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Abstract
The role of audio–visual speech synchrony for speaker diari-
sation is investigated on the multiparty meeting domain. We
measured both mutual information and canonical correlation on
different sets of audio and video features. As acoustic features
we considered energy and MFCCs. As visual features we ex-
perimented both with motion intensity features, computed on
the whole image, and Kanade Lucas Tomasi motion estimation.
Thanks to KLT we decomposed the motion in its horizontal and
vertical components. The vertical component was found to be
more reliable for speech synchrony estimation. The mutual in-
formation between acoustic energy and KLT vertical motion of
skin pixels, not only resulted in a 20% relative improvement
over a MFCC only diarisation system, but also outperformed
visual features such as motion intensities and head poses.
Index Terms: multimodal speaker diarisation, audio–visual
speech synchrony, multiparty meetings, mutual information,
canonical correlation analysis

1. Introduction
In this paper we investigate the speaker diarisation task, us-
ing both audio and audio–visual synchrony cues. The goal of
speaker diarisation is estimating “who spoke when” [1]. A
robust speaker diarisation approach is beneficial for applica-
tions such as: automatic speech recognition, dominance detec-
tion, automatic role recognition, and addressee identification.
Most speaker diarisation systems work in two steps: the au-
dio stream is classified into speech and non-speech segments
(speech/non–speech detection), then, speech segments uttered
by the same speaker are grouped (clustering) [2]. Speaker clus-
tering has been traditionally approached employing only acous-
tic cues [2, 1]. However there is recently an increasing number
of works which investigate the role of visual cues (such as mo-
tion and eye gaze) for speaker diarisation [3, 4, 5, 6].

Audio–visual synchrony features are motivated by the im-
portance of audio–visual co–occurrences for sound localisation:
facial movements are strongly correlated with speech acoustics
which in turn is also correlated with vocal tract movements [7].
Hershey and Movellan [8] proposed to use an audio–visual syn-
chrony measure for speaker localisation, based on the Mutual
Information (MI) of acoustic energy and individual pixel lu-
minance variations (considering the whole image). This work
was further extended by Nock et al. [9] employing visual fea-
tures based on lip detection. Slaney and Covell [10] adopted
Canonical Correlation Analysis (CCA) to maximise the audio–
visual correlation and exploited this maximised quantity as a
measure of audio–visual synchronisation. However, the data
used in these studies is generally small and constrained to non–
overlapping speech and frontal face views. Mutual information,
estimated both on the facial region and on the whole video–

frame, was adopted by Noulas et al. [3] for multimodal speaker
diarisation of a single meeting recording.

In this paper two audio–visual synchrony measures are
compared: Mutual Information and Canonical Correlation
Analysis. Moreover we investigate the synchrony of differ-
ent acoustic and visual features: acoustic energy and Mel Fre-
quency Cepstral Coefficients (MFCCs) for the acoustic domain;
individual pixel luminance variations and motion tracking for
the visual domain. In particular we propose the adoption of the
Kanade Lucas Tomasi (KLT) [11] tracking algorithm and skin
colour modelling to estimate facial motion during the computa-
tion of audio–visual synchrony. Since motion is measured only
in a selected set of points, the estimation of MI/CCA on KLT
tracked feature points is computationally advantageous com-
pared to the computation of synchrony considering the whole
image [3, 8]. Thanks to the KLT we are able to decompose
the movement into its horizontal and vertical components. We
found that, being speech production more correlated with ver-
tical movements of lips and chin, the vertical component is
a better cue for the computation of audio–visual synchrony.
Moreover our novel KLT based technique results in consistent
speaker diarisation improvements: MI features based on the
KLT vertical motion component outperform the MI estimated
considering pixel luminance variations over time.

The audio–visual synchrony features are integrated during
the clustering phase of the speaker diarisation. We test our
novel approach on more than 5 hours of unconstrained mul-
tiparty meetings: an interesting and challenging domain, both
from the acoustic and visual point of view. Meeting participants
have variable length speaker turns, their voices sometimes over-
lap, and they can move freely in the room (for example to go to
the whiteboard). One of the goals of this paper is to compare
audio–visual synchrony features with the visual cues we inves-
tigated in [6]: motion and head pose features. The use of head
poses, which can be seen as an approximation of eye–gaze, is
motivated by language and social psychology studies on the role
of gaze in a conversation [12]: listeners are likely to look at the
person who is talking and they request turn shifts using gaze;
speakers are likely to look at their addressee and to shift their
attention towards the next speaker before a speaker turn occurs.
Motion intensity features take into account speaker movements
for speech production and gestures [12]. In our speaker diarisa-
tion experiments we found that audio–visual synchrony features
are more robust than motion and head pose features.

This paper is structured as follows: in Section 2 the adopted
speaker diarisation framework is outlined; Section 3 describes
the data; Section 4 and 5 outline the audio and visual fea-
tures respectively. In particular the proposed audio–visual syn-
chrony features are introduced in Section 6. Section 7 discusses
speaker diarisation experiments and results, finally Section 8
summarises this work highlighting the most important findings.



2. Speaker diarisation engine
The work presented in this paper is based on the ICSI speaker
diarisation system [2]. This system uses the following bottom-
up agglomerative clustering approach. Speaker clusters are
modelled with an ergodic Hidden Markov Model (HMM). Each
state (corresponding to a single speaker cluster) is modelled as
a sequence of hidden substates sharing the same Gaussian Mix-
ture Model (GMM). In order to enforce a minimum duration
constraint of 2.5 seconds the same substate is duplicated sev-
eral times. The first step of the ICSI speaker diarisation system
is the Speech/Non-Speech detection [2]; then, processing only
the speech frames,K initial clusters are created uniformly parti-
tioning the speech frames inK = 16 clusters of equal length. A
GMM is trained for each initial speaker cluster. Three process-
ing steps are then iterated: Viterbi decoding using the current
ergodic HMM, training of a new GMM for each speaker clus-
ter using the newly estimated segmentation, and cluster merg-
ing. For each iteration, the most similar cluster pair is found ac-
cording to a score based on the Bayesian Information Criterion
(BIC). This is obtained measuring the difference between the
log likelihood of the model trained jointly on the data belong-
ing to the two clusters (θ) and the sum of the log likelihoods of
the models of the two clusters (θa and θb) modelled indepen-
dently. It is also assumed that the complexity of the model θ is
equal to the sum of the complexities of the models θa and θb.

The integration of multiple feature streams (e.g. two
streams) is performed by training separate GMMs for each
stream. The two streams are combined both during Viterbi seg-
mentation and clustering, computing the total log likelihood as
a weighted sum of the likelihood of the two separate models.
In our experiments the first stream is always represented by
19 MFCCs and, being this the most informative modality for
speaker diarisation, a weight of 0.9 was assigned to MFCCs
while 0.1 was adopted for the additional feature stream.

3. Data
Experiments were performed on a subset of the AMI meeting
corpus1 [13]. This multimodal collection of four participant
meetings was recorded in rooms instrumented with a set of syn-
chronised devices, as shown in Figure 1. We used the 8-element
circular table-top microphone array for audio feature extraction,
the two side-cameras to extract head poses, and the four individ-
ual closeup cameras to extract motion activity features and KLT
features (Section 5.1 and 5.3 respectively). We selected the 11
meetings with the richest annotation [6]. These meetings offer
a variety of challenges both from the audio and the video point
of view (overlapping speech, moving speakers, and poor head
resolution). We can distinguish between static meetings, where
people seat during the entire meeting, and dynamic meetings,
where people leave their seats to go to the whiteboard or the
slide–screen.

4. Audio features
Beamforming was adopted to reduce the d = 8 microphone
array signals (Section 3) to a single channel with enhanced sen-
sitivity in the direction of the desired signal. To perform this
task we used the Beamformit tool2 [14], based on the delay and
sum algorithm. First a reference channel is chosen so that the
average cross-correlation with the other channels is maximised.

1Publicly available from http://corpus.amiproject.org
2www.icsi.berkeley.edu/˜xanguera/beamformit/.

Figure 1: Meeting room setup.

With respect to this reference channel, (d − 1) Time Delays
of Arrival are estimated using the generalised cross–correlation
with phase transform method. TDoAs are then used for delay
and sum beamforming. On the beamformed signal we compute
19 MFCCs as acoustic features for the speaker clustering (Sec-
tion 2). We also extract two separate sets of acoustic features
fa(t) for the computation of audio–visual synchrony measures
(Section 6): the acoustic energy and its combination with the
MFCCs C1, C2 and C3.

5. Visual Features
5.1. Motion Intensity features

Motion intensity features were extracted on each of the four
closeup videos as the average pixel by pixel luminance differ-
ence of subsequent frames [6]. These motion features were
used in the baseline speaker diarization experiments presented
in Section 7. The luminance variations between adjacent video
frames, for each skin color like pixel in the closeup camera
recording, were employed as visual features fv(x, y, t, k) for
the audio–visual synchrony estimation (Section 6). Skin color
detection is performed using the YUV histogram model trained
on Banca data, provided by the Torch3vision toolkit3.

5.2. Head pose likelihood features

We employed the head pose likelihoods estimated during
the VFoA detection [15]. They represent the probability
P (O(i, t)|Sk) of the observed head pose O(i, t) of meeting
participant i given that his visual focus Sk is participant k at
time t. While listening, people are more likely to look at the
person which is speaking, thus head pose features were defined
as the sum of the probabilities that each meeting participant i
is looking at the meeting participant k [6]: fheadpose(k, t) =∑i=I

i=1i 6=k

P (O(i,t)|Sk)
I−1

where I is the number of meeting partic-
ipants.

5.3. Kanade Lukas Tomasi based features

The motion intensities described in the Section 5.1 measure the
luminance variation of each skin–like pixel in the image. In
order to assess the synchrony of facial movements with speech
acoustics, we also experimented with motion estimates based on
a widely adopted tracking technique: the Kanade Lucas Tomasi
(KLT) algorithm [11]. KLT works in two steps: features (i.e.
points of interest) are initially selected in the image and then
tracked. Given a feature point with luminance I(x, y, t) in the
image frame t, feature tracking goal is to estimate its correspon-
dent position (x+ dx, y+ dy) in the following frame t+ τ , as-
suming that I(x, y, t) ≈ I(x+ dx, y+ dy, t+ τ). This optical
flow estimation problem can be solved using the Kanade Lucas

3torch3vision.idiap.ch.



Tomasi method. KLT assumes the displacement components in
the horizontal and vertical directions (dx, dy) constant in a nei-
borhood W : (x± wx, y ± wy), and minimises the equation:

ε(dx, dy, t) =
∑

(x,y)∈W

(I(x, y, t)− I(x+ dx, y + dy, t+ τ)).

KLT selects feature points which can be tracked well [11], usu-
ally consisting in corners and salt–and–pepper textures. In our
experiments we used the S. Birchfield implementation of KLT4.
Since we are interested in skin–like areas, we also used skin
color detection (Section 5.1) to track only those feature points
which are likely to be skin. Given the KLT tracked skin–like
feature points (x, y) in each closeup camera k at time t, we
consider the displacement dx(x, y, t, k) and dy(x, y, t, k) over
time as visual features fv(x, y, t, k).

6. Mutual Information and Canonical
Correlation Analysis measures

Considering the image points (x, y)5 of the closeup camera k
and temporal frame t, we define two measures of audio–visual
synchrony φ(fa(t), fv(x, y, t, k)) based on: mutual informa-
tion (MI) and canonical correlation analysis (CCA).
Mutual information is estimated according to the definition
of Hershey and Movellan [8]. Let fa(t) be the audio features
of dimension Na and fv(x, y, t, k) be the video features of di-
mension Nv . Assuming fa(t) and fv(x, y, t, k) independently
and jointly Gaussian in a window [t−∆t/2, t+ ∆t/2] (in our
experiments ∆t = 0.5 secs), the mutual information can be
computed as:

φMI(fa(t), fv(x, y, t, k)) =
1

2
log
|Σaa(t)| |Σvv(x, y, t, k)|
|Σav(x, y, t, k)| .

Σaa(t) and Σvv(x, y, t, k) are respectively the covariance
matrices for audio and visual features, and |•| is the matrix de-
terminant. The joint audio–visual covariance matrix is:

Σav(x, y, t, k) =

[
Σaa(t) Cav(x, y, t, k)

Cva(x, y, t, k) Σvv(x, y, t, k)

]
,

where Cav(x, y, t, k) = Cva(x, y, t, k)T is the between-
sets covariance matrix.
Canonical correlation analysis [16] aims at finding the projec-
tions Wa and Wv such that the correlation ρ between the fea-
tures fa(t) and fv(x, y, t, k) is maximised. Canonical correla-
tions can be estimated (using the same window ∆t = 0.5 secs
adopted for the MI estimation) by solving the following eigen-
value equation:

Σaa
−1 ·Cav ·Σvv

−1 ·Cva ·Wa = ρ2 ·Wa

where the squared canonical correlations ρ2 and Wa can be
computed as the eigenvalues and eigenvectors of Σaa

−1 ·Cav ·
Σvv

−1 ·Cva. We define the audio–visual correlation measure
φCCA as the sum of the eigenvalues ρi2(fa(t), fv(x, y, t, k))
[17]:

φCCA(fa(t), fv(x, y, t, k)) =

N∑
i=1

ρi
2(fa(t), fv(x, y, t, k))

4www.ces.clemson.edu/˜stb/klt.
5The (x, y) image points, on which the audio–visual synchrony is

estimated, include: all the skin pixels in the motion intensity experi-
ments; all the skin–like tracked feature points when KLT features are
adopted.

Table 1: MI/CCA synchrony measures φ obtained from 10 dif-
ferent combinations of acoustic fa and visual fv features.
φ(fa(t), fv(x, y, t, k)) fa(t) fv(x, y, t, k)

MI-A acoustic motion intensity
CCA-A energy (skin pixels only)
MI-Bx acoustic KLT tracking horizontal
CCA-Bx energy displacement dx
MI-By acoustic KLT tracking vertical
CCA-By energy displacement dy
MI-Cx ac.energy KLT tracking horizontal
CCA-Cx C1,C2,C3 displacement dx
MI-Cy ac.energy KLT tracking vertical
CCA-Cy C1,C2,C3 displacement dy

where N is the minimum between Na and Nv .
Synchrony measures: were estimated for each closeup
camera k and for each time frame t. Given the
set Mt,k = {∀(x, y) : φ(fa(t), fv(x, y, t, k)) > 0} of points
(x, y), we define the synchrony measure synchrony(t, k) as
the average of the φMI or the φCCA measures over this set:

synchrony(t, k) =
1

#Mt,k

∑
(x,y)∈Mt,k

φ (fa(t), fv(x, y, t, k)) ,

where #Mt,k is the cardinality of the set Mt,k.
The resulting synchrony features measure to what extent the
motion features fv(x, y, t, k) could be predicted given the
acoustic features fa(t), and viceversa.
Audio–visual features: we have estimated φMI and φCCA us-
ing different audio features fa(t) (Section 4) and video features
fv(x, y, t, k) (Section 5.1 and 5.3) as outlined in table 1.

7. Experimental Results
Speaker diarisation performances, in terms of Diarisation Error
Rate (DER), were evaluated using the tools provided by NIST 6.
DER is defined as the sum of the Speech/Non-Speech error and
the speaker error percentage. An average Speech/Non-Speech
detection error of 13.9% is shared across all the experimental
setups presented in this paper; thus we can only aim at reducing
the speaker error percentage.

In section 6 we outlined two audio–visual synchrony mea-
sures: Mutual Information (MI) and Canonical Correlation
Analysis (CCA). Each of these measures can be estimated us-
ing different combinations of acoustic features fa(t) and vi-
sual features fv(x, y, t, k), such as: acoustic energy, 3 MFCCs
(C1, C2, C3), pixel luminance variation (i.e. motion intensity),
horizontal and vertical displacements dx and dy from the KLT
tracking (Section 5.3). Table 1 outlines the feature combina-
tions employed by the speaker diarisation experiments of table
2. The multistream speaker diarisation system jointly modelled
synchrony and MFCC features, associating them to two inde-
pendent feature streams (Section 2). For comparison, on top of
table 2, we also report baseline results [6] using a single MFCC
stream, and its combination with motion intensity and head pose
features (Section 5.1 and 5.2 respectively). We report results for
the whole set and in brackets for static and dynamic meetings.

Mutual information features MI-A, estimated using acous-
tic energy and motion intensities of the skin pixels , resulted
in 27.8% of DER. Therefore MI-A outperforms the motion
intensities baseline system (28.6%), in particular on dynamic

6www.nist.gov/speech/tests/rt/2006-spring/.



Table 2: DER results for the whole dataset (Total), and in square
brackets for static and dynamic meetings (Section 3).

1st stream 2nd stream Total [Static Dynamic]
MFCC —– 31.0 [14.7 36.5]
MFCC Motion intensities 28.6 [13.0 33.8]
MFCC Head pose features 26.6 [13.1 31.0]
MFCC MI-A 27.8 [13.5 32.6]
MFCC CCA-A 29.7 [22.9 32.7]
MFCC MI-Bx 29.3 [13.4 34.5]
MFCC MI-By 24.7 [13.5 28.5]
MFCC CCA-Bx 27.5 [12.9 32.4]
MFCC CCA-By 26.5 [13.1 31.0]
MFCC MI-Cx 29.9 [13.3 35.5]
MFCC MI-Cy 26.0 [12.8 30.4]
MFCC CCA-Cx 30.3 [13.4 35.9]
MFCC CCA-Cy 27.4 [13.4 32.1]

meetings (Section 3). Mutual information features MI-By, es-
timated using acoustic energy and KLT vertical displacements,
provided the best speaker diarisation result (24.7% DER). In
this setup the Mutual Information is computed considering only
the skin pixels tracked by KLT; besides attaining the best abso-
lute DER, this approach is also more computationally efficient
than MI-A. Mutual information synchronies MI-Cx and MI-
Cy are estimated employing the acoustic energy and the first
three MFCCs as fa(t), and the KLT displacements dx and dy
as fv(x, y, t, k). In particular MI-Cy attained good diarisation
performances (26.0%) outperforming both MI-Bx and MI-Cx.

Analogue experiments were also performed using the CCA
synchrony measure (instead of MI). In this case the best re-
sult CCA-By (26.5%) is achieved when the acoustic energy is
used as fa(t) together with the KLT vertical displacement dy
as fv(x, y, t, k). Even if the CCA synchrony measures did not
outperform their MI counterparts, they provided better results
than using motion intensities.

The use of the displacement along the vertical axis (MI-
By,MI-Cy,CCA-By,CCA-Cy) provided better diarisation per-
formances compared to the horizontal displacement (MI-
Bx,MI-Cx,CCA-Bx,CCA-Cx) in all the cases, both using MI
and CCA synchrony measures. Facial movements along the
vertical axis are more correlated with speech production (e.g.
lips and chin movements). Considering only this component we
were able to neglect horizontal movements (such as head shak-
ing and horizontal head rotations) which may not be relevant for
audio–visual speech synchrony.

8. Conclusions
The aim of this paper is the investigation of two audio–visual
synchrony measures, mutual information and canonical corre-
lation analysis, in the context of speaker diarisation of uncon-
strained multiparty meetings. These measures are motivated by
the correlation between facial movements and speech acoustics.
We compared the estimation of audio–visual synchrony using
different feature sets: energy and MFCCs as acoustic features;
motion intensities (based on luminance differences) and motion
features based on KLT and skin detection as visual cues. In par-
ticular KLT features allowed to isolate the horizontal and the
vertical motion components. We found that the vertical move-
ment, being more correlated with speech production, improves
both the mutual information and the canonical correlation anal-

ysis synchrony estimation. Audio–visual synchrony measures
aim at highlighting the correlation between speech acoustics
and facial movements due to speech production. However head
rotation unrelated to speech production may result in spurious
correlations. This effect can be mitigated considering verti-
cal motion components only. The best audio–visual synchrony
measures combined with MFCCs attained a 20% relative im-
provement compared to the baseline MFCC only diarisation
system. Moreover these novel audio–visual synchrony features
provided the best diarisation performances (24.7% DER), out-
performing both head pose likelihoods and motion intensity fea-
tures [6].
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