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ABSTRACT

The availability of mobile sociometric sensors allows Computer-

Supported Cooperative Work (CSCW) designers the pos-
sibility to enhance online meeting support through auto-
matic recognition of conversational context. This paper ad-
dresses the task of discriminating one conversational context
against another, specifically brainstorming from decision-
making interactions using easily computable nonverbal be-
havioral cues. We hypothesize that the difference in the
dynamics between brainstorming and decision-making dis-
cussions is significant and measurable using speech activity
based nonverbal cues. We employ a set of nonverbal cues
to characterize the entire group by the aggregation (both
temporal and person-wise) of their nonverbal behavior. Our
results on a dataset collected using privacy-sensitive socio-
metric badges show that the floor-occupation patterns in
a brain-storming interaction are different from a decision-
making interaction and we can obtain a discrimination ac-
curacy as high as 87.5%.
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H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing
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1. INTRODUCTION

The automatic recognition of group interaction context in
real life is a useful module for Computer-Supported Coop-
erative Work [4]. With the advent of ubiquitous and mobile
sensing platforms, novel ways of collecting and visualizing
group interaction behavior have been explored [2, 6] with
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the primary objective of influencing the group’s behavior.
Such applications would greatly benefit from the knowledge
of the interaction context i.e. awareness about the interac-
tion type, e.g. a cooperative vs competitive interaction, or
a brainstorming vs decision-making phase.

Various social factors related to individual attributes (e.g.
personality, social verticality, roles); relationship among in-
dividuals (close friends vs strangers, remote vs collocated);
and goal at hand (cooperation vs competition) have begun
to be studied in ubiquitous environments, mostly indoor en-
vironments equipped with microphones, cameras, and other
sensors [3]. The availability of privacy-sensitive, mobile plat-
forms to sense conversations [1], is opening the possibility of
recording and analyzing behavioral aspects of real-life in-
teractions without breaching the privacy of people, through
online audio extraction of nonverbal cues without recording
or storing raw audio.

Within this emerging domain, our work addresses the
novel problem of discriminating two types of conversational
context categories, namely brainstorming vs decision-making
using computationally simple nonverbal cues extracted from
sociometers. Laughlin and Ellis postulated that cooperative
group tasks may be ordered on a continuum anchored by
intellective and judgmental tasks [8]. According to them,
intellective tasks are defined as tasks for which a demonstra-
bly correct solution exists, as opposed to decision making or
‘judgmental” tasks where “correctness” tends to be defined
by the group consensus. A different line of research asserts
that group interactions have different dynamics depending
on the group’s objective [9]. A brainstorming session has a
different objective as compared to that of a decision-making
session and therefore demands a different response from the
group members as well. Our work investigates whether these
differences can be captured through nonverbal behavioral
cues automatically extracted from sociometers; and if so
whether the interaction type can be automatically inferred.
With much of the work in modern workplaces becoming
group-based, such interactions are indeed ubiquitous.

The specific research questions addressed in the paper
are: Can brainstorming and decision-making meetings be
discriminated from each other using only privacy-sensitive
acoustic nonverbal cues? How good are single nonverbal
cues? Does fusion of cues improve the performance?

Sections 2 discusses our approach. Section 3 introduces
the experimental setup. Section 4 documents the results
obtained, and Section 5 gives the conclusions of our analysis.



2. OUR APPROACH

Acoustic nonverbal cues are known to contain useful infor-
mation to understand the behavior of individuals in groups
[5]. Figure 1 shows our approach. We extract a number
of nonverbal cues to characterize the group as a whole, and
then use them to predict the group interaction context us-
ing standard machine learning techniques as described in
detail in Section 3. These acoustic nonverbal cues are easily
computable and privacy-sensitive [11]. The acoustic data is
collected using wearable electronic badges.
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Figure 1: Our approach. Nonverbal cues are extracted to learn
and infer the conversational context.

2.1 Meeting dataset

The dataset was collected from 24 groups of four mem-
bers each. Each participant wore a sociometric badge - a
wearable electronic badge with multiple sensors collecting
interaction data. By interacting with other badges it can
collect proximity data, other badges in direct line of sight,
movement data, and speech features. Speech features col-
lected by the badge include pitch, tone, volume, etc. Due to
privacy concerns, we did not collect content of speech of any
other features that may identify the speaker. The micro-
phone of the sociometric badges collected speech variation
data sampled at 50Hz, which is immediately processed on
the badge so that only the processed data is saved on its
SD card. The badges communicated with each other via
2.5GHz radio which allows synchronization error to be less
than 0.003 msec. An example of the participants wearing
sociometric badges can be found in Figure 2.

Figure 2: Example of an interacting group wearing sociometric
badges around the neck.

The task given to subjects were based on a modification of
the game “Twenty-Questions”, replicating Wilson’s experi-
ments [10]. Each round consisted of two phases. In the first
phase, each group was given a set of ten yes/no question-
and-answer pairs. The groups were given 8 minutes to col-
laboratively brainstorm as many ideas that satisfy the set of
question-and-answers. We label these interactions as ‘brain-
storming’. Then in the second phase, groups were given 10
minutes to ask the remaining ten questions of the Twenty-
Question game to determine the correct solution. As this
problem-solving phase mainly involved the group making
decisions about the subsequent questions, we regard and la-
bel them as ‘decision-making’ interactions. In the second
phase groups were asked to select a leader among them-
selves that would be the question-asker who communicates
with the experimenter.

Each team began with one practice round and then par-
ticipated in two rounds where their behavior was measured:
one round in co-located settings and the other round sep-
arated into pairs into two rooms. When distributed, the
group members were not able to see each other but were
able to have verbal communication. The sequence of co-
located and distribution was counter-balanced to minimize
learning effect. The group leader was chosen during the
practice round, and was kept consistent throughout the two
measured rounds.

The dataset we used for our experiments was 9.8 hours of
group conversational recordings.

2.2 Nonverbal cue extraction

We rely on robust cues that have been studied in nonver-
bal communication [7]. From the sociometer speech varia-
tion data, we first extract the binary segmentation (speech
and non-speech for each participant) by thresholding the
speaking energy values at F'ps = 10 frames per second. A
turn is a continuous period of time for which the person’s
speaking status is 1. A successful interruption is an event
defined as follows: participant i starts talking while another
participant j speaks, and 4 finishes his turn before j does.
Conversely, an unsuccessful interruption can defined as par-
ticipant ¢ starts talking while another participant j speaks,
and i finishes his turn before j does. These cues are illus-
trated in Figure 3. We first compute nonverbal cues at the
individual level and then define cues at the group level.
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Figure 3: Nonverbal cues extracted from speech segmentation.

Individual cues. From the speech segmentation, we
compute Speaking Length (I.SL;) defined as the total time



that participant ¢ speaks, Speaking Turns (I.ST;), Successful
interruptions (I.S1;), and Unsuccessful interruptions (IUI;)
defined as the number of turns, successful interruptions, and
unsuccessful interruptions accumulated over the entire meet-
ing for every participant i, respectively.

Group cues. Three types of group cues are extracted.
A first set of cues characterize the participation rates of the
group by accumulating it over the participants. Let D de-
note the duration of the meeting. We compute the following
from speaking length, turns, and interruptions of each of

.. ) 2, ISL(
the participants: Group Speaking Leng?h(GSL) = T(Z)7
Group Speaking Turns(GST) = w., Group Successful
Interruptions(GSI) = %1(2)7 Group Unsuccessful Inter-

ruptions(GUI) = %Im, Group Successful Interruptions-

to-Turns Ratio(GIT) = RIFEFON Group Unsuccessful Interruption.

S, IST(i)’
to-Turns Ratio(GUT) = %ﬁg, resulting in 6 cues.

A second set of cues attempts to capture the overlap and
silence patterns of a group as a whole. Let T'= D * F'ps be
the total number of frames in a meeting, S be the number
of frames when no participant speaks, M be the number
of frames when only one participant is speaking, and O be
the number of frames when more than one participant talks.
Then we define the following 3 cues: Fraction of Silence(FS)

Fraction of Non-overlapped Speech(FN) = %, and

S
T
Fraction of Overlapped Speech(FO) = %.

A third set of cues characterizes which meeting is more
‘egalitarian’ with respect to the use of the speaking floor.
Let ISL denote the vector composed of P elements, whose
2{%% for the ith participant. Employing
an analogous notation for IST, ISI, and IUI, these vec-
tors are first ranked and then compared with the uniform
(i.e. “egalitarian”) distribution i.e. a vector of the same di-
mension with values equal to %. The comparison is done
using the Bhattacharya distance (a distance measure useful
to compare probability distributions and bounded between
0 and 1). For our case 0 would correspond to a egalitar-
ian meeting and 1 corresponds to a one-man show. This
results in 4 cues: Group Speaking Length Egalitarian Mea-
sure (GLEM), Group Speaking Turns Egalitarian Measure
(GTEM), Group Successful Interruption Egalitarian Mea-
sure (GIEM), and Group Unsuccessful Interruptions Egali-
tarian Measure (GUEM).

elements are

2.3 Meeting type prediction

We used two supervised models to classify the group in-
teraction type. The first is a Gaussian Naive-Bayes classi-
fier, which assumes 1. the features are independent given
the class and 2. the conditional densities are a unimodal
Gaussian. Let A and B denote the class labels. Also, let
fu.n = (f1, f2,...f~n) denote the feature set and fi, fa, ...fn
the individual features. Then the log-likelihood ratio is
given, by using Bayes’ theorem and cancelling the common
terms as follows:

POy _ o0 s PURAPA)
P(B|(f1:n)) [1., P(fiB)P(B)
The probabilities P(fx|A) or P(fi|B) are estimated by

fitting a Gaussian to the data from the respective class and
the ratio of the priors are inferred from the data. It is to

= log(

log( ) (D)

be noted that for our dataset, this ratio is 1 and the prior
is uninformative. The second model is an SVM classifier,
employing a linear kernel, using (fi, f2,...fn) as features.

3. EXPERIMENTAL SETUP

As described in Section 2.1, we have 24 participant groups,
solving two “T'wenty-questions” games, one in collocated and
the other in distributed settings. Each game involved a
brainstorming phase followed by a decision-making phase.
In order to model the difference between brainstorming and
decision-making interactions, we define the following four
datasets and three binary classification tasks.

Dataset A and B consists of 24 brainstorming meetings
and decision-making meetings in distributed scenario respec-
tively. Dataset C and D consists of 24 brainstorming meet-
ings and decision-making meetings in collocated scenario re-
spectively.

Task 1: The first task is to distinguish between brainstorm-
ing and decision-making meetings during the distributed set-
ting. We classify Dataset A versus Dataset B. Each class has
24 datapoints.

Task 2: The second task is to distinguish between brain-
storming and decision-making meetings during the collo-
cated setting. We classify Dataset C versus Dataset D. Each
class has 24 datapoints.

Task 3: The third task is to distinguish between brain-
storming and decision-making meetings. We classify Dataset
A+C versus Dataset B4+D. Each class has 48 datapoints.

Group Adaptation Step. To account for the feature vari-
ations among the 24 groups, we perform z-normalization on
the group nonverbal cues before using it for classification as
follows : f* = (f*—uys)/(0y),Vs € A, B,C, D where f and f
are the values of the feature in a particular scenario s before
and after z-normalization respectively.

In all cases, we use a leave-one-out approach.

4. RESULTS

We first analyze the performance of single cues. Figure
4 shows the performance of the group cues for Task 1 (dis-
tributed setting). Random performance for all the tasks is
50%. Though we experimented with two different classi-
fiers, as described in Section 2.3, we report the results using
the Gaussian Naive Bayes classifier only as the results are
similar when a linear SVM is employed (omitted for space
reasons). Fraction of Silence (FS), Fraction of Overlap (FO),
and Group Speaking Length (GSL) were the top performing
cues with an accuracy of 79.2%. Figure 5 shows for Task 2
(collocated setting). Fraction of Silence (FS), Group Speak-
ing Length (GSL), and Fraction of Nonoverlapped speech
(FN) were the top performing cues with a performance of
81.3%, 81.3%, and 75.0% respectively. For Task 3, a similar
trend was observed. Fraction of Silence (FS), Group Speak-
ing Length (GSL), and Fraction of Overlap (FO) gave the
best classification result with an accuracy of 80.2%, 78.1%,
and 74% (Figure 6). All these results are statistically signif-
icant compared to the random performance at 5% level. The
results suggest that some of the investigated features indeed
have discriminating power. Also, it is interesting to observe
the following trend: Most groups have higher Fraction of
Silence during brainstorming and higher Group Speaking



Length and Fraction of Overlap while making decisions.

Performance - Predicting brain-storming vs problem-solving
80

.|
o
T

L

o

ge0f 4
=

501 B
©

5

8 a0 4
<

=

S 30 Bl
is | N| @] oo oo | o o

o 20r ol | 9| M| S o | o o q
o ™~ «© <« m~ ™~ ™~ ™~

o
L

0" GSL GST GsI GUI GIT GUT FS FN FO GL GT GI GU
EM EM EM EM

Figure 4: Performance of the group cues on classifying the brain-
storming and decision-making meetings during distributed setting
(Task 1).
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Figure 5: Performance of the group cues on classifying the brain-
storming and decision-making meetings during collocated setting
(Task 2).
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Figure 6: Performance of the group cues on classifying the brain-
storming and decision-making meetings (Task 3).
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Figure 7: Performance of combination of group features on pre-
dicting the brainstorming and decision-making meetings.

Later, we also combined the cues to investigate if there
is complementarity among them. Figure 7 shows the clas-
sification performance of some combinations using the log-
likelihood classifier for each of the three tasks. The combina-
tion of Fraction of Silence (FS) and Group Speaking Length

(GSL) improves the classification accuracy to 81.3% in the
distributed setting (Task 1). The combination of Fraction
of Silence (FS) and Fraction of Overlap (FO) improves the
classification accuracy to 83.3% in the collocated case (Task
2). When Group Speaking Length (GSL), Group Speaking
Turns (GST), and Group Unsuccessful Interruptions (GUI)
were added the accuracy improved to 87.5%. For the com-
bined dataset (Task 3), the combination of Fraction of Si-
lence (F'S), Group Speaking Length (GSL), and Group Un-
successful Interruptions (GUI) improved the classification
accuracy to 81.3%.

S. DISCUSSION AND CONCLUSIONS

In this work, we hypothesised and verified that ‘brain-
storming interactions often have different group dynamics
compared to decision-making meetings’ and ‘that such dif-
ferences can be reasonably captured using automatically ex-
tracted monverbal behavior’. Our nonverbal cues, obtained
using privacy-sensitive sociometric sensors, characterized the
entire group by the aggregation (both temporal and person-
wise) of their nonverbal behavior. We could discriminate
these interactions with an accuracy of up to 87.5% and
81.3% in the collocated and distributed setting respectively.
The group adaptation step helps in obtaining good perfor-
mance and also tackling inter-group differences in individ-
uals and relationship among individuals (as the mean be-
havior is subtracted out). In the future, we would like
to use more data and an expanded feature set to include
prosodic cues and temporal aspects of cues to explore gen-
erative models that would characterize brainstorming and
decision-making interactions better.
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