle. Here we fix the feature to be the 150 components
lected in Section 5.1.4 using our algorithm with soft pairwise
nctions. Pose retrieval is conducted using sparse representation
k-NN, and then sequential optimization by dynamic program-

ing is performed to get the final recovered pose sequence. The
ean recovery error is the mean distance between the ground-
th pose and the recovered pose in each frame.
For k-NN, we evaluate different values of k = 1, 5, 10, 15 and 20.

so, for feature-cue, we use the normalized distance in the feature
ace as the weight (which serves as the counterpart of Eq. (13) in
NN case). The comparison is plotted in Fig. 9. It can be seen that
arse representation generates a lower recovery error compared
k-NN. For k-NN, as k increases from 1 to 20, the error first drops
d then increases significantly, implicating that incorrect poses
e being retrieved for large k. This is also an evidence that setting
e value of k is important, but unfortunately, non-trivial, for k-NN
ethod.

. Evaluating sequential optimization

In this subsection we evaluate the sequential optimization
ategies. The training and testing data are the same as in Section
. We still fix the feature to be the 150 components selected in

ction 5.1.4 using our algorithm with soft pairwise functions. Pose
trieval is conducted using sparse representation, and then
quential optimization is performed to get the final recovered
se sequence. Several methods are compared.

Topmost: The topmost match of each frame is used.
Simple Incremental (S-I): At frame t = 1, topmost match is used.
For frame t = 2, . . ., T, the pose is inferred from the feature-cue
of the current frame and the recovered pose of the previous
frame. Specifically, the index of the recovered pose at frame t is:

c	 ¼ arg min
c

ft;c þ bdposeðyt�1; yt;cÞ
� �

; ð19Þ

. 10. Evaluating sequential optimization. The first and second rows are images and si
ng four different sequential optimization methods. Significant incorrect poses are m
ease cite this article in press as: C. Chen et al., 3D human pose recovery from ima
010), doi:10.1016/j.cviu.2010.11.007
ettes, respectively. The third, fourth, fifth and sixth rows are the recovered poses
d by dash ellipses.

le 1
antitative comparison of sequential optimization.

Method Topmost S-I DP Batch DP Online

Error (mm) 82.3 87.0 66.5 73.9
ed pose in frame t � 1, and b is the weighting parameter (we set
1).
DP Batch: The method proposed in Section 4.2, used in batch
mode.
DP Online: The method proposed in Section 4.2, used in online
mode.

Fig. 10 illustrates the results on one example, and Table 1 shows
e mean recovery error for this case. Note that this is a difficult
se because the subject is turning her body as she walks and sil-
uette based features tend to suffer more from ambiguity in body
ientation. Incorrect poses are annotated by dash ellipses. DP
tch and DP Online produces best results. For Topmost, the recov-
ed poses are not continuous, and many suffer from reflective

biguity. For S-I, the tracking is lost at t = 225. DP Online produces
ilar results to DP Batch at most frames. Errors occur at frames

90 and t = 105 for DP Online. However, the error is automatically
covered at t = 120.
Generally speaking, our sequential optimization methods pro-
e the best results. As expected, the error of DB Online is some-
at higher than DB Batch. It is also interesting to note that

pmost outperforms S-I, implicating that the performance
provement can not only be obtained through temporal smooth-

g, but also by maintaining multiple hypotheses.

. System implementation

We implement two systems using the approach proposed in
is paper: a batch system and an online system.3 In the batch sys-
m, user loads a sequence of images, and the corresponding pose
quence is recovered. To fine-tune the result, user can also specify
rd constraints at some frames, i.e. forcing the pose sequence to
ss some pose candidates. The online system operates in real-
e (15 fps).

Please see Supplementary materials for demonstrations.
ge by efficient visual feature selection, Comput. Vis. Image Understand.
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Because HumanEva only contains a limited amount of motion
We use our own motion capture device to capture more motio
data, such as punching, kicking and various gestures. These dat
are also used in the examplar database to recover more motion
See Fig. 11 for illustrations.

6. Conclusions

In this paper we proposed a new examplar-based approach t

Fig. 11. Recovery
recover 3D human poses from monocular images. We made two
contributions. First, we proposed to use an efficient feature selec-
tion algorithm to select the globally optimal visual feature compo-
nents. It was shown that the selected components improve the
accuracy and efficiency. Second, we proposed to conduct pose re-
trieval using sparse representation, which ensures that semanti-
cally similar poses have larger probability to be retrieved.

Currently, our examplar database contains up to ten thousand
samples. If the database contains many types of motions, it will
be much larger. This has two consequences. First, the speed of pose
retrieval will be slower. Second, different types of motions will
tend to interfere with each other, causing more ambiguity. In the
future we would like to study more closely on the performance
and optimization of our approach on very large examplar
databases.

Appendix A. Solution to theoptimization problem in Section 3.3

Following the notation as in Section 3.3, let us denote:

k	 ¼
Tr STeC	UBSeC	� �
Tr STeC	UASeC	� � ¼ maxeC

Tr STeCUBSeC� �
Tr STeCUASeC� � ð20Þ

and introduce the function f(k):

f ðkÞ ¼ maxeC Tr STeC UB � kUAð ÞSeC� �
: ð21Þ

Next, we define the function g which returns the subset eC at which
f(k) is reached. For a given k, we can show (see [37]) that the set g(k)
can be obtained by simply computing the score of each feature com-
ponent sið1 6 i 6 dÞ : sci ¼ sT

i ðUB � kUAÞsi. Then we sort the compo-
nents with descending score, and g(k) is composed of the first d

0

components.
From (21) and the definition of g(k), f(k) can be written as:

f ðkÞ ¼ Tr ST
gðkÞ UB � kUAð ÞSgðkÞ

� �
; ð22Þ

where the max operator in (21) has been removed. Sg(k) is the selec-
tion matrix corresponding to subset g(k).

724s

Please cite this article in press as: C. Chen et al., 3D human pose recovery fro
(2010), doi:10.1016/j.cviu.2010.11.007
It is easy to note that g(k) is a piecewise constant function, an
that f(k) is a piecewise linear function with derivative:

df ðkÞ
dk
¼ �Tr ST

gðkÞUASgðkÞ

� �
: ð23

From (23), f(k) is monotonically decreasing. From (20) and (21) w
have f(k*) = 0. Therefore, k*, which is the root of f(k), can be effi
ciently searched for using Newton method. Note that because f(k
is piecewise linear, the iterative optimization is very fast (we ob
serve in experiments that the optimization typically terminate

ults for online system.
725within five iterations).

726Appendix B. Supplementary material

727Supplementary data associated with this article can be found, in
728the online version, at doi:10.1016/j.cviu.2010.11.007.
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