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Abstract—We analyze a simple hierarchical architecture con- ASR in different ways. In the hybrid HMM/MLP system [6],
tSiStinitJ_ Ofttw?hmultrillaye;_ perlceptron EM_LP) lclasski)fi%r_?t_in tard%fp they are used as local emission scores in the HMM states.
o estimate the phonetic class conditional probabilities. In this ;
hierarchical Setl_JFf).'), the first MLP classifieg_is tr_ained _using lln thgtganfdim S}éSLemK[lg]’ theYLare tr?nsfofrmedtt_)y appl%/lng
standard acoustic features. The second MLP is trained using the ogarithm followed by Karhunen-Loeve transformation (K-
posterior probabilities of phonemes estimated by the first, but and used as features to a standard HMM/GMM system. In a
with a long temporal context of around 150-230 ms. Through recent study [11], the estimated posterior probabilitiesused
extensive phoneme recognition experiments, and the analysis ofdirectly as features in an HMM based system, where the state
the trained second MLP using Volterra series, we show that opission distribution is multinomial. Throughout this pap
(a) the hierarchical system vyields higher phoneme recognition .
accuracies - an absolute improvement of 3.5% and 9.3% on whenever the phoneme ppsterlor probabilities are usgd:als lo
TIMIT and CTS respectively - over the conventional single representation of speech in place of standard acoustiaréest
MLP based system, (b) there exists useful information in the we refer to them aposterior features
temporal trajectories of the posterior feature space, spannig  |n the posterior feature space, each dimension corresponds
around 230 ms of context, (¢) the second MLP leams the phonetic 1, 5 hhoneme. The posterior feature vector at a particute ti
temporal patterns in the posterior features, which include the . . - . .
phonetic confusions at the output of the first MLP as well as the msta.mt is a point in the po;tgrlor feature space_, reprérent
phonotactics of the language as observed in the training data, the instantaneous soft-decision on the underlying phoneme
and (d) the second MLP classifier requires fewer number of It carries useful information such as the probability mass a
parameters and can be trained using lesser amount of training signed to the competing phonemes. The sequence of posterior
data. feature vectors is a trajectory in the posterior featurecspa

Index Terms—Multilayer perceptrons, Volterra series, hierar- and it can provide additional contextual information sush a
chical systems, posterior probabilities. the evolution of the posterior features within a phonemé-su
phonemic transition). Furthermore, a sufficiently long pemal
context on the posterior features can also capture theitians
to/from neighboring phonemes (sub-lexical transition).

Ultilayer perceptron (MLP) classifier based acoustic The contextual information in the posterior features has

modeling is being extensively used in state-of-the-alleen successfully exploited in ASR in our previous stud-
automatic speech recognition (ASR) systems [1][2][3B4][ ies [12][13], where a second MLP classifier was trained
The MLP is typically trained using standard acoustic fezéuron the posterior features with a temporal context of 150-
such as mel frequency cepstral coefficients or perceptudtti 230 ms. This hierarchical approach yielded higher phoneme
predictive coefficients with a certain temporal context. Allw recognition accuracies when compared to the conventional
trained MLP can estimate the posterior probabilities of thsingle MLP based approach. This paper is an extension to
output classes, typically subword units of speech such @sr previous work [12], and the main focus is on the analysis
phonemes, conditioned on the input features [6][7]. of the hierarchical system. We investigate the reasons for

MLP based acoustic modeling has certain benefits. Firsttile effectiveness of the hierarchical system and attempt to
it obviates the need for strong assumptions on the statisfic understand the functionality (or working) of the second MLP
the features and the parametric form of its density functionlassifier by analyzing its trained parameters.

As a consequence, features with different distributionslma  As the second MLP is trained using posterior features
simply concatenated and applied at the input of the MLP teith a certain temporal context, we can expect it to learn
achieve feature combination [3]. Secondly, when trained dhe phonetic-temporal patterns, mainly capturing the pkion
large amount of data, MLPs have been shown to be invariamnfusions at the output of the first classifier. However, as
to speaker characteristics [3] and environment specifiorinf the MLP is a complex classifier with nonlinear activation
mation such as noise [8]. Thirdly, the output of the MLP arfinctions, discovering the phonetic-temporal patterasneby
probabilities with useful propertie®.q., positivity, summing the system for each phoneme is not straightforward. Momeove
to one), providing an efficient framework for multi-streamas the MLP is trained using a discriminative criterion, thes
combination [9]. Lastly, the MLP can be trained efficientlpatterns cannot be simply derived from the confusion matrix
and is scalable with large amount of data. of the first MLP classifier. In addition, confusion matrices d

The phonetic class conditional probabilities estimated mot capture any temporal information. To understand this in
the MLP are used in hidden Markov model (HMM) basefbrmation, one has to interpret the trained parametersgiwei

I. INTRODUCTION
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and biases) of the second MLP classifier. approach is often limited by the amount of training data J16]
In this work, we address this issue by representing tld (c) using finer representation of output classes such as
second stage of the hierarchical system using Volterra seb-phonemic states [12] [17].
ries [14][15], thereby decomposing the trained nonlingaxs In this work, we explore a way to post-process the output
tem into its linear, quadratic, and higher order parts. Fuof the MLP (posterior probabilities of phonemes, condi&dn
thermore, we analyze the linear part of the second ML#h acoustic features) to obtain n@mhancedestimates of the
and interpret the phonetic-temporal patterns that arendéshr phonetic class conditional probabilities.
In contrast, our previous study [12] utilized a single layer
perceptron in place of the second MLP to facilitate easy potivation
analysis. While preliminary insights into the working of the
system were obtained by plotting its weight matrix, the actu
MLP that was used in ASR studies remained unanalyzed.
Other extensions to our previously published work include
study on the role of temporal context on the posterior festur

An MLP trained on acoustic features gives a frame-level
phoneme classification accuracy of around 60-70%. Theserror
ig classification can be mainly attributed to the limitagon

in feature extraction and modeling techniques. Analysis of

and its effect on the performance of the hierarchical systeme_ associated phonetic confusion matrices show that there

We also analyze some of the useful properties of posten&jms a consistent pattern in classification. For examiple,

S o honeme /iy/d.g., bea) is misclassified, then it is more
features such as lesser nonlinguistic variabilities anatssp . €p ) i .
representation, and discuss its influence on the complei(ityIIker that vowels such as /ink(g., bit) or /eh/ €.g., bey) is

the second MLP classifier and the amount of training da%ssigned a higher probability mass. This information in the

Experiments are also performed on conversational telephao Str'bltjtt'ﬁn Oftth? r;r?hba?;ll;_té vi';\lue_::_ could be exploitead t
speech (CTS) to ascertain if the trends in results and asaly%orrec € output ot the classmer. L
The posterior features have lesser nonlinguistic vaitas|

concur with those obtained on TIMIT. . o
. . . ﬁuch as speaker and environmental characteristics when com
Through extensive phoneme recognition studies and the

. . : . . pared to acoustic features. In addition, they have a simpler
analysis of second MLP in the hierarchical system usu&rS arse) representation. As a consequence, we h hesi
\olterra series, we show that (a) the hierarchical syste P b ' q ! ypo

yields higher phoneme recognition accuracies compared tthgt cont_extual |nformat_|on spannlng_longer time spans can
: . e effectively learned in the posterior feature space. The
single MLP based system, (b) the posterior features contain . . :

: ; : useful contextual information could be the evolution of the
useful contextual information spanning around 150-230 m$

. . ._posterior features within a phoneme (sub-phonemic leval) a
of temporal context (c) the second MLP in the hmrarchm%s transition into the neighboring phonemes (sub-leXmeegl).

system learns the phonetic-temporal patterns in the poster .

eaturs, e ncludes the phonet conusion patms 8'1% 121 P21 S1eTS 1 e ecent pes o ol

the output of the first classifier and to a certain extent the ) . . p .

phonotactics of the language as observed in the training da |erarch|gal fashion by using classifiers such as _condmon

and (d) the classifier at the second stage of the hierarcrﬁandom field (CRF) [18][19] or MLP [12][20]. In this work,
we further investigate the MLP based hierarchical systezh [1

:re;qirl:il:]zsdl‘aetv;/er number of parameters and lesser amountA% shown in Fig. 1, the first MLP is trained in the conventional

way using standard acoustic features. The second MLP is

The rest of the paper is organized as follows: In Section Il, : . . . .
we describe the MLP based hierarchical system and discsuss%ﬁ?med using posterior features estimated by the first MLP

similarities/differences with previous works in the |aéure. classitier with a long temporal context of around 150-230 ms.

In Section Ill, we describe the experimental setup and the

results. In Section IV, we introduce Volterra series anduks temporal temporal
its application in the analysis of the second stage of the { coriext H MLP-1 nggfg)g H MLP-2 %’
hierarchical system. Furthermore, we also interpret theali ; = X o X

; .. acoustic phoneme phoneme
Volterra kernels of the system in terms of the phonenp features posterior posterior
temporal patterns. In Section V, we analyze the properties PLP, MFCC probabilites probabilites
of the posterior features that contribute to the effectssnof

the hierarchical system. In Section VI, we discuss someef thig- 1. Estimation of posterior probabilities of phonemesigsin hierarchy
of two MLPs. The second MLP is trained using the posteriobphilities of

less explored facets of the hierarchical approach. phonemes estimated by the first MLP.

Il. HIERARCHICAL POSTERIORESTIMATION

An MLP classifier with enough complexity and trained wittB. Notations and Formalism

sufficient amount of data can directly estimate the Bayeaian The following notations are used throughout this pafer.
posteriori probabilities of the output classes, conditioned oflenotes the acoustic feature vectoat timet. A temporal

the input features [7]. Consequently, the performance dRA&ontext of2d; +1 frames on the feature vectfiris denoted by
systems using MLP acoustic models can be improved usifg ; .,,,, = [f/_, ,...f/,...f/,, ]'. The first MLP classifier,
the following three broad strategies: (a) using richer atiou

features (b) increasing the capacity of the MLP (but this!All vectors are column vectors by default. Transpose is dehaoty /
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denoted byO,,;,1, estimates the posterior probability of eaclindependent processing of speech in subbands was originall

of the K phonetic classeg, = k,k = 1,2, ... K, conditioned inspired by Allen’s interpretation [24] of Fletcher's wofR5],

on the acoustic features spannifig=: 4 frames around; as indicating a similar mechanism in the human auditory system
2o(t) = P (g =k | Bdrtrdss Omipt)s k=1,... K (1) ?mtlilsgnrgegasr;higgl][gﬁh|tectures have also been studied

The estimated posterior probabilities at timare represented

in a vectorial form ax; = [l’l(t)7 l’g(t), . Ik(t), - IK(t)]/, G2: Feature Combination

and a tempora! context did, + 1 frames on the posterior Multi-resolution relative spectra [28] features are oféai
feature vector is denqted DY —d:t-+ds T_he second. MLP, y filtering thelog critical band energies using a bank of multi-
denoted by@m”??’ estimates the posterior probabilities o esolution bandpass filters. These features are typica#d in
phonemes cond|t|onepl ona temporgl coniexs 11 on the Tandem based ASR systems. In more recent studies [29][30],
posterior features estimated by the first MLP as the multi-resolution filter bank is split into two groups sfa
2e(t) = P(qt = k | Xt—dy:t+ds> Omip2), k=1,...K (2) modulation filters (narrow bandwidth) and slow modulation
. filters (wider bandwidth) - and combined in a hierarchicahfa
The output of the second MLF: at times representt_ad @ = jon. At the first stage of the hierarchy, an MLP is trained with
[21(t), 22(2), ... 2(F), ... 2 (2)]'. I later parts of this Section, o4 res obtained using fast modulation filters. The eséma
fi.r andxy.r der_wotes the sequence of acoustic and posterigy posterior probabilities from the first MLPldg + KLT),
feature vectors in the entire utterance, whéralenotes the with a temporal context of 90 ms are appended to the features
total number of frames. optained using slow modulation filters, and used to train the

In practice, the mput fe_atures to the MLP are n_ormallz cond MLP classifier. ASR studies using this hierarchical
to zero mean and unit variance. Feature normalization easu

hat th . . he hidd vation f Ulystem have shown to yield higher recognition accuracres. |
.t qt the operatmg region on the hidden activation uncthﬁ/is approach, the second MLP acts like a feature combiner.
is in the linear region, leading to a faster convergence o

the back propagation training algorithm [21]. In the case of ) )
the second MLP, as the features are posterior probabjliitiés>: Hierarchy using HMM
mean and variance normalization is equivalent to takingesca Hierarchical structures have also been investigated in an
likelihoods as features (refer Appendix A for the proof)attempt to integrate additional knowledge such as minimum
Hence, normalization of posterior features removes theceff duration of phonemes and transition probabilities between
of unigram phonetic class priors learned by the first MLPhonemes [31]. This knowledge is incorporated into an HMM
classifier. The priors are, however, again learned by thersec model ©y,,,,,,. The posterior probabilities of phonemes esti-
MLP classifier. mated by the MLP modéd,,,;,,; are used as emission scores in
the HMM states. The new estimates of posterior probalslitie

C. Background are derived from the state occupancy probabilitle§;, =

. . . . . f1.7, Omip1, Onmm) €Stimated using the forward-backward
In this section, we review different approaches in MLél‘gorithm.?l'he new)estimates of the posterior probabslitiee

based acoustic modehng, that_usg hierarchical ar.Ch'mwcgnditioned on the entire acoustic observation sequénge
to model the temporal information in the speech signal, an

contrast them with the approach investigated in this paper. | )

In all the discussed works, the first stage of the hierarchy & Hierarchy using RNN

an MLP. The second stage of the hierarchy includes classifier Recurrent neural networks (RNN) can also estimate the pho-
such as MLP, HMM, recurrent neural network (RNN), or CRFetic class conditional probabilities [32]. In a prior wdaa],

The reviewed works are categorized into the following goughe hierarchical estimation of the phoneme posterior proba
(G1 to G8), mainly based on the application of temporabilities using an RNN was investigated. The first stage of
context on the posterior features and the type of classifierthe hierarchical system consists of an MLP trained using

the second stage of the hierarchy. the power spectrum of the speech. Its output units represent
the articulatory features corresponding to the phonentes. |
G1: Classifier Combination the second stage, an RNN mod@l.,,, is trained on the

Flrticulatory features estimated by the MLP. In this case, at

Hierarchical architecture of MLPs have been previous . g
studied in the TRAPS [22] and HATS [23] systems. At th(t;(me t, the RNN estimates the posterior probabilities of the

first stage of the hierarchical system, separate MLP claesiﬁphonemesp(qt - klx1it, Ornn), cond_moned on the present
: i s and all the previously observed articulatory feature wvecto

are trained for each of the critical bands. Temporal infaroma

in the acoustic features is exploited by using thg critical XLt

band energies spanning over a period of about second as input )

feature. At the second stage, an MLP is used to merge 1&55 Hierarchy using CRF

outputs from the classifiers at the first stage of the hieyarch There is a growing interest in CRF based models, especially

In other words, the input to the second MLP classifier are thieear chains (with first order Markovian assumption) for

activations at the output (hidden in case of HATS) layer ef threasons such as discriminative training, relaxed conwitio

critical band specific MLPs, but without any temporal cotitexindependence assumption, and ability to jointly modelufesst



IEEE AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL.X, NO. Y, MONTR010 4

. . L . TABLE |
streams with different distributions [34]. In more recermris, SUMMARY OF THE HIERARCHICAL SYSTEMS EXPLOITING TEMPORAL

CRFs have been investigated for hierarchical estimation OfFORMATION. NOTATIONS INCLUDE: CLASSIFIER-1 (C1),CLASSIFIER-2

phoneme posterior probabilities [18][19]. At the first stag (C2),ACOUSTIC FEATURES(A), POSTERIOR FEATURESP), POSTERIOR
FEATURES TRANSFORMED USINdog AND KLT (P¢,), LENGTH OF THE

of the hierarchical system, an MLP estimates the posterior UTTERANCE (T).

probabilities of phonemes using (1). In the second stage, th

estimates of the posterior probabilities from the MkPr are system temporal context . c2 c2

used as features to the CRF mo@e}.;. The new estimates of & o3 Cooelc) L2 (posterion) fealyies| e

the posterior probabilities of phonemé&gq; = k|x1.7, Ocry) G2 [29][30 long (1s) 90 ms A+P,. | MLP

are obtained using a framework similar to HMM based gj gé T 2" - l—li?’\lﬂl\l\/ll

forward—chkward algorithm. ' ' G5 181719 225 T't = CRF
The main difference between the CRF based hierarchical | G6 [12][20 any 230 ms P MLP

system and HMM based hierarchical system, discuss&Bjn

is in the way the estimates of posterior probabilities from

the MLP are used. In the HMM based system, the posterior

probabilities of phonemes are used as local acoustic scof@gognition. The processing from the input to the compoessi

in the HMM states, whereas in the CRF based system, tH@yercan be likened to the first MLP in the hierarchical syste
are used as features. In addition, the CRF based system &Rg the processing from the compression layer to the output

benefits from discriminative training. layer can be likened to the second MLP.
Even though the architectures of both these systems seem to
G6: Hierarchy using MLP be similar, the motivation for these works and their appita

In th q h. the MLP h q in speech recognition are different. In the bottleneck Uesat
n the proposed approach, the at the secon Stagee%raction, the objective is to obtain lower dimensionatiees

the hierarchy yields a new estimate of posterior probasit independent of the phonetic classes), which are moretdeita
conditioned on a window of the posterior features estimat 61 the ensuing HMM/GMM system. In the proposed hierar-
Ik\J/IthFr:e f'r;t MI;ID,kand the mod@,...,,» representing the Secondchical system, the first MLP transforms the acoustic feature
h.as (0 = h"ft‘d%:tfld?’emlpg)' - h b to posterior features with lesser undesirable variaeditsuch
.T 'S approach 1S simifar in principe to the R.NN aseds speaker and environment characteristics. Consequtraly
hierarchical approach4. gnd .the CRF based hierarchica econd MLP can exploit the temporal information in the
approachGs. The classifiers in the second stage of the%%sterior features spanning temporal contexts as long @s 25

systems are trained discriminatively using either posterims. The second MLP gives new estimates of phonetic class
features or articulatory features. Apart from the mOde"”gonditional probabilities

abilities of these classifiers, the main difference between
these hierarchical systems is the temporal context on the
posterior features. In the RNN based system, the new estimat
of posterior probabilities are conditioned on all previgus G8:Frame-based MPE

observed posterior feature vectors. In the CRF based agiproa The hierarchical system discussed in this work can be

it is condi_tioned on the entire sequence of posterior fmurr,elated to the frame based minimum phone error (fMPE) sys-
;Nhereas.m °“r|_an’“f,aC,h' the temporal context on the postefig, [36]. In fMPE, a very high dimensional vector of posterio
eatﬁres IS EXpd'C'ty.t;m('jte.d to be around_ 150_]230 ms. d probabilities is obtained from Gaussian mixture modelwit
The works describe 'rGl'G3, are primanly motivate a temporal context. The high dimensional posterior vector
towards exploiting the temporal information in the acowistig projected to a lower dimensional feature space, and used

fgatures: Whereas In-our lwork as well s} an.d_ G5, the as a correction to the input features such as PLP cepstral
hierarchical system is motivated towards exploiting terapo coefficients. The linear transformation matrix is trainesing
information in the posterior features. In this work, thetfirsminimum phone error criterion [37]

MLP is trained using standard PLP features. However, it can ihe MLP based hierarchical system, the high dimensional

be trained with any acoustic features, or the first stage ean b : e ! .
. . - vector of posterior probabilities is obtained by stackihg t

entirely replaced with more sophisticated MLP based systemut Ut of the first MLP over a lona temooral context. The

described inG1-G2 Table | gives a summary of the discussed" P 9 P '

o : : Second MLP acts as a nonlinear transform, and is trainedjusin
approaches highlighting the differences in the temporatexd - o . 4
Iy . a minimum cross-entropy error criterion, which also acégev
and the nature of the second classifier in the hierarchy.

. ; inimum phone error. Apart from the nonlinear transforma-
The proposed hierarchical framework can also be related. 10 L . .
. : . . tion, the major difference between the two is that in fMPE, th
the following prior works in the literature . .
transformed posterior vectors are used as a correctioneto th
input features, but in the hierarchical system, they arel ase
G7: Bottleneck Features new features to the ASR. Interestingly, fMPE has been shown
In bottleneck feature extraction [35], a five layer MLP with @ be a special case of semi-parametric trajectory model tha
bottleneck constriction at the middle (or compressiongtais models the trajectories of the acoustic features [38]. In ou
trained to classify phonemes. The linear activation vahi¢se case, the second MLP learns the trajectories of the posterio

bottleneck layer are used as features in Tandem based spdeatures. This is discussed in Section IV-C.
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TABLE Il
[1l. EXPERIMENTS AND RESULTS THE NUMBER OF SPEAKERS AND THE AMOUNT OF DATA IN THE TRAIN

. CROSSVALIDATION (CV) AND TEST SETS OFTIMIT AND CTS.
A. Experimental Setup (V)

The efficacy of the hierarchical system in estimating __TIMIT __CIsS

. g . . train | CV | test | train CV test
phoneme posterior probabilities is evaluated by perfogmin speech (hours) 2.6 | 0.6 | 1.1 | 2320 363 | 9.4
speaker independent phoneme recognition experiments on [ speakers 375 | 87 | 168 | 4538 | 726 | 182
TIMIT as well as CTS databases. We preferred phoneme
recognition as it facilitates a detailed analysis of theultss

Improvements in word recognition using the hierarchical ap .
proach have been reported in [20][39]. of the MLP and the phoneme n-gram models are estimated on

: . . e training set. The cross-validation set is used to cotiim
The TIMIT database consists of 4.3 hours (including 1'%]arning rate of the MLP. In addition, it is also used to oitien

hours of NIST complete test set) of read speech, recordedtﬁré the phoneme insertion penalty (and language modehgcali

clean conditions. The ‘sa’ dialect sentences in the databas tor, if phoneme n-gram models are used) of the decoder.

are not included in the experiments. The database is ha ?ﬁp-
) _EXp L A the results reported in this paper are on the test setchvhi
labeled using 61 phonetic symbols, which include the clt!arsuriF not seen in the entire training phase
3 .

as well as the allophonic varlayons of certain phonemes. On CTS task, training an MLP with 232 hours of speech
our experiments, these phonetic symbols are mapped to the

standard set of 39 phonemes [40] with an additional garbageqomputat|on€ "Y expgnsnfe:n ordher to.s_peeg up thei.ex—
class? eriments to obtain various plots, the training data sepiis s

. . . domly into two equal parts. The first MLP is trained with
The CTS setup used in the experiments consists of 27?#; half of the training data, and the second MLP is trained

hours speech defined astrain04 which is a subset of with the remaining half. The single MLP based system is,

hSFra}in03 data set defined at the Cambridge_ University forﬁowever, trained on the complete training data. On TIMIT, as
training the CU-HTK system for RTO3 evaluation [41][42]. the amount of training data is small, both the MLPs in the

The phonetic transcription of the speech - required foning hierarchical system are trained on the full data.
the MLP as well as computing the accuracy of IOhOnemeThe MLPs are trained using the Quicknet package [46].

recognition - is obtained by Viterbi forced alignment. Hoist . .
; The phoneme n-gram models are trained using the SRILM
we used off-the-shelf HMM/GMM acoustic models developeg)Olkit [47] and phoneme recognition is performed using the

n [44] n conjun'ct_lon with the UNISYN [45] .pr.onunuatlon weighted finite state transducer based Juicer decoder [48].
dictionary containing 45 phonemes. The dictionary, on an

average, contains 1.015 pronunciations per word.

In all the experiments, the acoustic features are the filt Experimental Results
13 PLP cepstral coefficients. These coefficients, afterksgyea Table 1l shows the phoneme recognition accuracies ob-
specific mean and variance normalization, are appendedtaimed by hierarchical modeling (system S2) in comparison
their delta and delta-delta derivatives, to obtain a 39 dimewith the standard single MLP modeling (system S1). The
sional feature vector for every 10 ms. A three layered MLBingle MLP system is trained using PLP features with a 90
with sigmoid nonlinearity at the hidden layer, and softmams context. The second MLP in the hierarchical system is
nonlinearity at the output is used in all the experimentse Thrained using the output of the single MLP based system S1,
parameters of the MLP are optimized using minimum crosg4ith a temporal context of 230 ms. It can be seen that, by
entropy training criterion. Phoneme recognition is parfed hierarchical modeling we obtain an absolute improvement of
using hybrid HMM/MLP approach [6]. The sequence 08.5% in recognition accuracy on TIMIT, and 9.3% on CTS.
phonemes is decoded by applying Viterbi algorithm, whefBo study the effect of increase in the model capacity on the
each phoneme is represented by a strictly left-to-righteh recognition accuracies, we also compare these result®se th
state HMM, thereby enforcing a minimum duration of 30 msbtained by a single MLP based system with the same number
The emission likelihood in each of the three states is theesarof parameters as in the hierarchical system (system S3)idn t
and is derived from the associated output of the MLP. case, the improvement in the recognition accuracies is 2.5%

Table 1l shows the number of speakers and the amountafd 8.3% respectively.
data in the training, cross-validation, and test sets oftie In Fig. 2, we compare the phoneme recognition accuracies
databases. On TIMIT, the train and test sets are accordivigtained using hierarchical approach to those obtaineayusi
to the standard protocol. On CTS, the total data is split inthe single MLP approach for different values of the temporal
train, CV, and test sets as shown in the table. The parameteostext. In the case of hierarchical system, the first MLP

is always trained with a temporal context of 90 ms on the

2Unlike in [40], the closures are merged with their correspogdursts acoustic features. As the temporal context on the posterior
(e.g., /bcll,/o/—/bl). The garbage class handles frames with no labels, a‘?@atures at the second MLP is increased. the total number
the glottal stop /g/ and its closure /qcl/. The garbage atehse classes are . ) ! .
excluded while evaluating the recognition accuracies. of parameters in the MLP is kept constant by appropriately

3The h5train03 setup consists of around 296 hours of speech from
Switchboard-1 [43], Switchboard Cellular, and Callhome Bksig speech 4Using multi-threaded version of Quicknet [46] (with eightehds and
corpora, distributed by the Linguistic Data Consortium. faming the AMI  bunch size of 2048), training an MLP of si361 x 5000 x 45 on 232 hours
RTO5 system [44], the sentences containing words which d@ocur in the of speech takes roughly 72 hours to complete 8 epochs on a 224 &WD
dictionary were removed, resulting in 277.7 hoursctitrainO4 data set. Opteron processor, with eight cores.
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TABLE Il . . .
PHONEME RECOGNITION ACCURACIES OBTAINED BY USING 3) Along temporal context is more effective when applied
HIERARCHICAL POSTERIOR ESTIMATION AS COMPARED TO THE on the posterior features rather than on the acoustic
STANDARD SINGLEMLP ONTIMIT AND CTSDATABASES. features. On increasing the temporal context on the

single MLP | ierarchical single MLP acoustic features at the input of the single MLP system,

baseline 1) | two MLPs 82 | same capacityS3) recognition accuracies peak for a context of around 90-
TIMIT 68.1 716 69.1 110 ms, but are significantly lower when compared to
CTS 54.3 63.6 55.3

the hierarchical system.

From the above discussion it is clear that the hierarchical
system is useful as a phoneme posterior probability estimat

reducing the size of its hidden layein the case of single MLP and that a long temporal context is more effective on the
estimator, as the temporal context on the acoustic feataregosterior features rather than on the acoustic features. As
increased, the total number of parameters is kept constant second MLP is trained using posterior features, which

and

equal to those in the hierarchical system (sum of thgpresents the underlying sequence of phonemes, it is clear

parameters in both the MLPs). that the second MLP learns the phonetic-temporal patterns.

accuracy (%)

The following guestions, however, remain unanswered: (a)

6 ‘ ‘ : : what are the phonetic-temporal patterns learned for each
phoneme ? (b) as the long temporal context extends beyond
the typical duration of phonemes, has the second MLP also
learned the phonotactics of the language ? and (c) why is
the relatively longer temporal context more effective om th
posterior features ?

The first two questions can be answered by analyzing the
—O— single MLP input-output relationship learned by the second MLP cfassi

=}
i=

[}
o

"

—6—single MLP
—&— hierarchy

o
S

accuracy (%)

I~
&

O—

o hierarchy In this work, we use Volterra series for the analysis, ansl ithi

N
S

0 5 100 150 200 250 0 % 100 150 200 250 discussed in Section IV. The effectiveness of temporalednt

context (ms) context (ms)

@) (b)

on the posterior features is discussed in Section V.

Fig. 2. (a) Phoneme recognition accuracy on TIMIT using amahiical C. Second MLP as a Function

setup

as well as single MLP with the same number of parameters.

In . .
hierarchical system, the size of the first MLP3581 x 1000 x 40, and the The Second MLP can be V'?Wed asa VeCtor_ valued fupppon
size of the second MLP for 23 frame contextdg0 x 1083 x 40. (b) A f,i2(.), Which takes the estimates of posterior probabilities

similar plot on the CTS, where the size of the first MLR3EL x 5000 x 45, ;
and the size of the second MLP for 23 frame context(85 x 1334 x 45. of phonemes from the first MLP denoted By_q,.+q, as

Any two points in the plot correspond to systems with the sanmabau of its arguments, and gives a new estimate of the posterior

parameters, and can be calculated using. probabilities of phonemes; as
It can be seen from the figure that: zt = fnip2(Xe—dyit+ds)- ®)
1) The hierarchical system consistently outperforms thHe the second MLP classifier, 16 denote the weight matrix

2)

5

single MLP based system with the same number ebnnecting the input layer to the hidden layér,denote the
parameters for all values of context. As the context ateight matrix connecting the hidden layer to the outgat,

the second MLP is increased, even though the numtmrd b, denote the bias vectors at the hidden and output
of hidden nodes is decreased, there is a steady increlsers respectively, anfl, ¢ (.) and fs;4.. (.) denote the vector

in the recognition accuracies. Thus it can be concludedlued softmax and sigmoid functions at the output and the
that improvement is due to the topology of two MLP$idden layers of the MLP respectively. Then, equation (3) ca
in tandem, and not merely due to the increase in overaik expressed as

model capacity.

In case of CTS, the recognition accuracies begin to satu- 2 = feopt (Y1), )

rate at around 230 ms of temporal context at the input @fhere the vectoy; = [y*(t),...v7(¢),...y" (t)]’ denotes the
the second MLP. In case of TIMIT, the accuracies beginigiear activation vector before the softmax nonlinearitythe

to saturate after 150 ms, but this could be due to the lagkitput layer of the MLP, and is given by

of sufficient training data. In both cases, the effective

temporal context of 150-230 ms extends well beyond e = bo+C fsigm (b + WXi—dzitrds) - )

the typical duration of phonemes (50-70 ms), whick s difficult to analyze or interpret the input-output retm-
suggests that the second MLP is integrating temporghip (x¢,2;) of the MLP, given by (4) and (5), due to the
information in the posteriors features corresponding {&resence of nonlinear functionigm(.) and fef:(.). The
the neighboring phonemes as well. output nonlinearity can be conveniently dropped from the

) . analysis as parameters of the discriminatively trained MLP
F denotes the dimensionality of the featurésdenotes the temporal

context, andd (andO) denote the size of the hidden (and output) layers, the Vs by, Ca.bo} can Sti”_ be interpreted from th.e inpUt'OUFPUt
number of parameters in the MLP is given 8« F+ H + H+ H+O + 0.  relationship(x;, y:). This does not affect the interpretability
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as the output units are still phonemes, and the orderingeof tteduces to order one, and its first order \Volterra kernelgjive
estimates are not altered. The nonlinearity at the hiddger,la the actual impulse response function of the system.
however, can still make the analysis of (5) difficult. \olterra series has been extensively used in the analysis
In our previous work [12], this problem was circumventedyf biological systems [51]. It has also been used in the
but not solved, by using a single layer perceptron (SLP) literature to analyze artificial neural networks in varidiesds
place of the second MLP in the hierarchical system. The Sld?engineering. For example, in the analysis of neural neks/o
retained the same input-output architecture, training,dabd used for velocity estimation in computer vision [52], arsidy
optimization criterion as that of the MLP. The weights obf perceptron based nonlinear noise filtering and beamform-
the trained perceptron revealed the linear fit to the observieg [53], analysis of time-delay neural networks used to etod
training data. However, the MLP classifier which was actualthe nonlinear behavior of electronic devices [54], etc.
used in ASR studies was not analyzed.

In this work, we follow a more principled approach angs. \plterra series : Three Layered MLP

represent the second stage of the hierarchical system usin% recent works [49][50], we proposed a mathematical

Volterra series. For this, we treat the multi-inpat, multi- . . .
. ) . _framework to apply Volterra series to a nonlinear time-
output y, system characterized by (5) as a nonlinear time-

. : o . ; invariant system comprising of an FIR filter bank, followed
invariant system. Traditionally, in the literature, sugfstems . .

. ; . by a three layer MLP. This generic framework was developed
have been analyzed using Volterra series [14][15]. By usiry

. . 1g analyze MLP classifiers trained using standard acoustic
\olterra series, the nonlinear system can be decomposed ift -
o : : eatures such as mel frequency cepstral coefficients (MFCC)
its linear, quadratic, and higher order parts and analyzed.

At this stage, we digress from the discussion on hierzslrthica}';ltong with the dynamic coefficients. In such cases, if the MLP

. . 1S analyz ndalon m, then the functiondli
systems to present the theory of Volterra series. We alediyri S analyzed as a standalone system, then the functiondlity o

tpe trained MLP is revealed in terms of input featuregy

discuss our earlier work on representing a cascade of f'ntlzgpstral patterns), which is difficult to analyze. However,

impulse response (FIR) filter bank and an MLP using Volterra . . .
series [49][50]. The analysis of the hierarchical systeingis most cases, ASR features are obtained by processing an inter

S ) mediate representatiom.@., spectro-temporal) using a linear
\olterra series is resumed from Section IV-C onwards. time-invariant system. For instance, in MFCC, the interi

representation is thieg energies in the mel critical bands, and
IV. VOLTERRA SERIES the linear system consists of discrete cosine transfoomati
A \olterra series is an infinite series which can model th@atrix and the FIR filters that compute the dynamic cepstral
input-output relationship of a nonlinear time-invariags®em. features. By including the linear system in the analysis, th
As an illustration, we first discuss the Volterra series egien parameters of the trained MLP can be analyzed using more

for a single-input, single-output system. interpretable spectro-temporal patterns.
Application of Volterra series to the second stage of the hie

archical system forms a special case in this generic framewo
The input to the system are the posterior features estintgted
If z(¢) is the input to a nonlinear system, an@) its output, the first MLP. The temporal context on the posterior features
the Volterra series expansion for the system is given by  can be viewed as being obtained using a bank of FIR filters
) with time-shifted Kronecker delta impulse response fluorddi
y(t) = Z Gy, [gn, z(1)] Fig. 3 is a block diagram of the system under analysis. Let
n=0 x; = [x1(t),... zx(t),... 2x(t)]" denote the input to the FIR

where, {G,.} is the set of Volterra functionals, an,} is filter bank, whereK is the number of inputs. If. denotes

the set of Volterra kernels of the nonlinear system. The firfte number of filters in the filter bank, arid(t) denotes the
three functionals in the \Volterra series are given by impulse response of these filters, then the input features to
the MLP is given byu, = [u11(t),... ur(t),... ux.r(t)],

A. Volterra Series: Single Input - Single Output System

Go [90,z(t)] = go, whereuy, ,(t) is given by the convolutiofi betweenz () and
hi(t) as
Grlo, ) = /Rgl(ﬂl“@ —r)dr, and wra(t) = / ha(r)ei(t = 7)dr (6)
Go [go, z(t)] = / 9o (71, 72)2(t — ) (t — To)dr1drs Furthermore, lef\/ gndN_denote the size of the hidden gnd
R2 output layers respectivelyy; ; denote the weight connecting

Each term in the Volterra series is a multi-dimensional cof?® node(k, 1) in the input layer to the node (with a bias
. . . 7
volution between the input to the system and its Volteri,) in the hidden layere; denote the weight connecting the
kernels. The Volterra kernel$go, g1, 9z ... goo} completely hidden node to the output nodg (with a biasb;), and¢(.)
characterize the nonlinear time-invariant system. denote the nonlinear activation function at the hlddep Haye
. . . . _ 1 j N i
The first order Volterra functiona; is the linear convolu- The output of the system, = [y'(¢), .../ (t),...y™ (1)] is
tional integral, and its kernel; is impulse response function, _ _ , .
hich characterizes the linear part of the nonlinear svsfsn Even though the above system is a discrete-time system, coortiime
whi - '.Z ! .p . I y . notations are used for clarity. This helps in distinguisttine integral operator
a special case, if the system is linear, then the Volterr@serin the convolution from the summation in the MLP function.
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() J—

input features filter bank input layer hidden layer output laye
size K L filters size K XL size M size N

Fig. 3. Block schematic of the system analyzed using a Valteeries. It consists of an FIR filter bank followed by a theaeget MLP.

the linear activation values before the output nonlingart the resulting equation to (8), the first three Volterra ks zee

the MLP, and is given by identified as "
_ oM KL @ =0 + ZC‘Z’ ao,i (10)
Y(t)=b+> o ( = wz,luk,l(t)> N0 =1
=1 k=11=1 M L
The nonlinear time-invariant system characterized by (6) gl ()= _ca; Y wiy,hi, (1) (11)
i=1 =1

and (7) cannot be analyzed in its present parametric form
due to the nonlinear functiop(.). However, if the nonlinear M L L
function can be expres_sed as a power seri.es, then t.he sam&z;lkz(ﬁ?ﬁ):zcijam Z Zwilzlwi2zghll(71)hlz (72)
system can be alternatively represented using \olterigsser P P
as (12)
x x x  The complete derivation of the Volterra kernels is desctibe
Jon g j _ in [49]. Note that the bias at the hidden layer is captured in
vyt =g + Z y i () ae, (t =) dm + kz_l kz_l the polynomial coefficients and the bias at the output layer
B incorporated into the zeroth order Volterra kernel. The
. identified Volterra kernels are in continuous-time notasio
// Doy (T1572) Ty (£ = 71) Ty (= m2) drdra+... (8) The corresponding discrete time kernels are obtained mgusi
discrete-time expressions for the impulse response fumsti

and analyzed. In the above equatiow), g/ (r1), and Of the filter bank in (10)-(12). _ o
Qilkg (11, 72) respectively denote the zeroth, first, and second Polynomial expansionThe key step in the analytical iden-

order Volterra kernels of the trained MLP for the outputification of the Volterra kemels is the polynomial approxi
classj. The variablesr;, 7, ... denote time, and, ks . .. matlon.of the h_|dden nonllnear!ty. Rolynomlal expansion of
denote the components of the input vecter The first order Saturating functions such as sigmoid or hyperbolic tangent
Volterra kernel is the linear part of the nonlinear systeng a @€ divergent if approximated for all possible values of the
can reveal the contribution of the inpuf, () to the output INPUt (—00,00). However, since the MLP is trained using
47 (t). Similarly, the second order Volterra kernels reveal tHePSterior features, which are trained to be linearly separas
quadratic part of the nonlinear system. dlscussed_ln Section V'ATQ” and.as a consequence pf f.ea.ture
The Volterra kernels of the system can be identified ficrmalization, the operating point on the nonlinearity s i
terms of the impulse response of the FIR filter bank and tfe rélatively small region containing the linear part of the

parameters of the trained MLP. Suppose that the nonlind4pction. To estimate the polynomial coefficients, the afieg
activation functiong(.) at the hidden node with a biasb;, region on the hidden nonlinearity is first identified usingss-

can be approximated as a polynomial expansion as validation data. The coefficients are subsequently opéthip
minimize the least square error between the sigmoid functio

(. +by) =agi+ar; () +az; ()2 +..., (9) and its polynomial approximation in the operating region of
the hidden nonlinearity, leaving a small percentage (1%jsof
where,ag ;, a1, a2, ... are the coefficients of the polynomialtail. The estimation of polynomial coefficients is descdbr
expansion. By substituting (6) and (9) in (7), and comparirggtail in [49].

ki=1YT

T1Y T2
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C. Application of Volterra Series the MLP function. In other words, the second (quadratic),

In this section, we compute the Volterra kernels for multthird (cubic), and higher order parts contribute very eittb
input x,, multi-outputy, = [y(¢),...49(t),...y"N(¢)] sys- nonlinear modeling ability of the second MLP. Hence, in this

tem characterized by (5). This system can be viewedvas ¢@se, the linear Volterra kernels reveal most of the infaiona
parallel, multi-input, single-output, nonlinear, timeariant learned by the nonlinear classifier.

systems, and represented by In the case of a more complex CTS task, the phoneme
i , , ‘ recognition accuracy obtained using first order Volternaese
Yi =0, + C7 fsigm (bn + WXy—dyi4a,), J=1...N,  is 13.5% lower compared to the direct evaluation of the

(13) MLP. This implies that second and higher order \olterra

where, C7 denotes the weight row vector connecting thkernels contribute significantly to the modeling ability toe
hidden layer to the output nodg and b/ the bias at the second MLP and that the linear Volterra kernels can only
output nodej. The system represented by (13) can be realiz@&rt'a”y explain its functlo_nallty. The remaining infoation _
using the framework shown in Fig. 3, where the tempor complement_ed by the h|g_her o_rder \olterra kernels. In thi
context of2d, + 1 frames on the posterior features, denoteWOrk, we restrict the analysis to linear Volterra kernels.

by x:_a4,:t+d,, CAN be created by filtering; using a bank of

L = 2dy + 1 FIR filters. The impulse response of thé, + 1 D. Interpretation of the First Order Volterra Kernels

tap FIR filter is given by It is clear from (8) that the first order Volterra kernels ralve

ha(n) =6 (n+1— L+1 I = 1.9 L the linear part of the nonlinear system under analysis. &sgp
: A that the second MLP is trained using a temporal context of
n = —d,...0,...dy 230 ms, then the Volterra kernel for phoneme- 1,2... N

at the output of the second MLP is given by(t), and reveals
The \olterra kernels are computed in terms of the abo P d bit)

. ! . . fie contribution of each of the phonemes-1,2... K at the
impulse response functions and the weights of the traine® Ml

! ! ) : ) lrnput of the MLP, in a window oft—11,...¢,...t+11], which
using the discrete-time versions of (10)-(12). In practitee amounts to 230 ms of context. As the input to the second MLP

to feature normalization, represents posterior features WhiCl’ils in terms of phonemes, the first order \olterra kernels @n b

arle n(r)]rmallze.d.to Z€ro Teﬁn and.umt varlan(I:e. ined interpreted as phonetic-temporal patterns. In our expeEris)
S;ALePrer.na;Emﬁ.part c;]_t 'IS sect:uon, we élrnglyzlel-ltfralne SI? = K as both the MLPs in the hierarchical system are
on s in the hierarchical system (see Table Il for regult, .. -4 o1 the same phoneme set.

;Loone t;a'&ed ?L‘ TILV”T f; - 4%_?3? 33’4];/[;71028??’]\]}] ~  The phonetic-temporal patterns observed in the first order
13;’461;\1/, - 845? gr fralne oln . th(_V I£ N K ’ | _th Volterra kernels can reveal two important aspects learned b

o .)' clore analyzing the Volterra kemels, Mhe second MLP classifier: 1) the acoustic confusion among
accuracy of first :_;md second prder truncatgq Volterra SE_”esphonemes at the output of the first MLP classifier, and 2) the
evaluated. For this, we substitute the identified kernelghén phonotactics of the language as observed in the trainira dat

synthesis equation (8) to obtain the linear activation e/aluln the remaining part of this section, we discuss these &spec
of phonemes. Approximate estimates of phoneme pOStererdetaiI '

probabilities are obtained by applying softmax nonlingari
and subsequently used in phoneme recognition. 15

TABLE IV
PHONEME RECOGNITION ACCURACY OBTAINED BY LINEAR AND
QUADRATIC APPROXIMATION OF THEMLP USING THE VOLTERRA SERIES

kernel value
kernel value

model series phoneme accuracy
order | TIMIT (%) [ CTS (%)
linear 1 68.7 50.1
guadratic 2 70.1 54.9
MLP 0o 71.6 63.6

0.5
-100  -50 0 50 100 -100  -50 0 50 100

context (ms) context (ms)

Table IV shows the phoneme recognition accuracies ob-
tained by the first and second order \olterra series app@xim @ ®)
tion of the second MLP classifier. In theory, the recognitiorig. 4. (a) First order Volterra kernel of the phoneme /auty(,bed) obtained
accuracy obtained by the Volterra series approximatiomigho on TIMIT. (b) A similar plot on CTS database.
approach asymptotically to the accuracy obtained by thectlir
evaluation of the MLP, as the order of the series is increased1) Volterra kernels revealing acoustic confusions among
However, the computation of the higher order Volterra kkynephonemes:Fig. 4 (a) and (b) are the plots of the first order
is computationally intensive and hence not practical. \olterra kernel of the second MLP classifier for the vowel /iy

It can be seen that on TIMIT, the phoneme recognitiofe.g.,bea) on TIMIT and CTS respectively. The figure shows
accuracy obtained by the first order \Volterra approximatiadhe impulse response functions corresponding to the top fou
is only three percent lower compared to direct evaluation obntributing phonemes at the input of the MLP. The impulse
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. . TABLE V
response fungtlon COfreSp_Ondmg to other 'phqnemes are NQIoNFUSING PHONEMES AT THE CENTER OF THN OLTERRA KERNELS
plotted in the figure for clarity. The top contributing phomes (TOP THREB) AS COMPARED TO THE PHONETIC CONFUSION MATRIX
are selected based on the energy in their impulse response (VALUE > 0.06).
functions. It is not surprising that the maximum contribatis
from the same phoneme /iy/ at the input. There are, however , , . :
. . . 3 phonemes  confusions confusion [ phonemes confusions confusion
positive contributions from other confusing vowels such as TmT__ volterra matrix cTs Volterra matrix
. iy ih, ey, eh ih iy ih, eh, ey ih, ey
fin/, /eyl/, and /eh/. ih b, eh, ae an ih b sl en iy
ey ih, iy, ae ih, iy ey ih, ay, e iy, i
eh ih, ae, ah ih, ae, ah eh ah, ih, ey ae, ih, ax, ah
. . aa ah, ay, ow ah, ay, ao
ah ih, ao, eh ih, ao, ow ah ay, eh, | ax, ow
ax axr, ah, m ih, ah
axr r, ax, ih r, ax
uw ih, iy, w ih, iy uw iy, ih, ow iy, ax
) 1) uh ih, ah, eh ih, ah, ow, |, u uh ih, s, ey ax, ih
% T:; ae ao, ah, aw eh ae eh, ah, ay eh
ao ae, ay, ah ao aa, |, w aa, ow
% % aw ao, ah, ae ao, ae aw ah, ay, eh ae, ow, ah, aa, eh, ay
=4 =4 ay ao, ah, ey ao ay ah, eh, aa ah
g g ow ah, ao, | I, ah, ao ow ah, |, ao ah, |
oy ao, ih, ay ao, ey oy r,w, ay w, |, ao, ow
y ily, in, oy iy, u\IN, ih y iyl, ae, ch iy, sil
w , un, oy w , I, ao
| ao, ah, ow ow, ao | ah, el, w ow
el I, ow, ao I, ow, ax
-100  -50 0 5 100 -100 50 0 50 100 r er, ae, ao er r axr, iy, w axr
context (ms) context (ms) ﬁ}: gillhk ag SEI ﬁr'] ; aa’g* Idhh r Z‘i’l‘r
m np,b n m n, ng, w n, sil
(a) (b) . em n, ah,gm, en m, ah, sil, n, ax
n m, dx, dh m n m, ng, en d
Fig. 5. First order \olterra kernel of the phoneme /g/g(, goat) obtained en n, m, ng n, ax, d, m
on TIMIT. (b) A similar plot on CTS database. i R " 5 PR ¢ sil
t d, p, k d, k t d, k, m sil
. . k sil, t, p t k sil, p, t sil, t
Fig. 5 (@) and (b) are plots of first order Volterra kernel b p.d.m P b p. dh. w dn
. t, dx, t t, sil, tn,
of the phoneme /g/e(g., goat) obtained on TIMIT and CTS g Kt k d g K ddh b
databases respectively. It can be seen that the kernels show! eod d . o sl K o s
positive contributions from other confusing consonantshsu ™ St K " st s Ll
as /k/, /t/, and /d/. Moreover, the MLP has also learned to sh s, 2 jh s sh s, f, ch s, ch
. . . . . . \ f, b, m \ sil, f, z ax
give negative weight to the vowel /ih/. This is due to the dn t th, d sil dh v.b g td
discriminative training of the MLP and this information is * S sh. th s z g A
H H HY 4 ch s, jh, sh sh, t, jh, s ch t, s, k t, s, sh
otherwise not intuitive. It suggests that the consonantisg/ o o jh chd.y Caoh

less likely to be confused with the vowel /ih/.

As both the input and output representations of the second
MLP are in terms of phonemes, the first order Volterra kernel
can be interpreted as a phonetic-temporal confusion pattersystem [19] (refer system G5 in section II-C).

However, unlike the standard phonetic confusion matrig, th 2) Volterra kernels revealing the phonotactics of the lan-
first order Volterra kernels reveal the contribution of thpdt guage: A closer look at the first order \olterra kernels
phonemes in a window of certain duration depending on tf@veals that the MLP has also learned the phonotactics the
temporal context used. In Table V, we show the top thréanguage. In the ensuing discussions, the following natati
contributing phonemes at the center=¢ 0) of the Volterra are used.P(pl*|p2) = P(pn+1 = pl|p, = p2) denotes the
kernels for both TIMIT as well as CTS databases. Theggobability that phonemepi/ follows /p2/, and is typically
confusions patterns are compared to the standard confusied using n-gram statistical language modeling. In cetra
matrix, obtained by performing frame-level phoneme classP(p1™[p2) = P(p,—1 = pl|p, = p2) denotes the probability
fication at the output of the first MLP. Only entries in théhat phonemepll/ precedes2/. To estimate this language
confusion matrix with values greater than 0.06 are shown fodel, the sequence of phonemes in the training data are
the table. reversed, and bigram statistics are estimated.

It can be seen from the table that the confusions at the centeFig. 6 (a) is a plot of the first order Volterra kernel of
of the Volterra kernels match to a certain extent with statidathe phoneme /y/ on TIMIT, showing the contributions of two
phonetic confusion matrix derived from the posterior feesu phonemes /uw/ and /er/ that are most likely to follow /y/. It
However, these confusion entries need not be the same leecaag be seen that the corresponding kernels have highertealue
the Volterra kernels represent the discriminatively tedin the left of the origin as compared to the right. This is beeaus
second MLP classifier, whereas the phonetic confusion mat#® (vw™|y) = 0.52 > P(uw™ |y) = 0.04. As Volterra kernels
is a measure of the phonetic confusion in the posterior featu are impulse response functions, the corresponding matched
which are used to train the second MLP. filters are obtained by time-reversing the kernels about the

It is interesting to note that the ability of the second dfess origin ¢ = 0.

(an MLP in our case) in the hierarchical setup to learn the Fig. 6 (b) is a plot of the Volterra kernel of phoneme /y/ on
acoustic confusion among phonemes at the output of the fi&tS, showing the impulse response functions of phonemes
MLP has also been observed in the CRF based hierarchiak/ and /eh/, that are most likely to follow /y/. It can be
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kernel value
kernel value

05 5
-100  -50 0 50 100 -100  -50 0 50 100
context (ms) context (ms)

(a) (b)

Fig. 6. (a) The Volterra kernel of phoneme /y/ on TIMIP(uwt |y) = 0.52,
P(uw™|y) = 0.04, P(ert|y) = 0.16, and P(er~|y) = 0.03. (b) The
Volterra kernel of phoneme /y/ on CT®(uw™|y) = 0.54, P(uw™|y) =
0.04, P(eh™|y) = 0.30, and P(eh ™ |y) = 0.001.

bigram probabilities between phonemes (derived from smpl
counts) in all cases.

The interpretations that can be drawn by analyzing thetinea
\olterra kernels are summarized belowglf(r) andgi (7) are
the impulse response functions (indicating the contrins)
of phonemes /pl1/ and /p2/ respectively in the Volterra Kerne
of the phoneme /p1/. The functigs} () will always have a
positive peak at the origim = 0. Depending on the shape of
the functiongi (7), the interpretations could be as follows: (a)
a positive peak at the origin indicates the acoustic confusi
between the phonemes, (b) a negative valley at the origin
indicates the anti-confusion due to the discriminativéntreay
of the MLP, and (c) a peak which is shifted away from the
origin reveals the phonotactics implicitly learned by th&mR/4
Moreover, the Volterra kernels can also reveal the effectiv
temporal duration learned by the system.

seen that the kernel for /uw/ is consistent with the bigra@ pecoding with Language Models

language model probabilities, but in case of /eh/, thereois n
such agreement as the kernel is close to zero for all values o

the context.

—— ldh/ ——[if - Ml —— Jax/

kernel value
kernel value

100 -50 0 50 100
context (ms) context (ms)

(a) (b)

Fig. 7. (a) The Volterra kernel of phoneme /dh/ on TIMIF(ihT|dh) =
0.34, P(ih~|dh) = 0.04, P(ah™|dh) = 0.29, andP(ah~|dh) = 0.11 (b)
The Volterra kernel of phoneme /f/ on CTB(iht|f) = 0.07, P(ih~|f) =
0.17, P(ax*|f) = 0.05, and P(az~|f) = 0.10.

First order \olterra analysis of the hierarchical system
reveals that, apart from the acoustic confusions, the skcon
MLP has also implicitly captured the phonotactics of the
language. However, it is not clear if the implicitly learned
phonotactics has indeed contributed towards the increabe i
recognition accuracies of the hierarchical system. Toréaice
this, we performed phoneme recognition by explicitly using
phoneme n-gram models.

Fig. 8 (a) and (b) are plots of the phoneme recognition
accuracies on TIMIT and CTS respectively, obtained by de-
coding with nogram (loop of phonemes with equal transition
probabilities), bigram and trigram phoneme language nsodel
The accuracies are shown for temporal context at the second
MLP ranging from 10ms to 250ms. As the input context is
increased, the total number of parameters of the second MLP
is kept constant by appropriately modifying the size of the
hidden layer. The horizontal dotted lines in the plot intkdhe
recognition accuracies obtained by a single MLP basedmsyste
using different language models. It can be seen from thedigur
that recognition accuracies increase by explicitly usiiggam

Fig. 7 (a) is the plot of the impulse response functiomand trigram models. This improvement is observed for all
of phonemes /dnh/, /ah/, and /ih/ in the first order Volterrgalues of the temporal context on the posterior featuresthieu
kernel of phoneme /dhfke(g., this) on TIMIT. It can be seen gain in the accuracies decreases with the increase in ¢ontex
that the impulse response functions of phonemes /ih/ arid /ah

have higher weight to the left of origin as compared to the 66
right. This is because the pairs of phonemes /dh//ah/ an
/dh/fin/ occur more frequently in the training data than the 7

pairs /ah//dh/ and /ih//dh/.

In Fig. 7 (b), we plot the impulse response functions of
phonemes /f/, /ih/, and /ax/ in the first order \olterra kéwfe
phoneme /f/ €.g.,far) on CTS. Phonemes /ih/, and /ax/ are the
two most likely phonemes to precede /f/ and as a consequenc
their impulse response functions have higher values tadie r

-
o
<}
)

accuracy (%)
accuracy (%)
D
o

68O 4 &0 000044 8/0- 60 G- 0-0-0-0 0 4
sl AA 88 85 0-0-0-0-0 4

%>%>6 &0 0-0—0-0 44

—9—0gram —5-2gram  —©- 3gram 54 ——Ogram  —5-2gram  —©— 3gram

of the origin. Moreover, it can also be seen that at the origin 0 5 100 15 200 250 0 50 100 150 200 250

the impulse response functions of /ih/ and /ah/ have negativ

mip2 context (ms) mip2 context (ms)

weights, which suggests that these vowels are not confisabl (@) (b)

with the consonant /f/.

It ?hOUId be ”‘?teo_' that _the VOIterrlﬂg. 8. (a) Phoneme recognition accuracies on TIMIT usingawog bigram,
kernels reveal the properties of the discriminatively rieal

and trigram phoneme language models. The horizontal lines gteaccuracy

MLP. Hence, they need not always be consistent with tleéthe first MLP using language models. (b) A similar plot on Clegathase.
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To illustrate this, in Fig. 9 we plot the relative gain into speaker [3] as well as environmental [8] characteristics
the recognition accuracies obtained on CTS by decodiipreover, it has also been shown that the effect of coarticu-
with bigram and trigram language models over no languatgion is less severe on the posterior features when compare
model, as a function of the temporal context at the inpth the acoustic features [55][56].
of the second MLP classifier. It can be seen that the gainin other words, the posterior features are soft-decisions
in accuracy obtained by explicitly using a phoneme n-graon the underlying sequence of phonemes.,(the linguistic
model decreases with the increase in the temporal contexiessage), and have much lesser nonlinguistic variakilitie
This is because, with increase in the temporal context, thden compared to acoustic features.

2) Sparseness in the posterior feature$he posterior
features represent the probabilities of the phonetic ekass
conditioned on the acoustic features, and hence sum up to
unity at any given time instant. In addition, they are also
sparsely distributed in the posterior feature space. Tstithte
this, in Table VI, we show the average number of components
(or phonemes) in the posterior feature vector that captQre 9
95, and 99% of the probability mass value. It can be seen
that on TIMIT, on an average, 3.6 phonemes capture 95%
of the probability mass value. The other phonemes share the
5 ml;ggomexli?ns) 20250 remaining 5% of the probability mass. On CTS, on an average

6.2 phonemes capture 95% of the probability mass value,

Fig. 9. Relative gain in recognition accuracy on CTS databaistained indicating the more complex nature of the task.

by decoding with bigram and trigram language model as comptremb

language model for different values of the temporal contexhatinput of TABLE VI

the second MLP. AVERAGE NUMBER OF COMPONENTYPHONEMES IN THE POSTERIOR
FEATURE VECTOR THAT CAPTURE90, 95,AND 99% OF THE PROBABILITY

Second MLP iS ab|e to |earn the phOﬂOtaCtiCS more eﬁe@tivel MASS IN THE POSTERIOR PROBABILITIES OF PHONEMES ESTIMATEDYB
. . . .. THE FIRSTMLP.

and gain in accuracy by introducing explicit language medel

reduces. This further supports the observations from tteati probability mass value
Volterra kernels. However, even with 230 ms context, the MLP >90% | >95% | >99%
has on_ly partially Iearned the ph_onotactics. and we stilh'[_nbt T"\C/“TTS(E:H"";‘X“&)) if‘ g:g 161'_63
1-2% improvement in accuracies by using bigram/trigram

language models in decoding.

To summarize briefly, we showed in this section that The sparse distribution of the posterior features has been
the second MLP classifier in the hierarchical system learpgeviously studied in [3], where the authors termed thegost
the phonetic-temporal patterns (acoustic confusions @morior features as monegular compared to the standard acoustic
phonemes and and the phonotactics of the language) in tbatures. It was argued that sparse distribution was onkeof t
posterior features spanning a temporal context of 150-280 rfavorable properties of posterior features.

In the following section, we discuss the important progarti  3) Linear separability: The model parameters of the first

of the posterior features that enabled the second MLP {@ P are optimized to minimize the cross entropy between the

effectively learn these patterns. estimated posterior probability vectors and the outpugesr
vectors, which are typically in the hard-target format. they

V. MODELING FLEXIBILITY OF POSTERIOR FEATURES  words, if X denotes the number of phonemes, the hard target

In this section, we discuss the important properties ofgoswectorl,, € R¥ for the phoneme;, i=1,2...K is given
rior features such as (a) lesser nonlinguistic variabgitvhen by [, (k) = é(k — i). The target vectors are, therefore, at
compared to the acoustic features, (b) sparse distriputioch the simplex of theK dimensional space, which makes them
(c) linear separability in the posterior feature space. We a linearly separable. Hence, a well trained model attempts to
discuss the consequence of these properties on the cotgpleathieve linear separability in the estimated posteriotufes.
of the second MLP classifier and the amount of training data.The properties of posterior features discussed in thisesect

can influence the choice of the second MLP classifier in the

S

—0— 2gram
—H&— 3gram

N w

-

relative accuracy gain (%)

o

o

A. Characteristics of Posterior Features following ways:

1) Variability in posterior features:The acoustic features 1) Since the posterior features are trained to be linearly
are known to exhibit a high degree of nonlinguistic variabil separable and have a sparse distribution, a simpler
ities such as speaker and environmengad( noise, channel) classifier (in terms of model capacity) may be sufficient
characteristics. The first MLP classifier can be interpreted at the second stage of the hierarchy. We validate this
a discriminatively trained nonlinear transformation frate hypothesis in Section V-B.

acoustic feature space to the posterior feature spaceslt ha2) Since the posterior features have lesser variabili, th
been shown that a well trained (large population of speakers ~ Sécond MLP could be trained with lesser amount of
and different conditions) MLP classifier can achieve iraace training data. We test this hypothesis in Section V-C.
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B. Complexity of the Second MLP series approximation was only three percent lower compared

In this section, we study the effect of the model capacity (¢ the accuracy obtained by directly evaluating the MLP,
terms of the number of parameters) of the second MLP in tfglicating the linear separable nature of the posteridufes.
hierarchical system on the phoneme recognition accuracié§erefore, at the second stage of the hierarchy, an MLP
Fig. 10 is a plot the phoneme recognition accuracies oldaing@ssifier with fewer number of parameters (mildly nonlipea
by using the hierarchical approach, as a function of the rampsS Sufficient. On CTS, however, it can be seen that there is
of parameters in the second MLP classifier (relative to ttfe 13-5% drop in recognition accuracy by approximating the
number of parameters in the first MLP). The number JYILP using first order Volterra series, which indicates the t
parameters is controlled by reducing the size of the hidd@fsterior features estimated by the first MLP are not astipea
layer until it equals the size of the input layer. On botf€Parable as those in TIMIT. This explains the higher drop in
TIMIT as well as CTS, the second MLP is trained using Egcognition accuracies with the reduction in the number of
temporal context of 230 ms. The horizontal dotted lines i tParameters on CTS task.
plot indicate the recognition accuracies obtained by utireg

output of the first MLP classifier. . o
C. Size of Training Data

In this section, we study the effect of the amount of data
required to train the second MLP in the hierarchical system
| on the phoneme recognition accuracies. In Fig. 11, we péot th
o FSUT SUUURP SN phoneme recognition accuracies obtained by using therhiera
chical approach as a function of the amount of training data
W—M/{ used to train the second MLP classifier (relative to the arhoun

of training data used to train the first MLP classifier). The
amount of training data is controlled by randomly dropping
© 00000 the sentences in the training set. It can be seen that evan wit
0 nfl?)zparamet;‘; " 60 80% reduction in the training data, the hierarchical system
yields higher recognition accuracies when compared to the
Fig. 10. Phoneme recognition accuracies as a function of tmeber of Daseline system.
parameters in the second MLP classifier (relative to the numibearameters In this work, in order to speed up the training time on the
. o opeCTS 135k, the raining data was SPlit nto two halves, and
of 230 ms is applied at the input of the second MLP, and the boti lines  the two MLPs in the hierarchical system were trained on the
indicate the recognition accuracies obtained by using glesiNILP system. disjoint data sets. By training the hierarchical systemlglﬂhe
above strategy, where the MLPs have si2&% x 5000 x 45

It can be seen from the figure that on both TIMIT as welind 1035 x 1334 x 45, we obtained a recognition accuracy
as CTS, the recognition accuracies drop with the reduction éf 63.6%. However, only a slight improvement in recognition
the number of parameters, and the drop in accuracy is mefguracy, about 0.7%, is obtained by training both the MLPs
significant in the case of CTS. Nonetheless, the hierarthiga the hierarchical system on the full 232 hours of data.
system still outperforms the single MLP based system on baifbreover, the training strategy for the hierarchical syste

the tasks. The second MLP with just 20% of the parametegame training set or disjoint sets - did not affect the reitagn
in the first MLP can still yield significantly higher recogioih  gccuracies.
accuracies over the single MLP based system.

——TIMIT. —6—CTS

accuracy (%)
2} ~ ~
ol o ol

for}
(=}

o1
a1

As an extreme case, a single layer perceptron (SLP) is used 80 ‘ ‘ ‘ ‘
as a second classifier in the hierarchical system. It candre se ——TIMIT.  —e—CTS
from Table VIl that even a linear classifier in the second stag s

of the hierarchy can yield higher recognition accuracie3%2
and 1.1% respectively on TIMIT and CTS respectively) when
compared to the baseline system.

PHONEME RECOGNITION ACCURACIES OBTAINED BY HIERARCHICAL W

TABLE VII
POSTERIOR ESTIMATION USING MULTILAYER AND SINGLE LAYERED 00 0 0 0
PERCEPTRON(SLP)CLASSIFIERS 0 20 20 60 80 100
mip2 training data (%)

o]
70
MQ 00000

=2
a

accuracy (%)

for}
t=}

a1
a1

experiment no MLP SLP
hierarchy(%) | hierarchy(%) | hierarchy (%) Fig. 11. Phoneme recognition accuracies as a function of theuat of
TIMIT 68.1 71.6 70.4 data used to train the second MLP. 100% data corresponds3tmirfutes on
CTS 54.3 63.6 55.4 TIMIT, and 116 hours on CTS. An MLP with fewer number of hiddesdas

(200 on TIMIT and 400 on CTS) is used. In both cases, a tempaorategt
of 230 ms is applied at the input of the second MLP. The horidoliies

It can be recalled from Table IV that. on TIMIT. theindicate the accuracies obtained by using a single MLP bagstm.
phoneme recognition accuracy obtained by first order \Mater
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VI. DISCUSSION C. The Second MLP as a Matched Filter

We investigated a simple hierarchical system consisting ofIn the hierarchical system discussed in this paper, thenseco
two MLP classifiers in tandem. The second MLP is trainedlLP can be viewed as a discriminatively trained nonlinear
using the posterior features estimated by the first with raatched filter. Matched filters have been investigated previ
temporal context of 150-230 ms. The effectiveness of tieisly in phoneme spotting in [58], where the matched filter
hierarchical system is a consequence of the long tempoi@i each phoneme was derived independently by averaging its
context being applied in the posterior features, which aphioneme posterior trajectory. The width of the matchedrfilte
trained to be linearly separable, possess a sparse digtribu implicitly captured the duration of the phoneme. The phoaem
and lesser nonlinguistic variabilities. posteriors are multiplied with their respective matchetifd

A similar hierarchical system was previously studied inj[19and peaks are picked to spot phonemes.
where a CRF was used at the second stage of the system.

It was argued that the system learns the phonetic confusign choice of the Databases

patterns in the posterior features estimated by the MI.'P' TheExperiments were performed on two databases (TIMIT and
findings from the present study further strengthens thisi-ar

ment. We show using Volterra analysis that the second MgLCI‘DTS), mainly to confirm the effectiveness of the hierarchica

indeed learns the phonetic-temporal patterns which caphar System in different data conditions. The results on the two
phonetic confusions at the output of the first MLP. In additio .tasks also exhibit certain differences. Firstly, the inveraent

we also showed that it learns the phonotactics of the Iamgualln recognmon accuracies obtained using the hierarcragal
. - &roach is much higher on CTS, about 9.3%, when compared to
as observed in the training data.

0 o
In the following subsections, we discuss some of the ir?—'SA) on TIMIT. Secondly, on TIMIT, the recognition accuracy

. . . obtained by first order Volterra series approximation i$
teresting aspects of the MLP based hierarchical system &fg\(/}ver to th)iat obtained by a direct evaFupation of the Malj_eﬁ In
possible future directions. .

contrast, this difference is about 13.5% on CTS.
The TIMIT and CTS tasks differ in three aspects namely,
A. Choice of the Subword Units the channel conditions (microphone versus telephone), the

In this work, the second MLP is trained on posterior featurépeaking styles (read speech versus conversational),hend t
where each dimension corresponds to a phoneme. Furtf€ling strategy (hand labeling versus forced alignmelnt)
improvements in recognition accuracies have been obserf@d!0t clear from the present study how the speaking style
using posterior features corresponding to the sub-phanerfll the labeling strategy affects the hierarchical systerthas
statesge.g.,three states per phoneme [12]. A Volterra analysfXPerimental conditions differ in more than one respect.
of the second MLP classifier in such a scenario would reveal TN€se aspects can be studied using carefully designed
the phonetic-temporal patterns in the sub-phonemic Hoster€XPeriments. For example, the impact of speaking styles on
feature space. the hierarchical system can be studied by using two difteren

The second MLP could also be trained using posterigtabases which differ only in the speaking style, with dio
features corresponding to the articulatory or phonoldgicilevant factors (the channel conditions, the labelingtsgy,
attributes of phonemes,g., place and manner of articulation.&t¢) the same. In such a scenario, the differences in thervalt
A Volterra analysis of the second MLP in this case woulliemels of the second MLP for the two systems will bring out
reveal the articulatory-temporal patterns that are lehfoe the impact of speaking style.
each of the phonemes. Similar hierarchical systems haue bee
previously studied where the second classifier is a RNN [38] MLP based Hierarchical system for Adaptation

or a CRF model [18]. A potential application of the MLP based hierarchical

system is in task adaptation. At the first stage of the hier-
B. Choice of the classifiers archical system, a well trained MLP available off-the-§hel
qould be used. The second MLP is trained on the posterior
system is trained using posterior probabilities of phorem catures estimated for the target task (adaptat.ion daté)asl
conditioned on acoustic features, which are estimated by %lﬁeady been observed that the second MLP in the_h|erarc_hy

requires fewer number of parameters and can be trained using

MLP. In general, however, these phonetic class conditior\ t of dat King it an ideal for ad .
probabilities could be estimated using other statisticatiets esser amount of data, making It an ideal case for a .apta lon
Sspeually in scenarios where the training data is limited.

as well. For example, in an earlier work, the posterior prob
bilities of phonemes were estimated using a GMM, and similar
improvements in recognition accuracies were observed [57] VII. SUMMARY AND CONCLUSIONS

The basic idea is to transform the acoustic features intoWe investigated a simple hierarchical architecture for- est
posterior features corresponding to linguistically meghil mating the posterior probabilities of phonemes. The system
units such as phonemes, sub-phonemic states, or artigulatmonsisted of two MLP classifiers in tandem. The first MLP is
attributes using any classifier. In the posterior featuracsp trained on PLP features, with a temporal context of 90 ms.
the temporal information spanning durations as long as 2%0e second MLP is trained on the posterior probabilities of
ms can be effectively learned. phonemes (posterior features) estimated by the first ilssi

In this work, the second MLP classifier in the hierarchic
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but with a relatively longer temporal context of around 150mean and variance of the posterior features are related as
230 ms. The hierarchical system yielded an absolute improve

2 2 _ 2
ment of 3.5% and 9.3% over the conventional single MLP 7k T ™k = Er [(@)’]

based system on TIMIT and CTS databases respectively. _ /p(f) p(f | gr,©)P(gx | ©) ey df
The posterior features are endowed with two important p(f ] ©)
properties. Firstly, they are trained to be linearly seplerand = P(gs | ©) /p(f | g, ©) zp df
possess a sparse distribution. Secondly, the posteriturésa
carry very little information on the undesirable nonlingfic = P(qx | ©) Exq, [zk] (15)

variabilities such as speaker and noise characteristiasthier . L .
. .. The conditional expectation in the above expression can be
words, the posterior features represent the soft-de@smn

. . qstimated as the average posterior probability of a phoneme
the underlying sequence of phonemes, and are much Slm%g{ained using data belonging to that particular phonenhge on
to classify. Consequently, the second MLP classifier cagceff 9 ging P P

tively learn the contextual information present in the tenab Ifiv“g‘;] (;I)enotes the scaled likelihood of the phoneme and
trajectories of the posterior features, spanning aboutr80 9 y

~ Tk 7P(qk|f7®)
of context. Tk = —— = —QF 1oy

- mi  Plge|©)
In order to unearth the phonetic-temporal patterns learned )

by the second MLP classifier, we applied Volterra serie&'S) can be expressed using (14) as

to model the second stage in the hierarchical system, and o? .

analyzed its first order Volterra kernels (linear part of the m*z + 1= Egq, [T4] (16)
nonlinear system). The analysis of the linear Volterra &krn '
showed that the second MLP has effectively captured t
phonetic confusion patterns at the output of the first digssi

as well as the phonotactics of the language, as observeé in th s T —myg T —1 17
training data. s T T a7

. . [Ef\qk [i‘k] - 1} :
Furthermore, we demonstrated that a simpler MLP with o ) )
fewer number of parameters is sufficient at the second stag&™m (17), it is clear that mean and variance normaliza-
in the hierarchy, and that it can be trained using lesser amo{fon On the posterior features is equivalent to taking stale

of training data. We attribute this to the salient properipé lIkelihoods as features. In other words, by taking scaled
the posterior features such as lesser nonlinguistic \iéities, likelihoods as features and normalizing them to zero mean
sparse distribution, and linear separability. and unit variance would yield the same features as in (1®. Th

only difference is that in the latter, the prior probabd#iare
estimated by normalizing the relative frequency of the ian
labels in the training data. In the above formulation, thergr
are estimated using the MLP model. In effect, by normalizing
the posterior feature to zero mean and unit variance, tleeteff
of priors in them are removed.

ﬂge posterior feature vector component, normalized to zero
mean and unit variance, can be be simplified using (16) as

APPENDIXA
NORMALIZATION OF POSTERIOR FEATURES
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