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ABSTRACT

This paper presents a robust and accurate method for joint head pose
and facial actions tracking, even under challenging conditions such
as varying lighting, large head movements, and fast motion. This
is made possible by the combination of two types of facial fea-
tures. We use locations sampled from the facial texture whose ap-
pearance is initialized on the first frame and adapted over time, and
also illumination-invariant patches located on characteristic points
of the face such as the corners of the eyes or of the mouth. The
first type of features contains rich information about the global ap-
pearance of the face and thus leads to an accurate tracking, while
the second type guaranties robustness and stability by avoiding drift.
We demonstrate our system on the Boston University Face Tracking
benchmark, and show it outperforms state-of-the-art methods.

Index Terms— Face tracking, Head pose, Facial actions, 3D
face model, Feature-based tracking

1. INTRODUCTION

Face tracking is a challenging task with many applications that has
been investigated by researchers for years. The difficulties come
from the variability of appearance created by 3D rigid movements
(especially self occlusions due to the head pose), non-rigid move-
ments (due to facial expressions), variability of people appearance
and illumination variations.

The problem of near-frontal face tracking has been addressed
many times in the past. An early and successful approach is to use
Principal Component Analysis to model the 2D variations of the face
shape (Active Shape Model (ASM)), or of both shape and appear-
ance (Active Appearance Model (AAM) [1]). Some works have ex-
tended the use of AAM to larger head movements [2], but the lack
of robustness when confronted to large head pose variations is still a
typical limitation of these models. Besides the correspondence be-
tween the 2D fit and the 3D pose is not straightforward [3].

In parallel, approaches inspired from 3D registration were de-
velopped to robustly track faces under large pose variations. They
usually rely on a rigid 3D face/head model, which can be a cylinder
[4, 5], an ellipsoid [6], or a mesh [7, 8]. The model is fit to the image
by matching either local features [7], a facial texture [4, 5, 6] or a
sparse facial texture [8]. Such approaches can provide a precise esti-
mate of the pose with no restriction to near-frontal views. However,
they are limited to rigid movements. In the best case the tracking is
robust to facial actions; in the worst case they will cause the system
to lose track; in any case they are not estimated.

The use of a deformable 3D model (like Candide [9]) is an ap-
propriate approach to handle both 3D pose and facial actions. To
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(a) (b)
Fig. 1. (a) Trained (red dots) and adaptive (green dots) features. (b)
Samples of the training set for the trained feature located on the right
corner of the right eye (before removing the patch mean).

fit such 3D models to an image, a facial texture [10] or structural
features [11] can be used. Illumination variations can be handled
through continuous adaptation, but the resulting system is subject to
drift. A model-based tracking algorithm was presented in [12], but
the method is based on optical flow and therefore not robust to fast
motions and fast lighting changes.

The idea conveyed in this paper is to combine two different types
of features into a hybrid set in order to achieve a robust and precise
tracking. The first set is made of 400 randomly picked locations and
their intensity values, forming a sparse facial texture. The intensi-
ties are estimated online, we will therefore call them adaptive fea-
tures. Because they are made of single pixels, they are very efficient
to compute, and we will show that despite their simplicity they are
critical to stabilize the pose estimates over time. This set provides a
good model of the current appearance of the face and thus results in a
precise frame-to-frame tracking, but it is subject to drift as the model
is continuously adapted. Therefore we use a second set of features
whose appearance model is fixed. In a similar way to [11], we use 26
local structural features located around the eyebrows, eyes and lips.
They consist of 9 x 9 pixels patches, and a statistical appearance
model is learned offline for each of them. For this reason we will re-
fer to them as the frained features. Contrary to [11] the appearance
model is invariant to illumination, that way we avoid drift. The two
sets are illustrated in Fig. 1 (a). The performances of the system are
evaluated on the Boston University Face Tracking (BUFT) database
(on both Uniform-light and Varying-light datasets) and on two long
real video sequences containing facial actions. They show that the
combination of our two types of features allows us to outperform re-
cent state-of-the-art techniques [4, 6], especially in the challenging
case where lighting changes over time.

2. CANDIDE, A DEFORMABLE 3D MODEL

In this work we use the Candide [9] face model, a deformable 3D
wireframe model defined by the 3D coordinates of 113 facial feature
points. Inter-person and intra-person variations are generated by dis-



placing the vertices of a standard face mesh without expression ac-
cording to some predefined shape and action units. In our case we
consider 14 shape units (such as Head height, Eyebrows vertical po-
sition, Eyes vertical position, Mouth vertical position) and 6 action
units (such as Lower lip depressor, Outer eyebrow raiser), which are
able to cover most common facial actions. A point M; of the stan-
dard face mesh is transformed into a new point M; as follows:
Mi(a, O‘) =M; + S;.0+ A;.a

where S; and A; are respectively the 3 x 14 shape unit matrix and
the 3 x 6 action unit matrix that contain the effect of each shape
(respectively action) unit on point M ;. The 14 x 1 shape vector
o and the 6 X 1 action vector o contain values between -1 and 1
that express the intensity of the displacement unit. o is learned for a
person before tracking while « varies from frame to frame.

The camera is not calibrated and we adopt the weak perspective
projection model (i.e. we neglect the perspective effect) to map a 3D
point M; to an image point m;. We will represent the rotation matrix
(from object coordinate system to camera coordinate system) by the
three Euler angles. Thus the vector of the head pose parameters
to estimate can be expressed as © = [0, 0, 0. Ao Aty s] where
Mis a constant, T = (t, t, t.)7 is the translation matrix (from
object coordinate system to camera coordinate system) and s is a
scale factor (the Candide model is defined up to a scale factor). The
whole state (head pose and facial actions parameters) at time ¢ is
defined as follows:

Xt = [Gt at] . (1)

3. TRACKING USING A HYBRID SET OF FEATURES

The algorithm is composed of a training and a tracking phase. Dur-
ing training, both the shape parameters and the appearance model
for the trained features are learned specifically for the person to be
tracked. During tracking, we use the downhill simplex optimization
method [13] to maximize the posterior probability of the state.

3.1. Learning an appearance model for the trained features

The training phase requires a frontal view of the person with neutral
expression. This frame will be called the reference frame, it can be
the first frame of the sequence for instance. First, the shape parame-
ters are learned by annotating several points on the face in the refer-
ence frame (either manually or using an automatic feature detector),
and by finding the shape parameters o that best fit the Candide model
to the data points.

The goal is to learn for each point 7 of the trained features set
St an appearance model of the 9 x 9 image patch centered at point
¢ valid under variations of pose and illumination. To this end, we
extract such a patch in the reference frame, substract the mean value
(to make it invariant to illumination changes), and simulate what it
would look like under different head rotations by applying a serie
of affine transformations to it (assuming the patch is planar). More
precisely, for each of the three rotation parameters we sample seven
values (from —45° to 45°). Sample patches are shown in Fig. 1 (b).

From this training set we compute the 1 X 81 mean vector p;
and the 81 x 81 covariance matrix Y;. Given these learned values,
the likelihood model for a normalized 9 x 9 image patch Z; centered
at point ¢ is defined as:

pz(Z,L) X 67P(d2i (Zis14),Ter) (2)

where p is a robust function (we used the truncated quadratic func-
tion), 7, is the threshold above which a measurement is assumed to
be an outlier and dx, is the Mahalanobis distance defined by:

N[

ds, (Zi, i) = [(Zi — pa) " 57 (Zs — )]

3.2. Tracking phase

Our objective is to find the state X; (as defined in Eq. (1)) which
maximizes the posterior probability p(X¢|Z1.¢) of the state X at
time ¢ given observations Z; from time 1 to time ¢. Under standard
assumptions, this probability can be approximated by:

P(Xe|Z14) o< p(Ze|X2) - p(Xi| Xi 1) - (3)

This expression is characterized by two terms: the likelihood
p(Z|X+), which expresses how good are observations given a
state value, and p(X,|X;_1) which represents the dynamics, i.e. the
state evolution (with X +—1 being the previous estimate of the state).
These terms are described below.

Likelihood modeling: As discussed in the introduction, our obser-
vations are collected around the projected positions of 3D points,
i.e. the points {M;}ics,, for the trained features and {N;}ics,,
for the adaptive features. More precisely, given the state X; ob-
servations for the trained features Z;" = {Z;+(Xt)}ies,, will
be 9 x 9 zero-mean patches collected around the projected points
{m:(Xe) bies,,, i.e. Zit(Xe) = patch(m;(X¢)). Similarly, ob-
servations for the adaptive features Z¢* = {Z; 1} ies,, will be
single intensity values at the projected points {n;(X¢)}ies, . i-e.
Z; +(Xt) = intensity(n;(X¢)). Assuming conditional indepen-
dence between the features given the state, we have:

sz tit sz tit
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(2] Xy) =

where the appearance model p; for the trained features was de-
scribed in Eq. (2). For the adaptive features, we assume a similar
model, i.e.

pi(Zii(X1)) o e P(Zit(Xt)=pi,tsTad)
where p; ¢ is the current appearance template of the feature. This
template is recursively updated after each time step, according to:

Wigr1 = (1= Av) - pie + Au - Zi,t(f(t)

where Ay is the adaptation rate (set to 0.1 in our experiments).

Dynamics modeling: We assume conditional independance be-
tween the state components, and for each component a null velocity
dynamical model. We thus have:

(Xt|Xt 1) H N( X1t7XLt 1,0d,)

i=1:Np

where N, is the number of components of the state, X; ; denotes
the i component of X;, and {c4,;}i—1.~,, are the noise standard
deviations. They define how large we assume the difference in the
state between two successive frames can be.

Occlusion handling: In practice, instead of maximizing the pos-
terior defined in Eq. (3), we minimize its negative logarithm. In
addition, because the face model is 3D, we can infer if the feature
points might be occluded from the geometry of the mesh and the



Fig. 3. Final fit (enlarged) on frame 1276 of the Speech video se-
quence with the Adaptive (left) and Hybrid (right) methods. Using
the adaptive features alone is prone to drift (in this example the eyes
are fit on the eyebrows) while the combination of our trained and
adaptive features makes our tracker both accurate and robust.

head pose. To do so, we introduce for each feature ¢ a visibility
factor v; (X). This factor will be 1 when the feature is visible under
pose X, and O otherwise. In practice, to avoid discontinuities in our
objective function, we use a smoothed version: the visibility factor
is defined as v;(X) = fr, (n:.Z), where n; is the normal to the
mesh triangle the feature ¢ belongs to, Z' the direction of the z axis,
and f-, a sigmoid function with its inflexion point at 7, = 0.1. The
visibility of a feature point ¢ is taken into account in the likelihood
terms of the error function so that the weight of a feature varies with
its visibility. Thus the error to be minimized is:

B(Xt,Z14) = = Y vi(Xe)dog(pi(Zie(X1)))
1€S¢r

— > wil(Xe).log(pi(Zit(X1))) —Zzog(mxi,tm,tfl)).

1€Sqa

Optimization method: Minimization of the above equation is
performed by the downhill simplex method, a non-linear and iter-
ative optimization method. It does not require to derivate the error
function (which would be difficult to extract in our case) and it
maintains multiple hypothesis (which ensures robustness) during
the optimization phase. The dimension of the state space being
quite large, the optimization is done in two steps: we first run the
optimization algorithm to estimate the pose parameters ©;, then we
estimate the whole state X;.

4. EXPERIMENTS AND RESULTS

The proposed algorithm currently processes an average of 3 frames
per second. So far we made no attempts to make it run in real-time,
but we believe that the frame rate could be much higher. Videos
illustrating the results presented below can be found at http://
www.idiap.ch/~slefevre/Videos_ICMEO9.htm.

4.1. Head pose estimation - the BUFT database

The BUFT database [4] is composed of two datasets in which the
subjects perform free head motion (including translations and both
in-plane and out-of-plane rotations). Each video is 200 frames long
and has a resolution of 320 x 240. Ground truth was collected via
a “Flock of Birds” 3D magnetic tracker. The Uniform-light dataset
contains 45 video sequences (five subjects, nine sequences each).
The Varying-light dataset contains 27 video sequences (three sub-
jects, nine sequences each) taken under changing illumination (e.g.
illumination changing only on one side of the face).

Performance measurements: For any frame in a video sequence,

we define the estimation error e; as:

€ = €pan,i + €tue,i + €roii 4)
where epqn,; is the estimation error for the pan angle for frame . It
is defined by €pan.i = |0,.i —0,.i], where 6, ; is the ground truth for
the pan angle for frame ¢, and éy,i is the estimate for the pan angle
for frame ¢. The definitions are similar for the tilt and roll.

We can define the robustness of a tracker as the number N, of
frames successfully tracked. For the sake of our analysis, we defined
the track as lost when e; exceeds a certain threshold. This thresh-
old was set manually by inspecting different sequences where the
track was lost and then measuring the corresponding error as given
by Eq. (4). A similar procedure was applied in [4]. We will call
P the percentage of frames successfully tracked over all the video
sequences. The accuracy of a tracker is defined as the mean pan, tilt
and roll angle errors over the set of all tracked frames S:

1
Em - g(Epan + Etilt + Eroll)

where Epqn = Nib > ics, Cpan,i (and similarly for the tilt and roll).

Results: We compared the performances of six trackers; the re-
sults are shown in Table 1. The “Hybrid” approach corresponds
to the implementation of the method described in this paper. The
“Trained” (respectively “Adaptive”) approach corresponds to the
same modeling but only taking into account the trained (respec-
tively adaptive) features.

The results obtained by the Hybrid method (see examples in
Fig. 2) are noticeably better than the results of [4], regarding both ro-
bustness and accuracy on the tracked frames. The performances are
comparable to those of the methods proposed in [6, 5]. But our major
achievement is to handle the much more challenging Varying-light
dataset without loss of robustness and accuracy, while these previous
methods have not been demonstrated on this second dataset.

Using trained features only (i.e. the Trained method) results in
a loss of robustness and precision. We observed that every failure
of the tracker was caused by a large pan rotation. The tracker relies
on 26 features all gathered at mainly three regions of the face (the
two eyes and the mouth). Thus the loss of information caused by the
disappearance of a few features on one face side (e.g. one eye when
the pan becomes superior to 30 °) creates a large uncertainty around
the pan axis; this is enough to make the tracker lose track.

The method relying on adaptive features only (i.e. the Adaptive
method) performs quite well on both datasets, but the pose estima-
tion is less precise than the Hybrid method. Furthermore this method
is prone to drift. This cannot be seen on the sequences from the
BUFT database as they are too short, but when applied to longer se-
quences we can observe that the tracker starts to drift at some point.
An example is shown in Fig. 3: by the end of the sequence the eyes
are fit on the eyebrows, the eyebrows are fit on the forehead and the
top of the head is fit on the background.

4.2. Facial actions estimation

Unfortunately, no ground truth is available for facial actions videos,
and we measured the results quality only visually. The reader is in-
vited to refer to the videos found at the url given above. We tested
our system on two longer video sequences containing facial expres-
sions. The first one is the Talking Face video from PRIMA - INRIA
Rhone-Alpes, a 5000 frames long video of a person engaged in a
conversation. The second one is a 2500 frames long speech from
a politician in a TV broadcast. Facial actions are mostly located



Uniform-light dataset Varying-light dataset
APPTOHCh Ps Epan Etz'lt Eroll Em RG Epan Etilt Eroll Em
LaCasciaetal. [4] | 75% 5.3° 5.6° 3.8° | 39° | 8% - - - -
Xiao et al. [5] 100% | 3.8° 3.2° 14° | 2.8° - - - - -
Morency et al. [6] | 100% | 5.0° 3.7° 2.9° | 3.9° - - - - -
Hybrid 100% | 4.4° 3.3° 2.0° | 3.2° | 100% | 4.1° 3.5° 2.3° | 3.3°

Trained 95% 4.6° | 45° | 2.0° | 37° | 98% 4.1° | 3.8° | 2.3° | 34°
Adaptive 100% | 4.7° | 3.3° | 2.0° | 3.3° | 100% | 4.9° | 40° | 2.7° | 3.9°

Table 1. Comparison on the BUFT database of robustness and accuracy as defined in Section 4.1 between our approach and state-of-the-art
face trackers. On the relatively simple Uniform-light dataset, our approach outperforms the method recently proposed by Morency et al. and
the method proposed by La Cascia et al. It performs slightly worse than the method proposed by Xiao et al. However, it performs very well
on the much more challenging Varying-light dataset, on which none of these methods were successfully demonstrated.

Fig. 2. Example results for the Hybrid method on the BUFT database. Top row: Images from six different sequences of the Uniform-light
dataset. Bottom row: Images from one sequence of the Varying-light dataset. Example result sequences can be found on the website.
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