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Measuring the Gap Between HMM-Based
ASR and TTS

John Dines, Member, IEEE, Junichi Yamagishi, Member, IEEE, Simon King, Senior Member, IEEE

Abstract—The EMIME European project is conducting re-
search in the development of technologies for mobile, personalised
speech-to-speech translation systems. The hidden Markov model
(HMM) is being used as the underlying technology in both
automatic speech recognition (ASR) and text-to-speech synthesis
(TTS) components, thus, the investigation of unified statistical
modelling approaches has become an implicit goal of our re-
search. As one of the first steps towards this goal, we have been
investigating commonalities and differences between HMM-based
ASR and TTS. In this paper we present results and analysis of a
series of experiments that have been conducted on English ASR
and TTS systems measuring their performance with respect to
phone set and lexicon; acoustic feature type and dimensionality;
HMM topology; and speaker adaptation. Our results show that,
although the fundamental statistical model may be essentially
the same, optimal ASR and TTS performance often demands
diametrically opposed system designs. This represents a major
challenge to be addressed in the investigation of such unified
modelling approaches.

Index Terms: speech synthesis, speech recognition, unified
models

I. INTRODUCTION

Over the last decade automatic speech recognition (ASR)
and text-to-speech synthesis (TTS) technologies have shown
a convergence towards statistical parametric approaches [1]–
[3] . Despite this apparent convergence of technologies, the
ASR and TTS communities continue to conduct their research
in a largely independent fashion, with occasional cross-overs
between the two. On one hand this can be considered a natural
consequence of the fact that these technologies have quite
disparate goals in mind, but it can also be argued that there
are several persuasive arguments for considering ASR and TTS
technologies in a more unified context.

A core motivation for conducting research in the domain
of unified speech modelling is the possibility of better under-
standing the mathematical and theoretical relationship between
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synthesis and recognition. Furthermore, this may encourage
greater cross-polination of knowledge between the two fields,
leading to novel discoveries in both. The last and possibly
greatest motivation comes from the possibilities that unified
modelling of ASR and TTS offer in terms of applications.
Arguably, the application most likely to benefit from uni-
fied models for ASR and TTS is that of speech-to-speech
translation (SST), which combines ASR, TTS and machine
translation (MT).

While several speech-to-speech translation efforts have been
conducted over the years, most have used largely heteroge-
neous approaches1. In EMIME2, we aim to use statistical
parametric methods in order to achieve two goals in SST;
firstly, the ability to efficiently adapt a system to the user’s
voice and, secondly, in the context of a mobile application, we
wish to benefit from parsimonious nature of such approaches.
More specifically, we are using hidden Markov model (HMM)
based automatic speech recognition (ASR) and text-to-speech
(TTS) in order to achieve these goals.

The use of unified models in SST represents a particularly
attractive paradigm since it provides a natural mechanism for
speaker-adaptive TTS by employing the same speaker de-
pendent transforms learned from ASR, while offering further
efficiency with respect to computation and memory (see for eg.
[4]–[6]). There are numerous challenges present in developing
such models. In particular we note that, despite the common
underlying statistical framework, HMM-based ASR and TTS
systems are generally very different in their implementation.

This paper presents a detailed empirical study of ASR
and TTS systems, where evaluations are carried out using a
common training data set and (where possible) common model
training paradigm. Our goal is to determine which components
of TTS and ASR systems are the most detrimental to the
other, thus, identifying priorities for further research in the
development of unified models. Thus, if our ultimate goal is
to ‘bridge the gap’ between ASR and TTS then this work is
primarily concerned with ‘measuring the gap’ between ASR
and TTS.

The paper is organised as follows: Section II presents an
overview statistical models for ASR and TTS, focusing on
the HMM and the major differences between ASR and TTS
approaches. Section III describes our methodology and Section

1For example: Technology and Corpora for Speech to Speech Translation
(TC-STAR) http://www.tc-star.org/; Global Autonomous Language Exploita-
tion (GALE) http://www.darpa.mil/ipto/programs/gale/gale.asp; The Vermobil
Project http://verbmobil.dfki.de/overview-us.html.

2Effective Multilingual Interaction in Mobile Environments: http://www.
emime.org
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IV details our empirical studies and analysis in measuring the
the gap between ASR and TTS systems. Finally in Section V
we present our conclusions.

II. STATISTICAL GENERATIVE MODELLING OF SPEECH FOR
ASR AND TTS

Automatic speech recognition and text-to-speech synthesis
have fundamentally different objectives: ASR is concerned
with classification/discrimination of time series and TTS is
concerned with generation/regression of time series. In ASR,
both generative and discriminative modelling approaches have
been extensively investigated. More recently, increasing atten-
tion has been made towards the study of discriminative models
such as conditional random field (CRF) [7] and discriminative
training criteria such as maximum mutual information (MMI)
[8] and minimum phone error (MPE) [9], since in classi-
fication tasks there is little point in accurately representing
the entire observation space when our interest is primarily
on the decision boundaries between classes. In contrast for
TTS, investigations have naturally been limited to generative
modelling, though alternative training/generation criteria are
also emerging [10].

In considering the different time series statistical models
that have been proposed for ASR and TTS, we focus on
the generative models. The most extensively investigated gen-
erative model has been the hidden Markov model that was
first proposed for use in ASR [11] and subsequently for TTS
[12]. The HMM only provides a coarse approximation of the
underlying process for the generation of acoustic observations,
in particular, the conditional independence assumption of
acoustic features and the first order Markovian assumption for
state transitions. Consequently, numerous models have been
proposed that attempt to overcome the short-falls of the HMM
and provide better performance with respect to ASR and/or
TTS.

The most elementary effort to improve modelling of the
HMM has been the inclusion of dynamic features [13], which
does not even require modification of the model, but has
significant impact on ASR and TTS. Similarly, the hidden
semi-Markov model (HSMM) provides explicit modelling of
state duration through a simple modification to the HMM that
is particularly important for synthesis [14]. Due to the im-
portance of feature dynamics in speech synthesis, the explicit
relationship between between dynamic and static features has
been exploited during inference of observation vectors [3].
For consistency, this explicit relationship should also be taken
into account during model parameter estimation, leading to
the development of the trajectory HMM [15], which has been
shown to further benefit both ASR and TTS performance.

Aside from the trajectory HMM, alternative generative mod-
els have been studied that explicitly model feature dynamics;
for example, in the form of: 1) state trend functions [16],
[17]; 2) as an auto-regressive process [18], [19]; or 3) at the
segment level using switching dynamic system [20], [21]. Im-
plementation of such statistical modelling frameworks for ASR
and TTS also requires consideration of the sparse nature of
contextual modelling, where some models, such as switching

linear dynamic system, are able to provide implicit handling
of co-articulation effects resulting in a more parsimonious
model, while others constitute a more direct extension of the
conventional HMM framework and necessitate a reformulation
of parameter tying algorithms [22].

Deep architectures provide a means for efficiently learn-
ing complex tasks such as those encountered in speech and
language processing. In particular, it is argued that shallow
architectures can require exponentially more computational
elements than an appropriately deep architecture [23]. Such
shallow architectures are typified in conventional ASR and
TTS systems that explicitly model conditional distributions of
all the contexts. One such deep architecture that is based on a
generative framework is the deep belief network (DBN) [24],
which has been shown to yield impressive performance on
a phone recognition task [25]. An alternative that provides a
less dramatic break from conventional modelling approaches
includes methods for generating ensembles of trees that can
provide a more efficient means to tie acoustic contexts in
HMM-based systems [26], [27].

The duality of generative models for both classification
and regression tasks provides a basis for unified modelling
approaches and motivates us to evaluate such models not only
in terms of classification performance for ASR, but also in
terms of generation performance; that is, using measures such
as spectral distortion and subjective evaluation. Such an in-
depth comparison from these different perspectives has the
potential to provide more insight into the performance of the
generative models. In this paper we limit the scope of our
investigations to the dominant paradigm in speech modelling
for ASR and TTS – the hidden Markov model. We expect
that many of the findings would generalise to other generative
models that have been mentioned above.

A. HMM-based ASR and TTS

The hidden Markov model has been the dominant paradigm
for ASR for over two decades. In more recent years the
HMM has also become the focus of increasing interest in
TTS research. This apparent convergence of ASR and TTS
to a common statistical parametric modelling framework is
largely thanks to a number of properties of the HMM, among
these the most notable include its scalability to large scale
tasks; desirable generalisation properties; powerful adaptation
framework; and parsimony with respect to the size of training
data. The continued dominance of HMM-based techniques
is also thanks, in part, to the existence of freely available
software such as HTK [28], a trend that is also continuing in
TTS with HTS [29]. In comparing typical HMM-based ASR
and TTS systems, there are a few fundamental differences that
we can note, in particular, unlike in speech recognition, speech
synthesis utilises explicit state duration modelling; modelling
of semi-continuous data; and makes extensive use of a full
range of contextual information for the prediction of prosodic
patterns [30], [31].

Less evident, but equally important, are the specifics of how
these systems are implemented. Components such as lexicon
and phone set, acoustic features, and HMM topology are



3

Configuration ASR TTS
General
Lexicon CMU Unisyn
Phone set CMU (39 phones) GAM (56 phones)
Acoustic parameterization
Spectral analysis fixed size window STRAIGHT (F0 adaptive window)
Feature extraction filter-bank cepstrum (∆ + ∆2) mel-generalised cepstrum (+ ∆ + ∆2)

+ logF0 + bndap (+ ∆ + ∆2)
Feature dimensionality 39 120 + 3 + 15
Frame shift 10ms 5ms
Acoustic modelling
Number of states per model 3 5
Number of streams 1 5
Duration modelling transition matrix explicit duration distribution (HSMM)
Parameter tying phonetic decision tree (HTK) shared decision tree (MDL)
State emission distribution 16 component GMM single Gaussian pdf
Context triphone full (quinphone + prosody)
Training 2-pass system (ML-SI & ML-SAT) Average voice (ML-SAT)
Speaker adaptation CMLLR CMLLR or CSMAPLR

TABLE I
CONFIGURATIONS OF HMM-BASED ASR AND TTS SYSTEMS.

generally different in ASR and TTS systems, our choice being
influenced by the differing goals of ASR and TTS. In the case
of ASR, robustness to speaker and environmental variability,
ability to handle pronunciation variation and generalisation
to unseen data while maximising class discrimination are
paramount. In TTS we are concerned with such character-
istics as the ability to re-synthesise speech which is highly
intelligible and retains speaker identity and also the ability to
generate natural sounding speech from previously unseen text.
Many of these desirable properties are diametrically opposed,
thus we expect many properties of ASR and TTS systems to be
incompatible. Table I shows typical configurations of HMM-
based ASR and TTS systems (these also being the baseline
configurations we have used for experiments described in this
paper). For further details of such systems refer to [28], [29],
[32].

In the study presented in this paper we analyse ASR
and TTS performance with respect to several key system
components namely: lexicon and phone set; feature extraction;
model topology; and speaker adaptation. This study has been
conducted with American-English systems using phone based
acoustic units, though we believe that many of the results are
also significant for other languages, even when the phoneme
is not typically the acoustic unit of choice (see for eg. [33]).
In the remainder of this section we present brief descriptions
of these components and refer to previous related studies that
have been conducted. We note that although some previous
experiments have been conducted which compare the afore-
mentioned aspects of ASR and TTS, we believe this is the
most comprehensive such study and the first to consider both
ASR and TTS.

1) Lexicon and phone set: The lexicon describes the set
of words known by the system and their pronunciation(s). In
TTS we may also generate pronunciations that lie outside of
the lexicon using letter-to-sound (LTS) methods. In practice,
lexica can differ greatly, both in terms of the phone set and the
way in which phones are composed into word pronunciations.
There is no strict set of guidelines as to what constitutes an
optimal lexicon for application in either ASR or TTS, though
it is evident that in both cases phone sequences produced by
the lexicon should have good correlation with acoustic data.
There has been significant work conducted on pronunciation
variation modelling for ASR [34], but there are few detailed
studies investigating the choice of lexicon and phone set
for ASR or TTS. One of the few such studies [35] shows
that the choice of lexicon can lead to significantly different
performance between ASR systems.

2) Feature extraction: Typically, there are significant dif-
ferences between feature extraction techniques used in ASR
and TTS. In recognition, emphasis is placed on speech rep-
resentations that provide good discrimination between speech
sounds, while being relatively invariant to speaker identity and
environmental factors. The ability to reconstruct speech from
such representations is not necessary, so much information
may be discarded. Conversely, parametric models for synthesis
are focused on reconstruction and manipulation of the speech
signal, incorporating higher order analysis and a method
for signal reconstruction. ASR systems typically employ a
filterbank based cepstrum representation such as perceptual
linear prediction (PLP) [36]. TTS features are normally based
on variations of the mel-generalised cepstrum analysis [37]
and may incorporate STRAIGHT F0-adaptive spectral analysis
[38] .
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The literature shows numerous studies comparing different
feature extraction techniques for ASR and TTS, amongst
which we can find work that is particularly relevant to the
study reported here [39], [40], though there are few such
comparisons that take both ASR and TTS into consideration
[41]. Furthermore, studies in ASR have largely been concerned
with low order feature analysis, while TTS studies have
tended to focus on higher analysis orders. In summarising
the findings of this work, we see that in general higher order
features are better suited to TTS and lower order features ASR.
Unfortunately, there is little information comparing ASR and
TTS features on a common task, and the evaluation tasks that
have been used are often insufficiently complex or use too
little data in order to elucidate significant differences between
systems.

3) Model topology: Model topology describes the manner
in which states in the HMM set are arranged. Thus, we
can consider the number of emitting states in each model as
one aspect of model topology as well as the state transition
modelling (eg. left-right, ergodic, explicit duration pdf). In
ASR, it is typical to employ 3-state left-right HMM topology,
whereas in TTS 5-state left-right HSMM topology is normally
employed.

We may also consider parameter smoothing and parameter
tying techniques, such as decision tree state tying, as being
concerned with model topology. Both ASR and TTS use
variants of decision tree state tying [42]. Recognition systems
are usually built using a single tree per state per base phone
(phonetic decision tree), whereas synthesis models tend to
use a single tree per state (shared decision tree). Stopping
criteria for tree growth are normally either based on minimum
likelihood increase combined with a minimum lead node
occupancy threshold (as is used in HTK) or use a model
selection criteria such as minimum description length (MDL)
[43].

Overall, there appears to be a dearth of information in
the literature concerning optimal selection of HMM topology,
though there has been some work reported on alternatives
to the standard left-right configuration [44] and also work
showing the link between parameter tying and pronunciation
modelling [34]. Within both the ASR and TTS research
communities a common HMM topology seems to have been
almost unanimously adopted, which suggests that these have
been accepted to be the optimal configurations. Concerning
state-tying, we can point to previous work [45], [46], which
have shown that the MDL criterion works well for clustering
without the need to fine tune the system.

4) Speaker adaptation: Arguably, the most pervasive
speaker adaptation approaches in speech recognition and
speech synthesis are those based on maximum likelihood
linear transforms (MLLT) [47] and maximum a posteriori
(MAP) adaptation [48] – where the two may also be used
in combination [49]. Such approaches provide the means to
adjust models using relatively few parameters, thus requiring
only a small quantity of speaker-specific data. Several flavours
of linear transform-based speaker adaptation exist that may
be applied to model parameters (maximum likelihood linear
regression (MLLR) [50], structural maximum a posteriori

linear regression (SMAPLR) [51]) or features (constrained
maximum likelihood linear regression (CMLLR) [47], con-
strained structural maximum a posteriori linear regression
(CSMAPLR) [46], [52]). Speaker adaptive training (SAT)
[53] uses speaker dependent transforms during training of
the speaker independent HMM acoustic model, such that the
speaker acoustic model is comprised of both the canonical
acoustic model plus speaker dependent transforms. SAT has
been used extensively in ASR and TTS (where the canonical
model is called the average voice model [40]).

Adaptation may be performed in supervised mode – where
we know the transcription of the adaptation data – and in
unsupervised mode – where we do not know the true tran-
scription of the adaptation data and adaptation is performed
using an estimated ASR transcription. Numerous comparisons
of speaker adaptation algorithms have been made for both
ASR and TTS comparing adaptation algorithms [46], [47] and
supervised versus unsupervised adaptation [4], [50].

III. METHODOLOGY

The experiments presented in this paper have been con-
ducted using existing techniques in ASR and TTS. Conven-
tional evaluation measures have been adopted in order to allow
comparison with other systems reported in the literature. As
far as possible, the variables for experimentation in the TTS
evaluations (e.g., training and test sets, speech features, and so
on) are shared between both ASR and TTS systems. Since our
goal is to understand which aspects of ASR and TTS systems
are compatible and those which diverge, the methodology that
we have undertaken is to compare ASR and TTS performance
for baseline systems against systems where we have exchanged
baseline components for those in the opposing system (eg. we
exchange ASR features for TTS features and evaluate these
in the context of ASR WER and visa versa). The baseline
system configurations are shown in Table I. In this study we
are not considering such fundamental differences as duration
or context modelling – these being the subject of more focused
research [27], [54], [55].

A. Experimental setup

We built the ASR and TTS systems based on the HTS
system entry to the 2007/2008 Blizzard Challenge [32], [56].
The HTS-2007 system is illustrated in Figure 1a, where four
main components can be identified: speech analysis, aver-
age voice training, speaker adaptation and speech synthesis.
An additional recognition part is illustrated in Figure 1b.
The speech analysis stage is responsible for the generation
of acoustic features upon which our models are trained.
For speech synthesis, speech analysis composes F0 adaptive
STRAIGHT spectral analysis [38] followed by extraction
of mel-generalised cepstrum-derived spectral parameters [37]
plus excitation parameters (logF0 and band-limited aperiodic
features (bndap) for mixed excitation). Each feature is mod-
elled using a separate stream, where semi-continuous features
(logF0 + ∆ + ∆2) use multi-space probability distribution
(MSD) [30]. For speech recognition, speech analysis uses
perceptual linear prediction (PLP) coefficients [36]. We model
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Fig. 1. Overview of ASR and TTS system configuration used in this work.

only spectral features for the speech recognition component
of this study, hence, speech recognition models use a single
stream whereas speech synthesis models use five separate
feature streams.

Speech recognition and synthesis systems use the same
average voice training procedure which involves the generation
of maximum likelihood speaker adaptive trained (SAT) [53],
context dependent, left-right models. The synthesis synthesis
system uses only a single diagonal mixture component per
state emission pdf. The speech recognition system has its state
emission pdfs incremented to 16 diagonal Gaussian mixture
components. Duration modelling for the ASR system uses

standard transition matrix whereas TTS system uses explicit
modelling of state duration using a single Gaussian per state
[57]. ASR models use triphone based context with phonetic
decision trees, TTS models use “full-context” (incorporating
both quinphone and prosodic context labels) with shared
decision trees.

Constrained maximum likelihood linear regression (CM-
LLR) [47] is used during training and testing of both synthesis
and recognition systems. By default, the ASR system uses
unsupervised adaptation in a two-pass configuration, using
speaker independent models for the first pass and SAT trained
models in the second pass. The baseline TTS system uses
supervised adaptation. The application of unsupervised adap-
tation to TTS is a subject of ongoing research [4], [5], which
we also touch upon in this study. Synthesis uses HMM-
based parameter generation [58], [59] to generate sequences
of excitation and spectrum parameters. Excitation parameters
are used to generate a source signal using pitch synchronous
overlap and add (PSOLA). The speech waveform is generated
by exciting a mel-logarithmic approximation filter (MSLA)
that corresponds to the generated spectral parameters with the
source signal.

Training data comprised the Wall Street Journal (WSJ0)
short term speaker training data (SI84) which includes 7240
recordings made by 84 speakers [60]. The use of an ASR
corpus for training synthesis models is a new concept though
does not involve any technical novelty. Our motivation in doing
so was to ensure a maximum of commonality between ASR
and TTS systems and thus greater consistency in the reporting
of experimental results. Furthermore, our ultimate goal is the
development of unified modelling approaches which implies
that we use common training data for ASR and TTS. In a
separate study we have shown that using ASR corpora to build
TTS corpora is indeed a reasonable thing to do [61], [62].

B. ASR evaluation

For the evaluation of ASR we used the primary condition
(P0) of the 5k vocabulary hub task (H2) of the November
93 CSR evaluations, except for speaker adaptation evaluations
for which we use the Spoke 4 (S4) task of the November
93 CSR evaluations. Decoding employs the 5k closed bigram
language model distributed with the corpus. The word error
rate (WER) metric is used in the reporting of ASR system
performance. Statistical significant testing of ASR results is
carried out using the bootstrap method [63] and is reported
with 95% confidence.

C. TTS evaluation

For the evaluation of TTS we also used the November 1993
CSR Spoke 4 data. The large number of design factors that can
be varied during the training of an HMM-based synthesiser
leads to a potentially very large number of variants to be
compared. Therefore, listening tests have only been used for
a subset of systems, and for a single target speaker, ‘4oa’.
Objective measures have been used for all systems and all the
target speakers from the evaluation set. It is important to recog-
nise that these objective measures do not perfectly measure
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the quality of synthetic speech. They generally only weakly
correlate with perceptual scores obtained from listening tests
[64], [65].

Objective evaluation is carried out by first aligning reference
and test utterances. To measure the accuracy of the spectral
envelope of the synthetic speech, we use “average mel-cepstral
distance” (MCD) [66]–[70], which is only calculated during
periods of speech activity. The MCD calculated between the
mel-cepstra generated from HMMs and extracted from the
natural reference speech in the evaluation set is an Euclidean
distance and is given by

MCD [dB] =
10

ln 10

√√√√2
D∑

d=1

(cd − ĉd)2, (1)

where D is the analysis order of mel-cepstra and cd and ĉd are
the d-th coefficients of the mel-cepstra of generated and natural
speech, respectively. Note that the c0 term which captures the
power of waveforms is excluded from the MCD calculation. To
measure the accuracy of the F0 contour, the second objective
measure we calculate is the root-mean-square-error (RMSE)
of logF0. Since F0 is not observed in unvoiced regions, the
RMSE of logF0 is only calculated when both generated and
the actual speech are voiced. Lastly, we measure voicing error
as the percentage of frames in which the natural and synthetic
speech differ in their voicing status.

For subjective evaluation of synthesised speech, we adopted
a design based on that of the 2007/2008 Blizzard Challenges
[32], [71], which are open evaluations of corpus-based TTS
synthesis systems. To evaluate speech naturalness 5-point
mean opinion score (MOS) are used. The scale for the MOS
test runs from 5 for “completely natural” to 1 for “completely
unnatural”. To evaluate intelligibility, the subjects are asked to
transcribe semantically unpredictable sentences by typing in
the sentence they heard; the average word error rate (WER)
is calculated from these transcripts. The evaluations were
conducted via a standard web browser with a total of 124
paid native English speakers participating in these tests.

IV. RESULTS AND ANALYSIS

This section details experiments conducted for ASR and
TTS systems for different system components as described in
Section II. For completeness we list all results and correspond-
ing statistical significance in Appendix A. Readers should
refer to the appendix for precise details concerning system
configurations.

A. Comparison of phone set and lexicon
The CMU lexicon [72] was used in the baseline ASR system

and the Unisyn lexicon [73] with general American accent
(GAM) in the baseline TTS system. These lexica use phone
sets consisting of 39 phones and 56 phone respectively. A ver-
sion of the Unisyn lexicon using an Arpabet-like set consisting
of 45 phonemes was also evaluated. Table II lists the phone
sets used in these studies and mappings between the three. The
CMU phone set mapping is only approximate, since a one-to-
one mapping does not exist due to inconsistencies between the
underlying pronunciations in the CMU and Unisyn lexica.

The results of lexicon evaluations are shown in Table III. We
can see that the extended GAM phone set leads to a decrease
in ASR performance, which can be alleviated through the
Arpabet mapping, finally giving superior performance to that
of the baseline system. Closer analysis of the GAM phone
set shows that a number of the phones may be considered
allophones or composites of other phones. These phones have
relatively few occurrences in the training data, which may lead
to acoustic models of these phones being poorly trained. We
note, however, that none of the above ASR results were found
to be statistically significant. We would need to evaluate with
a larger test set in order to confirm the above hypotheses.

Observations for TTS are to the contrary of ASR with the
Unisyn lexicon giving slightly better objective measures in the
sense of mel-cepstral distance and V/UV error. We hypothesise
that this is derived from the richer labelling of the Unisyn
lexicon providing better prediction of allophonic variations.
Overall, all systems give very similar results.

B. Comparison of feature extraction

The ASR system uses perceptual linear prediction co-
efficients (PLP) as the baseline features whereas the TTS
system uses features based on mel-generalised cepstral anal-
ysis (MGCEP) of STRAIGHT spectrum3. More specifically,
mel-generalised analysis may be used to derive a cep-
stral representation using generalised logarithm in which
the hyper-parameter, γ = 0, corresponds to logarith-
mic compression of the spectrum (STRAIGHT+MCEP) and
γ = −1/3 corresponds to cubed-root spectral compression
(STRAIGHT+MGCEP). STRAIGHT+MGLSP analysis corre-
sponds to frequency warped line-spectrum pair parameteri-
sation, in which γ = −1. Systems have all been trained
using the MDL criterion for state tying, obviating the need
to explicitly choose a threshold for controlling tree growth.
As previously stated, we do not consider features for logF0

or aperiodicity measures in ASR experiments. The results of
these comparisons are shown in Table IV.

First of all, we see that conventional ASR features perform
substantially better than any of the TTS mel-ceptrum-based
features of equivalent order in the ASR task. One of the main
differences between typical ASR features and the MGCEP
analysis is the use of filter-banks during frequency warping,
hence, we postulate this as a possible reason for their increased
robustness since the sum-log operation of the filter-bank can
help to reduce sensitivity to frequency bins with low SNR.
STRAIGHT spectrum also appears to be detrimental to ASR
performance, most likely due to sensitivity to F0 extrac-
tion inaccuracies. Of all of the MGCEP-based features, the
STRAIGHT+MGCEP features provide the best performance
on average for ASR, which is consistent with results reported
in the literature. We also note that MGCEP-based features are
closest in terms of signal processing to the PLP features. For
TTS, subjective evaluations reveal that there is little to separate
the different feature analysis methods.

3Feature normalisation (eg. CMN/CVN) is not used in ASR or TTS
systems, this being implicit to feature space adaptation.
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GAM Arpabet CMU GAM Arpabet CMU GAM Arpabet CMU
@ 46k ax ah, ih ii 21k iy iy r 42k r r
a 10k ae ae ir∗ 4.5k iy ih @r (+r) 12k axr er
aa 9k aa aa jh 3k jh jh @@r (+r) 3k er er
aer∗ 230 ay ay k 22k k k s 29k s s
ai 7k ay ay l 6k l l sh 5k sh s
ar∗ 2k aa aa l! 4k el ah+l t 34k t t
b 10k b b lw∗ 11k l l tˆ 8k dx t,d
ch 2k ch ch m 17k m m th 3k th th
d 23k d d m! 70 em ah+m u 1k uh uh
dh 11k dh dh n 34k n n uh 10k ah ah
e 14k eh eh n! 5.5k en ah+n ur∗ 500 uh uh
eh∗ 500 ae ae ng 5k ng ng uu 6.5k uw uw
ei 9k ey ey oi 1k oy oy v 9k v v
eir 1.5k ey eh oo 3k ao ao w 8k w w
f 10k f f or 3.5k ao ao y 4k y y
g 3.5k g g ou 7.5k ow ow z 17k z z
h 6k hh hh ow 2k aw aw zh 309 zh zh
hw 850 w w owr∗ 270 aw aw
i 29k ih ih,iy p 16k p p

TABLE II
PHONE SETS FOR DIFFERENT LEXICA AND THEIR COUNTS ON THE WSJ SI-84 TRAINING DATA (FOR GAM ONLY).

GAM PHONES MARKED WITH ∗ ARE MERGED WITH OTHER PHONES IN THE ARPABET PHONE SET.

Lexicon Phone set ASR TTS
(size) WER MCD RMSE of V/UV

(%) logF0 error
CMU CMU (39) 6.4 5.63 198 16.9
Unisyn GAM (56) 6.6 5.56 198 15.7
Unisyn Arpabet (45) 6.1 5.60 198 16.3

TABLE III
COMPARISONS OF LEXICA FOR ASR AND TTS. COMPLETE SYSTEM

CONFIGURATIONS CAN BE FOUND IN TABLES 3 AND 4.

Feature ASR WER TTS
Type Order All Male Female WER MOS
PLP 13 6.8 8.2 5.4 – –

25 8.1 9.3 6.7 – –
40 11.9 11.7 12.2 – –

MCEP 13 9.4 10.4 8.4 – –
25 10.9 12.4 9.3 – –
40 19.1 20.0 18.1 – –

STRAIGHT+MCEP 13 11.4 13.6 9.1 15 1.9
25 12.8 14.1 11.5 20 2.4
40 16.0 18.9 12.9 21 2.7

STRAIGHT+MGCEP 13 10.3 12.7 7.9 19 2.0
25 10.2 12.0 8.3 24 2.5
40 13.6 15.9 11.2 24 2.3

STRAIGHT+MGLSP 13 – – – 18 2.0
25 – – – 16 2.7
40 – – – 19 2.5

TABLE IV
COMPARISONS OF FEATURE CONFIGURATIONS FOR ASR AND TTS.

COMPARISONS ARE MADE WITH RESPECT TO FEATURE ANALYSIS ORDER
AND FEATURE EXTRACTION METHOD. COMPLETE SYSTEM

CONFIGURATIONS CAN BE FOUND IN TABLES 3 AND 4.

Concerning feature analysis order, we see that ASR and
TTS systems behave in a contrary fashion. ASR performance

degrades rapidly as analysis order increases, while TTS quality
degrades as order decreases. TTS intelligibility is not sig-
nificantly affected by analysis order. When considering the
most likely explanations for this behaviour it is important
to remember that lower order cepstra are generally accepted
to contain the most important information for speech sound
discrimination, whereas higher order ceptra contain finer de-
tails of the spectrum, including information pertaining to
speaker identity. This is supported by the fact that speaker
identification systems generally also use higher order cepstra
[74]. The practical consequence is that ASR systems have their
performance degraded when modelling higher order cepstra,
as the bulk of information contained therein is irrelevant to the
task at hand, and likewise in TTS, the exclusion of higher order
cepstra removes much of the information necessary for high
quality synthesis and maintaining speaker identity (though
not speech intelligibility). Results of particular interest were
obtained with the STRAIGHT+MGCEP features at an analysis
order of 25, which show the lowest degradation to performance
of both ASR and TTS when compared, respectively, to lower
and higher analysis orders.

An additional point worth noting from these results concerns
the impact of STRAIGHT analysis on ASR performance.
We note that STRAIGHT analysis appears to degrade ASR
performance at lower analysis orders, but at higher orders
it is actually beneficial to ASR. This is due to the ability
of the STRAIGHT analysis to remove harmonic components
from the spectrum that would otherwise be captured by higher
order cepstra. In particular, we observe that the STRAIGHT
analysis technique provides improved performance for female
speakers due to the greater spacing between harmonics of
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Tree type Clustering Threshold ASR TTS
TB RO WER MCD RMSE of V/UV MOS WER

logF0 error
Phonetic HTK 450 200 9.4 – – – – –

MDL – – 9.4 5.66 447 15.9 1.5 26
Shared HTK 300 200 9.4 – – – – –

MDL – – 9.2 5.56 198 15.7 2.7 21

TABLE V
COMPARISONS OF STATE-TYING FOR ASR AND TTS. THRESHOLDS FOR

HTK TREE TYING, TB AND RO, CORRESPOND TO MINIMUM LIKELIHOOD
INCREASE AND NODE OCCUPANCY, RESPECTIVELY. ASR SYSTEMS HAVE
BEEN TUNED FOR OPTIMAL PERFORMANCE WITH RESPECT TO DECISION
TREE GROWTH. COMPLETE SYSTEM CONFIGURATIONS CAN BE FOUND IN

TABLES 3 AND 4.

female speakers4.

C. Comparison of model topology

We conducted experiments with respect to HMM topology
by comparing different state tying schemes, where the ASR
baseline uses phonetic decision tree (one tree per phone per
state) combined with likelihood and minimum occupancy
thresholds to control tree growth whereas the TTS baseline
uses shared decision tree (one tree per state) with MDL cri-
terion to control tree growth. The phonetic versus shared tree
offer their own advantages and disadvantages, in particular,
the phonetic decision tree should minimise confusion between
phones whereas the shared tree is able to provide more efficient
sharing of parameters across models. Table V shows the results
of these experiments.

An unexpected result for the ASR experiments revealed that
the shared decision tree yielded equivalent performance to
that of the phonetic decision tree. Recalling the results for
the comparison between lexica, we found that the reduced
Arpabet phone set produced lower WER than the original
Unisyn phone set. We hypothesise that the shared decision
tree is able to perform a similar mapping by clustering models
across phone classes that would otherwise remain distinct in
the phonetic decision tree, achieving a data-driven reduction
of the phone set. However, working against any such benefit
gained from sharing across phone classes is the possibility of
increased confusability between triphone models with different
centre phones. To what extent these two factors affect system
performance must depend on the training data, phone sets and
lexicon.

The TTS results show that the phonetic decision tree-based
tying results in worse performance than shared decision trees,
in particular, for the logF0 feature streams. The HMM used
for TTS does not need to discriminate each phoneme perfectly
and, particularly for logF0, sharing models across phone
classes allows more effective modelling of supra-segmental
effects. In practice, phoneme-based clustering makes little

4This is contrary to what was reported earlier in [75]. Based on the
observations of this work we re-conducted the experiments incorporating
a more robust F0 extraction algorithm, more specifically, voiced/unvoiced
detection accuracy was greatly improved in order to account for significant
gaps of waveform power between training and evaluation data. Voicing
detection is important for STRAIGHT analysis, since it is F0 adaptive and
thus V/UV error causes huge differences in its spectral analysis.
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Fig. 2. Analysis of decision tree tuning for ASR. System configuration is
the same as that reported in Table V.

sense for logF0; in the logF0 shared trees, stress or accentual
categories appear near the root, rather than phone classes.

In order to further analyse the relationship between state
clustering approaches and model complexity we conducted a
series of ASR experiments in which we tuned the respective
thresholds controlling decision tree growth. These experiments
were conducted with both MDL and ML stopping criteria; the
results are shown in Figure 2. The ASR experiments confirm
results previously reported for TTS, where it has been shown
that MDL acts as an appropriate criterion for stopping tree
growth without the need for time-consuming tuning of hyper-
parameters.

D. Comparison of Speaker adaptation

We compared speaker adaptation for ASR and TTS with
respect to adaptation algorithms and supervised and unsu-
pervised adaptation. For supervised adaptation of ASR, we
generated triphone context labels directly from the word-
level transcription of the adaptation data. Similarly, for su-
pervised adaptation of TTS we generate full context labels
by processing word-level transcriptions using TTS front-end.
Adaptation is then performed using the model-level tran-
scriptions. For the evaluation of unsupervised ASR and TTS
systems we generate adaptation transforms from the output of
ASR systems with various WER, thus enabling assessment of
adaptation performance with respect to the degree of noise
in the ASR transcription. Unsupervised TTS requires that
full-context transcriptions are generated from word-level ASR
output as in the supervised case.

The evaluation of adaptation was carried out using Spoke 4
(S4) task of the November 1993 CSR evaluations. All adapta-
tion was carried out off-line using the rapid enrolment data (for
condition ‘C3’) which comprises 40 adaptation utterances for
each of the 4 speakers. For the subjective evaluation of TTS, a
single male target speaker was chosen at random from the S4
task, and the 40 block adaptation utterances provided for this
speaker were used to adapt the average voice models. As this
enrolment data does not lie within the domain of the provided
word lists and language models, WERs of the ASR systems
on the enrolment data are higher than that which is usually



9

Adaptation Supervised Transcription ASR TTS
algorithm adaptation recognizer WER MCD RMSE of V/UV MOS WER

logF0 error
MLLR Y – 11.5 5.46 192 11.8 3.0 13
CMLLR Y – 13.2 5.50 204 11.8 2.6 19
SMAPLR Y – 11.5 5.43 192 11.8 2.9 14
CSMAPLR Y – 13.0 5.50 215 11.8 2.6 19
SMAPLR+MAP Y – 11.5 5.46 191 16.1 2.8 19
CSMAPLR+MAP Y – 13.9 5.56 198 15.7 2.7 21
CSMAPLR+MAP N SI 5k-bg 14.3 5.60 203 25.7 2.7 21
CSMAPLR+MAP N SI 20k-bg 14.4 5.59 200 25.5 2.6 21
CSMAPLR+MAP N SAT 5k-bg 14.3 5.59 201 25.4 2.4 23
CSMAPLR+MAP N SAT 20k-bg 14.2 5.58 198 25.5 2.5 23

TABLE VI
EVALUATION OF SPEAKER ADAPTATION. COMPLETE SYSTEM CONFIGURATIONS CAN BE FOUND IN TABLES 3 AND 4.

reported for the S4 task itself. WERs were as follows on the
enrolment data using speaker independent (SI) and speaker
adaptive models (SAT) with 5k and 20k wordlists and bigram
language models: SI 5k-bg 59.7%, SAT 5k-bg 41.2%, SI 20k-
bg 23.5%, SAT 20k-bg 17.3%. We also measured phone error
rate (PER) for these systems of 20.2%, 15.1%, 10.4% and
6.5% respectively. The results of these experiments are shown
in Table VI.

We make note of several observations concerning these
results. Firstly, it is apparent that for both ASR and TTS
there is not statistically significant difference between adap-
tation algorithms, though the results a slight preference for
mean-transform based adaptation over feature transform based
adaptation for this task. Furthermore, MAP adaptation does not
appear to provide any additional benefits. Secondly, compar-
ing supervised and unsupervised adaptation reveals a small
degradation to ASR performance when using unsupervised
adaptation, while TTS shows no significant degradation, irre-
spective of the WER/PER of the underlying transcription. This
is a significant result, since it shows that TTS systems can be
adapted to a specific person’s voice without knowledge of what
has been spoken. It is worth pointing out that even when the
correct word transcription is available, we cannot be sure the
full context labels exactly correspond to the speech signal. This
means that even the supervised adaptation is operating with
noisy full context labels. This may be part of the reason why
the unsupervised systems are no worse than the supervised
system (or visa-versa).

V. CONCLUSIONS

We have presented a series of ‘measuring the gap’ exper-
iments exploring the differences between HMM-based ASR
and TTS systems. These experiments provide valuable insight
to several key challenges towards the development of unified
models for ASR and TTS. Our findings in these experiments
show that, many of the techniques used in ASR and TTS
can not be simply applied to their respective other without
negative consequences. In particular, we note the following
major findings concerning each of the areas investigated and
possible future research directions:

• Lexicon and phone set: There is weak evidence sug-
gesting smaller phone sets are favoured by ASR whereas

larger phone sets with allophonic variants may be
favoured for TTS, but in general no significant differences
were found between the different lexica and phone sets
that were tested.

• Feature extraction: Feature extraction methods used in
TTS were found to result in significantly poorer ASR
performance than conventional ASR feature extraction.
For TTS, no significant differences were measured be-
tween different feature extraction methods. Furthermore,
higher dimensionality features, as are usually necessary
for high quality waveform generation, were found to
significantly degrade ASR, whereas the converse was
observed for TTS performance. This result stems from
the fact that ASR and TTS rely on different aspects of
the spectrum for optimal performance. Of all features
compared, STRAIGHT+MGCEP seems to give the best
compromise in terms of ASR and TTS performance,
with the STRAIGHT analysis being critical to obtain-
ing good performance with high analysis order. Future
research needs to concentrate on developing more robust
(in ASR terms) spectral analysis methods that still per-
mit high quality signal reconstruction (for TTS), which
may include the development of alternative vocoding ap-
proaches. Likewise, methods for dimensionality reduction
may provide means to improve ASR performance while
minimising impact on TTS.

• Model topology: Experiments evaluated HMM topol-
ogy, in particular, parameter tying schemes. ASR results
showed that the choice of stopping criterion is not critical
given that the system is properly tuned, though the MDL
criterion may simplify this process. Surprisingly, ASR
results also demonstrated that shared decision tree tying
could provide equivalent performance than the phonetic
decision tree tying. TTS experiments showed that shared
versus phonetic decision tree tying has little impact on
spectrum or voicing decision (V/UV), but is critical
for prediction of F0 and duration since they rely on
supra-segmental rather than phonetic contexts. Overall,
a judicious choice of system configuration should avoid
any negative impact on either ASR or TTS performance.

• Speaker adaptation: ASR and TTS experiments com-
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pared several speaker adaptation algorithms for which it
was found that model space transforms were preferred
over feature space transforms, though, there was little
to separate all algorithms compared. No significant dif-
ferences were found between the unsupervised and su-
pervised TTS systems in terms of naturalness, similarity
or intelligibility. For ASR systems, a small but signif-
icant difference was measured between supervised and
unsupervised adaptation. Future work in adaptation may
follow several directions. Firstly, we noted that limitations
of full-context label generation for TTS systems may
be a limiting factor with respect to the comparison of
unsupervised and supervised adaptation, hence, alterna-
tive methods for full-context label generation should be
studied. Additionally, both ASR and (even more so) TTS
systems are limited by the quantity of adaptation data
available to them. Means to rapidly adapt these systems
using as little data as a single utterance would also appear
to be an interesting research direction.

Additional research topics that may naturally follow on from
this work include the investigation of how TTS modelling
may contribute to ASR, in terms of the use of full-context
models and modelling of excitation features. Furthermore,
the investigation of unsupervised adaptation techniques for
TTS is a new idea that stands to gain much from closer
integration of ASR and TTS methodologies. We expect to see
new applications in the near future that leverage from our
results, including automatic personalisation of TTS systems,
especially in the domain of speech-to-speech translation.

APPENDIX A
COMPLETE LISTING OF RESULTS

We list the full set of ASR and TTS systems evaluated in
Tables VII, VIII, IX and X; and Figures 3, 4 and 5.
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Training Spectral analysis Tree Adaptation Supervised Transcription MOS WER
Index data Method Order structure algorithm adaptation recognizer (%)
A SI84 MCEP 40 shared CSMAPLR+MAP Y – 2.7 21
B 40H MCEP 40 shared CSMAPLR+MAP Y – 2.0 35

C SI84 MCEP 13 shared CSMAPLR+MAP Y – 1.9 15
D SI84 MCEP 25 shared CSMAPLR+MAP Y – 2.4 20
A SI84 MCEP 40 shared CSMAPLR+MAP Y – 2.7 21
E SI84 MGCEP 13 shared CSMAPLR+MAP Y – 2.0 19
F SI84 MGCEP 25 shared CSMAPLR+MAP Y – 2.5 24
G SI84 MGCEP 40 shared CSMAPLR+MAP Y – 2.3 24
H SI84 MGC-LSP 13 shared CSMAPLR+MAP Y – 2.0 18
I SI84 MGC-LSP 25 shared CSMAPLR+MAP Y – 2.7 16
J SI84 MGC-LSP 40 shared CSMAPLR+MAP Y – 2.5 19

A SI84 MCEP 40 shared CSMAPLR+MAP Y – 2.7 21
K SI84 MCEP 40 phonetic CSMAPLR+MAP Y – 1.5 26

L SI84 MCEP 40 shared MLLR Y – 3.0 13
M SI84 MCEP 40 shared CMLLR Y – 2.6 19
N SI84 MCEP 40 shared SMAPLR Y – 2.9 14
O SI84 MCEP 40 shared CSMAPLR Y – 2.6 19
P SI84 MCEP 40 shared SMAPLR+MAP Y – 2.8 19
A SI84 MCEP 40 shared CSMAPLR+MAP Y – 2.7 21

A SI84 MCEP 40 shared CSMAPLR+MAP Y – 2.7 21
Q SI84 MCEP 40 shared CSMAPLR+MAP N SI 5k-bg 2.7 21
R SI84 MCEP 40 shared CSMAPLR+MAP N SI 20k-bg 2.6 21
S SI84 MCEP 40 shared CSMAPLR+MAP N SAT 5k-bg 2.4 23
T SI84 MCEP 40 shared CSMAPLR+MAP N SAT 20k-bg 2.5 23

TABLE VII
THE 20 TTS SYSTEMS THAT WERE EVALUATED IN THE LISTENING TEST. SOME ROWS ARE DUPLICATED TO MAKE BETWEEN-SYSTEM COMPARISONS

EASIER TO READ. BOLD FACE IS USED TO HIGHLIGHT THE SETTING(S) BEING VARIED IN EACH SUBSET OF RESULTS. TRAINING DATA SET ‘40H’ IS THE
40 HOURS OF DATA USED IN THE HTS ENTRY TO BLIZZARD 2008 [56]. MOS MEANS ‘MEDIAN NATURALNESS’ AND WER IS INTELLIGIBILITY

MEASURED USING SEMANTICALLY UNPREDICTABLE SENTENCES. ALL SYSTEMS USE STRAIGHT SPECTRAL ANALYSIS.

A B C D E F G H I J K L M N O P Q R S T
A
B
C
D
E
F
G
H
I
J

K
L

M
N
O
P
Q
R
S
T

TABLE VIII
SIGNIFICANT DIFFERENCES IN NATURALNESS: RESULTS OF PAIRWISE WILCOXON SIGNED RANK TESTS BETWEEN SYSTEMS’ MEAN OPINION SCORES.

INDICATES A SIGNIFICANT DIFFERENCE BETWEEN A PAIR OF SYSTEMS. SEE TABLE VII FOR SYSTEM DETAILS.
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Test Pronunciation Spectral analysis Decision tree Adaptation WER
Index set Lexicon Phone set Method Order Structure Stopping Algorithm Supervised First-pass (%)
A H2 (P0) CMU CMU PLP 13 phonetic HTK CMLLR N SI 5k-bg 6.4
B H2 (P0) Unisyn GAM PLP 13 phonetic HTK CMLLR N SI 5k-bg 6.6
C H2 (P0) Unisyn Arpabet PLP 13 phonetic HTK CMLLR N SI 5k-bg 6.1

D H2 (P0) Unisyn GAM PLP 13 phonetic MDL CMLLR N SI 5k-bg 6.8
E H2 (P0) Unisyn GAM PLP 25 phonetic MDL CMLLR N SI 5k-bg 8.1
F H2 (P0) Unisyn GAM PLP 40 phonetic MDL CMLLR N SI 5k-bg 11.9
G H2 (P0) Unisyn GAM MCEP 13 phonetic MDL CMLLR N SI 5k-bg 9.4
H H2 (P0) Unisyn GAM MCEP 25 phonetic MDL CMLLR N SI 5k-bg 10.9
I H2 (P0) Unisyn GAM MCEP 40 phonetic MDL CMLLR N SI 5k-bg 19.1
J H2 (P0) Unisyn GAM MCEP+ 13 phonetic MDL CMLLR N SI 5k-bg 11.4
K H2 (P0) Unisyn GAM MCEP+ 25 phonetic MDL CMLLR N SI 5k-bg 12.8
L H2 (P0) Unisyn GAM MCEP+ 40 phonetic MDL CMLLR N SI 5k-bg 16.0
M H2 (P0) Unisyn GAM MGCEP+ 13 phonetic MDL CMLLR N SI 5k-bg 10.3
N H2 (P0) Unisyn GAM MGCEP+ 25 phonetic MDL CMLLR N SI 5k-bg 10.2
O H2 (P0) Unisyn GAM MGCEP+ 40 phonetic MDL CMLLR N SI 5k-bg 13.6

G H2 (P0) Unisyn GAM MCEP 13 phonetic MDL CMLLR N SI 5k-bg 9.4
P H2 (P0) Unisyn GAM MCEP 13 phonetic HTK CMLLR N SI 5k-bg 9.4
Q H2 (P0) Unisyn GAM MCEP 13 shared MDL CMLLR N SI 5k-bg 9.2
R H2 (P0) Unisyn GAM MCEP 13 shared HTK CMLLR N SI 5k-bg 9.4

a S4 (C3) Unisyn GAM MCEP 13 phonetic MDL MLLR Y – 11.5
b S4 (C3) Unisyn GAM MCEP 13 phonetic MDL CMLLR Y – 13.2
c S4 (C3) Unisyn GAM MCEP 13 phonetic MDL SMAPLR Y – 11.5
d S4 (C3) Unisyn GAM MCEP 13 phonetic MDL CSMAPLR Y – 13.0
e S4 (C3) Unisyn GAM MCEP 13 phonetic MDL SMAPLR+MAP Y – 11.5
f S4 (C3) Unisyn GAM MCEP 13 phonetic MDL CSMAPLR+MAP Y – 13.9
g S4 ( – ) Unisyn GAM MCEP 13 phonetic MDL CSMAPLR+MAP N SI 5k-bg 14.3
h S4 ( – ) Unisyn GAM MCEP 13 phonetic MDL CSMAPLR+MAP N SAT 5k-bg 14.4
i S4 ( – ) Unisyn GAM MCEP 13 phonetic MDL CSMAPLR+MAP N SI 20k-bg 14.3
j S4 ( – ) Unisyn GAM MCEP 13 phonetic MDL CSMAPLR+MAP N SAT 20k-bg 14.2

TABLE IX
THE 28 ASR SYSTEMS THAT WERE EVALUATED. BOLD FACE IS USED TO HIGHLIGHT THE SETTING(S) BEING VARIED IN EACH SUBSET OF RESULTS.

MCEP+, MGCEP+ ARE ABBREVIATIONS OF STRAIGHT+MCEP AND STRAIGHT+MGCEP RESPECTIVELY.
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(a) H2 task

a b c d e f g h i j
a
b
c
d
e
f
g
h
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j

(b) S4 task

TABLE X
SIGNIFICANT DIFFERENCES IN ASR SYSTEMS AT 95% CONFIDENCE. INDICATES A SIGNIFICANT DIFFERENCE BETWEEN A PAIR OF SYSTEMS,

INDICATES SIGNIFICANCE TEST WAS NOT RUN ON GIVEN PAIR. SEE TABLE IX FOR SYSTEM DETAILS.
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Fig. 5. TTS listening test results: similarity to original speaker. See Table
VII for system details.
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