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Abstract—We analyze a simple hierarchical architecture con-
sisting of two multilayer perceptron (MLP) classifiers in tandem
to estimate the phonetic class conditional probabilities. In this
hierarchical setup, the first MLP classifier is trained using
standard acoustic features. The second MLP is trained using the
posterior probabilities of phonemes estimated by the first, but
with a long temporal context of around 150-230 ms. Through
extensive phoneme recognition experiments, and the analysis of
the trained second MLP using Volterra series, we show that
(a) the hierarchical system yields higher phoneme recognition
accuracies - an absolute improvement of 3.5% and 9.3% on
TIMIT and CTS respectively - over the conventional single
MLP based system, (b) there exists useful information in the
temporal trajectories of the posterior feature space, spanning
around 230 ms of context, (c) the second MLP learns the phonetic
temporal patterns in the posterior features, which include the
phonetic confusions at the output of the first MLP as well as the
phonotactics of the language as observed in the training data,
and (d) the second MLP classifier requires fewer number of
parameters and can be trained using lesser amount of training
data.

Index Terms—Multilayer perceptrons, Volterra series, hierar-
chical systems, posterior probabilities.

I. I NTRODUCTION

M Ultilayer perceptron (MLP) classifier based acoustic
modeling is being extensively used in state-of-the-art

automatic speech recognition (ASR) systems [1][2][3][4][5].
The MLP is typically trained using standard acoustic features
such as mel frequency cepstral coefficients or perceptual linear
predictive coefficients with a certain temporal context. A well
trained MLP can estimate the posterior probabilities of the
output classes, typically subword units of speech such as
phonemes, conditioned on the input features [6][7].

MLP based acoustic modeling has certain benefits. Firstly,
it obviates the need for strong assumptions on the statistics of
the features and the parametric form of its density function.
As a consequence, features with different distributions can be
simply concatenated and applied at the input of the MLP to
achieve feature combination [3]. Secondly, when trained on
large amount of data, MLPs have been shown to be invariant
to speaker characteristics [3] and environment specific infor-
mation such as noise [8]. Thirdly, the output of the MLP are
probabilities with useful properties (e.g.,positivity, summing
to one), providing an efficient framework for multi-stream
combination [9]. Lastly, the MLP can be trained efficiently
and is scalable with large amount of data.

The phonetic class conditional probabilities estimated by
the MLP are used in hidden Markov model (HMM) based

ASR in different ways. In the hybrid HMM/MLP system [6],
they are used as local emission scores in the HMM states.
In the Tandem system [10], they are transformed by applying
logarithm followed by Karhunen-Loeve transformation (KLT),
and used as features to a standard HMM/GMM system. In a
recent study [11], the estimated posterior probabilities are used
directly as features in an HMM based system, where the state
emission distribution is multinomial. Throughout this paper,
whenever the phoneme posterior probabilities are used as local
representation of speech in place of standard acoustic features,
we refer to them asposterior features.

In the posterior feature space, each dimension corresponds
to a phoneme. The posterior feature vector at a particular time
instant is a point in the posterior feature space, representing
the instantaneous soft-decision on the underlying phoneme.
It carries useful information such as the probability mass as-
signed to the competing phonemes. The sequence of posterior
feature vectors is a trajectory in the posterior feature space,
and it can provide additional contextual information such as
the evolution of the posterior features within a phoneme (sub-
phonemic transition). Furthermore, a sufficiently long temporal
context on the posterior features can also capture the transition
to/from neighboring phonemes (sub-lexical transition).

The contextual information in the posterior features has
been successfully exploited in ASR in our previous stud-
ies [12][13], where a second MLP classifier was trained
on the posterior features with a temporal context of 150-
230 ms. This hierarchical approach yielded higher phoneme
recognition accuracies when compared to the conventional
single MLP based approach. This paper is an extension to
our previous work [12], and the main focus is on the analysis
of the hierarchical system. We investigate the reasons for
the effectiveness of the hierarchical system and attempt to
understand the functionality (or working) of the second MLP
classifier by analyzing its trained parameters.

As the second MLP is trained using posterior features
with a certain temporal context, we can expect it to learn
the phonetic-temporal patterns, mainly capturing the phonetic
confusions at the output of the first classifier. However, as
the MLP is a complex classifier with nonlinear activation
functions, discovering the phonetic-temporal patterns learnt by
the system for each phoneme is not straightforward. Moreover,
as the MLP is trained using a discriminative criterion, these
patterns cannot be simply derived from the confusion matrix
of the first MLP classifier. In addition, confusion matrices do
not capture any temporal information. To understand this in-
formation, one has to interpret the trained parameters (weights
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and biases) of the second MLP classifier.
In this work, we address this issue by representing the

second stage of the hierarchical system using Volterra se-
ries [14][15], thereby decomposing the trained nonlinear sys-
tem into its linear, quadratic, and higher order parts. Fur-
thermore, we analyze the linear part of the second MLP
and interpret the phonetic-temporal patterns that are learned.
In contrast, our previous study [12] utilized a single layer
perceptron in place of the second MLP to facilitate easy
analysis. While preliminary insights into the working of the
system were obtained by plotting its weight matrix, the actual
MLP that was used in ASR studies remained unanalyzed.

Other extensions to our previously published work include a
study on the role of temporal context on the posterior features,
and its effect on the performance of the hierarchical system.
We also analyze some of the useful properties of posterior
features such as lesser nonlinguistic variabilities and sparse
representation, and discuss its influence on the complexityof
the second MLP classifier and the amount of training data.
Experiments are also performed on conversational telephone
speech (CTS) to ascertain if the trends in results and analysis
concur with those obtained on TIMIT.

Through extensive phoneme recognition studies and the
analysis of second MLP in the hierarchical system using
Volterra series, we show that (a) the hierarchical system
yields higher phoneme recognition accuracies compared to a
single MLP based system, (b) the posterior features contain
useful contextual information spanning around 150-230 ms
of temporal context (c) the second MLP in the hierarchical
system learns the phonetic-temporal patterns in the posterior
features, which includes the phonetic confusion patterns at
the output of the first classifier and to a certain extent the
phonotactics of the language as observed in the training data,
and (d) the classifier at the second stage of the hierarchy
requires fewer number of parameters and lesser amount of
training data.

The rest of the paper is organized as follows: In Section II,
we describe the MLP based hierarchical system and discuss its
similarities/differences with previous works in the literature.
In Section III, we describe the experimental setup and the
results. In Section IV, we introduce Volterra series and discuss
its application in the analysis of the second stage of the
hierarchical system. Furthermore, we also interpret the linear
Volterra kernels of the system in terms of the phonetic-
temporal patterns. In Section V, we analyze the properties
of the posterior features that contribute to the effectiveness of
the hierarchical system. In Section VI, we discuss some of the
less explored facets of the hierarchical approach.

II. H IERARCHICAL POSTERIORESTIMATION

An MLP classifier with enough complexity and trained with
sufficient amount of data can directly estimate the Bayesiana
posteriori probabilities of the output classes, conditioned on
the input features [7]. Consequently, the performance of ASR
systems using MLP acoustic models can be improved using
the following three broad strategies: (a) using richer acoustic
features (b) increasing the capacity of the MLP (but this

approach is often limited by the amount of training data [16])
and (c) using finer representation of output classes such as
sub-phonemic states [12] [17].

In this work, we explore a way to post-process the output
of the MLP (posterior probabilities of phonemes, conditioned
on acoustic features) to obtain newenhancedestimates of the
phonetic class conditional probabilities.

A. Motivation

An MLP trained on acoustic features gives a frame-level
phoneme classification accuracy of around 60-70%. The errors
in classification can be mainly attributed to the limitations
in feature extraction and modeling techniques. Analysis of
the associated phonetic confusion matrices show that there
exists a consistent pattern in classification. For example,if
the phoneme /iy/ (e.g.,beat) is misclassified, then it is more
likely that vowels such as /ih/ (e.g., bit) or /eh/ (e.g., bet) is
assigned a higher probability mass. This information in the
distribution of the probability values could be exploited to
correct the output of the MLP classifier.

The posterior features have lesser nonlinguistic variabilities
such as speaker and environmental characteristics when com-
pared to acoustic features. In addition, they have a simpler
(or sparse) representation. As a consequence, we hypothesize
that contextual information spanning longer time spans can
be effectively learned in the posterior feature space. The
useful contextual information could be the evolution of the
posterior features within a phoneme (sub-phonemic level) and
its transition into the neighboring phonemes (sub-lexicallevel).

There have been attempts in the recent past to model
the contextual information in the posterior features in an
hierarchical fashion by using classifiers such as conditional
random field (CRF) [18][19] or MLP [12][20]. In this work,
we further investigate the MLP based hierarchical system [12].
As shown in Fig. 1, the first MLP is trained in the conventional
way using standard acoustic features. The second MLP is
trained using posterior features estimated by the first MLP
classifier with a long temporal context of around 150-230 ms.
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Fig. 1. Estimation of posterior probabilities of phonemes using an hierarchy
of two MLPs. The second MLP is trained using the posterior probabilities of
phonemes estimated by the first MLP.

B. Notations and Formalism

The following notations are used throughout this paper.ft
denotes the acoustic feature vector1 at time t. A temporal
context of2d1+1 frames on the feature vectorft is denoted by
ft−d1:t+d1

= [f ′t−d1
, . . . f ′t , . . . f

′
t+d1

]′. The first MLP classifier,

1All vectors are column vectors by default. Transpose is denoted by ′
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denoted byΘmlp1, estimates the posterior probability of each
of theK phonetic classesqt = k, k = 1, 2, . . . K, conditioned
on the acoustic features spanningd1 ≈ 4 frames aroundft as

xk(t) = P (qt = k | ft−d1:t+d1
, Θmlp1) , k = 1, . . . K (1)

The estimated posterior probabilities at timet are represented
in a vectorial form asxt = [x1(t), x2(t), . . . xk(t), . . . xK(t)]′,
and a temporal context of2d2 + 1 frames on the posterior
feature vector is denoted byxt−d2:t+d2

. The second MLP,
denoted byΘmlp2, estimates the posterior probabilities of
phonemes conditioned on a temporal contextd2 ≈ 11 on the
posterior features estimated by the first MLP as

zk(t) = P (qt = k | xt−d2:t+d2
, Θmlp2) , k = 1, . . . K (2)

The output of the second MLP at timet is represented aszt =
[z1(t), z2(t), . . . zk(t), . . . zK(t)]′. In later parts of this section,
f1:T andx1:T denotes the sequence of acoustic and posterior
feature vectors in the entire utterance, whereT denotes the
total number of frames.

In practice, the input features to the MLP are normalized
to zero mean and unit variance. Feature normalization ensures
that the operating region on the hidden activation function
is in the linear region, leading to a faster convergence of
the back propagation training algorithm [21]. In the case of
the second MLP, as the features are posterior probabilities,
mean and variance normalization is equivalent to taking scaled
likelihoods as features (refer Appendix A for the proof).
Hence, normalization of posterior features removes the effect
of unigram phonetic class priors learned by the first MLP
classifier. The priors are, however, again learned by the second
MLP classifier.

C. Background

In this section, we review different approaches in MLP
based acoustic modeling, that use hierarchical architectures
to model the temporal information in the speech signal, and
contrast them with the approach investigated in this paper.
In all the discussed works, the first stage of the hierarchy is
an MLP. The second stage of the hierarchy includes classifiers
such as MLP, HMM, recurrent neural network (RNN), or CRF.
The reviewed works are categorized into the following groups
(G1 to G8), mainly based on the application of temporal
context on the posterior features and the type of classifier at
the second stage of the hierarchy.

G1: Classifier Combination

Hierarchical architecture of MLPs have been previously
studied in the TRAPS [22] and HATS [23] systems. At the
first stage of the hierarchical system, separate MLP classifiers
are trained for each of the critical bands. Temporal information
in the acoustic features is exploited by using thelog critical
band energies spanning over a period of about second as input
feature. At the second stage, an MLP is used to merge the
outputs from the classifiers at the first stage of the hierarchy.
In other words, the input to the second MLP classifier are the
activations at the output (hidden in case of HATS) layer of the
critical band specific MLPs, but without any temporal context.

Independent processing of speech in subbands was originally
inspired by Allen’s interpretation [24] of Fletcher’s work[25],
indicating a similar mechanism in the human auditory system.
Similar hierarchical architectures have also been studiedin
multiband ASR [26][27].

G2: Feature Combination

Multi-resolution relative spectra [28] features are obtained
by filtering thelog critical band energies using a bank of multi-
resolution bandpass filters. These features are typically used in
Tandem based ASR systems. In more recent studies [29][30],
the multi-resolution filter bank is split into two groups - fast
modulation filters (narrow bandwidth) and slow modulation
filters (wider bandwidth) - and combined in a hierarchical fash-
ion. At the first stage of the hierarchy, an MLP is trained with
features obtained using fast modulation filters. The estimates
of posterior probabilities from the first MLP (log + KLT),
with a temporal context of 90 ms are appended to the features
obtained using slow modulation filters, and used to train the
second MLP classifier. ASR studies using this hierarchical
system have shown to yield higher recognition accuracies. In
this approach, the second MLP acts like a feature combiner.

G3: Hierarchy using HMM

Hierarchical structures have also been investigated in an
attempt to integrate additional knowledge such as minimum
duration of phonemes and transition probabilities between
phonemes [31]. This knowledge is incorporated into an HMM
model Θhmm. The posterior probabilities of phonemes esti-
mated by the MLP modelΘmlp1 are used as emission scores in
the HMM states. The new estimates of posterior probabilities
are derived from the state occupancy probabilitiesP (qt =
k|f1:T ,Θmlp1,Θhmm) estimated using the forward-backward
algorithm. The new estimates of the posterior probabilities are
conditioned on the entire acoustic observation sequencef1:T .

G4: Hierarchy using RNN

Recurrent neural networks (RNN) can also estimate the pho-
netic class conditional probabilities [32]. In a prior work[33],
the hierarchical estimation of the phoneme posterior proba-
bilities using an RNN was investigated. The first stage of
the hierarchical system consists of an MLP trained using
the power spectrum of the speech. Its output units represent
the articulatory features corresponding to the phonemes. In
the second stage, an RNN modelΘrnn is trained on the
articulatory features estimated by the MLP. In this case, at
time t, the RNN estimates the posterior probabilities of the
phonemesP (qt = k|x1:t,Θrnn), conditioned on the present
and all the previously observed articulatory feature vectors
x1:t.

G5: Hierarchy using CRF

There is a growing interest in CRF based models, especially
linear chains (with first order Markovian assumption) for
reasons such as discriminative training, relaxed conditional
independence assumption, and ability to jointly model features
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streams with different distributions [34]. In more recent works,
CRFs have been investigated for hierarchical estimation of
phoneme posterior probabilities [18][19]. At the first stage
of the hierarchical system, an MLP estimates the posterior
probabilities of phonemes using (1). In the second stage, the
estimates of the posterior probabilities from the MLPx1:T are
used as features to the CRF modelΘcrf . The new estimates of
the posterior probabilities of phonemesP (qt = k|x1:T ,Θcrf )
are obtained using a framework similar to HMM based
forward-backward algorithm.

The main difference between the CRF based hierarchical
system and HMM based hierarchical system, discussed inG3,
is in the way the estimates of posterior probabilities from
the MLP are used. In the HMM based system, the posterior
probabilities of phonemes are used as local acoustic scores
in the HMM states, whereas in the CRF based system, they
are used as features. In addition, the CRF based system also
benefits from discriminative training.

G6: Hierarchy using MLP

In the proposed approach, the MLP at the second stage of
the hierarchy yields a new estimate of posterior probabilities,
conditioned on a window of the posterior features estimated
by the first MLP, and the modelΘmlp2 representing the second
MLP asP (qt = k|xt−d2:t+d2

,Θmlp2).
This approach is similar in principle to the RNN based

hierarchical approachG4 and the CRF based hierarchical
approachG5. The classifiers in the second stage of these
systems are trained discriminatively using either posterior
features or articulatory features. Apart from the modeling
abilities of these classifiers, the main difference between
these hierarchical systems is the temporal context on the
posterior features. In the RNN based system, the new estimates
of posterior probabilities are conditioned on all previously
observed posterior feature vectors. In the CRF based approach,
it is conditioned on the entire sequence of posterior features.
Whereas in our approach, the temporal context on the posterior
features is explicitly limited to be around 150-230 ms.

The works described inG1-G3 are primarily motivated
towards exploiting the temporal information in the acoustic
features. Whereas in our work as well asG4 and G5, the
hierarchical system is motivated towards exploiting temporal
information in the posterior features. In this work, the first
MLP is trained using standard PLP features. However, it can
be trained with any acoustic features, or the first stage can be
entirely replaced with more sophisticated MLP based systems
described inG1-G2. Table I gives a summary of the discussed
approaches highlighting the differences in the temporal context
and the nature of the second classifier in the hierarchy.

The proposed hierarchical framework can also be related to
the following prior works in the literature

G7: Bottleneck Features

In bottleneck feature extraction [35], a five layer MLP with a
bottleneck constriction at the middle (or compression) layer, is
trained to classify phonemes. The linear activation valuesat the
bottleneck layer are used as features in Tandem based speech

TABLE I
SUMMARY OF THE HIERARCHICAL SYSTEMS EXPLOITING TEMPORAL

INFORMATION. NOTATIONS INCLUDE: CLASSIFIER-1 (C1),CLASSIFIER-2
(C2), ACOUSTIC FEATURES(A), POSTERIOR FEATURES(P), POSTERIOR

FEATURES TRANSFORMED USINGlog AND KLT (Ptr ), LENGTH OF THE

UTTERANCE (T).

system temporal context C2 C2
name C1 (acoustic) C2 (posterior) features type
G1 [22][23] long (1s) nil P MLP
G2 [29][30] long (1s) 90 ms A+Ptr MLP
G3 [31] T nil - HMM
G4 [33] any 1:t P RNN
G5 [18][19] any T P CRF
G6 [12][20] any 230 ms P MLP

recognition. The processing from the input to the compression
layer can be likened to the first MLP in the hierarchical system,
and the processing from the compression layer to the output
layer can be likened to the second MLP.

Even though the architectures of both these systems seem to
be similar, the motivation for these works and their application
in speech recognition are different. In the bottleneck feature
extraction, the objective is to obtain lower dimensional features
(independent of the phonetic classes), which are more suitable
to the ensuing HMM/GMM system. In the proposed hierar-
chical system, the first MLP transforms the acoustic features
to posterior features with lesser undesirable variabilities such
as speaker and environment characteristics. Consequently, the
second MLP can exploit the temporal information in the
posterior features spanning temporal contexts as long as 250
ms. The second MLP gives new estimates of phonetic class
conditional probabilities.

G8:Frame-based MPE

The hierarchical system discussed in this work can be
related to the frame based minimum phone error (fMPE) sys-
tem [36]. In fMPE, a very high dimensional vector of posterior
probabilities is obtained from Gaussian mixture models with
a temporal context. The high dimensional posterior vector
is projected to a lower dimensional feature space, and used
as a correction to the input features such as PLP cepstral
coefficients. The linear transformation matrix is trained using
minimum phone error criterion [37].

In the MLP based hierarchical system, the high dimensional
vector of posterior probabilities is obtained by stacking the
output of the first MLP over a long temporal context. The
second MLP acts as a nonlinear transform, and is trained using
a minimum cross-entropy error criterion, which also achieves
minimum phone error. Apart from the nonlinear transforma-
tion, the major difference between the two is that in fMPE, the
transformed posterior vectors are used as a correction to the
input features, but in the hierarchical system, they are used as
new features to the ASR. Interestingly, fMPE has been shown
to be a special case of semi-parametric trajectory model that
models the trajectories of the acoustic features [38]. In our
case, the second MLP learns the trajectories of the posterior
features. This is discussed in Section IV-C.
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III. E XPERIMENTS AND RESULTS

A. Experimental Setup

The efficacy of the hierarchical system in estimating
phoneme posterior probabilities is evaluated by performing
speaker independent phoneme recognition experiments on
TIMIT as well as CTS databases. We preferred phoneme
recognition as it facilitates a detailed analysis of the results.
Improvements in word recognition using the hierarchical ap-
proach have been reported in [20][39].

The TIMIT database consists of 4.3 hours (including 1.1
hours of NIST complete test set) of read speech, recorded in
clean conditions. The ‘sa’ dialect sentences in the database
are not included in the experiments. The database is hand-
labeled using 61 phonetic symbols, which include the closures
as well as the allophonic variations of certain phonemes. In
our experiments, these phonetic symbols are mapped to the
standard set of 39 phonemes [40] with an additional garbage
class.2

The CTS setup used in the experiments consists of 277.7
hours speech defined asctstrain04, which is a subset of
h5train03 data set defined at the Cambridge University for
training the CU-HTK system for RT03 evaluation [41][42].3

The phonetic transcription of the speech - required for training
the MLP as well as computing the accuracy of phoneme
recognition - is obtained by Viterbi forced alignment. For this,
we used off-the-shelf HMM/GMM acoustic models developed
in [44] in conjunction with the UNISYN [45] pronunciation
dictionary containing 45 phonemes. The dictionary, on an
average, contains 1.015 pronunciations per word.

In all the experiments, the acoustic features are the first
13 PLP cepstral coefficients. These coefficients, after speaker
specific mean and variance normalization, are appended to
their delta and delta-delta derivatives, to obtain a 39 dimen-
sional feature vector for every 10 ms. A three layered MLP
with sigmoid nonlinearity at the hidden layer, and softmax
nonlinearity at the output is used in all the experiments. The
parameters of the MLP are optimized using minimum cross-
entropy training criterion. Phoneme recognition is performed
using hybrid HMM/MLP approach [6]. The sequence of
phonemes is decoded by applying Viterbi algorithm, where
each phoneme is represented by a strictly left-to-right, three-
state HMM, thereby enforcing a minimum duration of 30 ms.
The emission likelihood in each of the three states is the same,
and is derived from the associated output of the MLP.

Table II shows the number of speakers and the amount of
data in the training, cross-validation, and test sets of thetwo
databases. On TIMIT, the train and test sets are according
to the standard protocol. On CTS, the total data is split into
train, CV, and test sets as shown in the table. The parameters

2Unlike in [40], the closures are merged with their corresponding bursts
(e.g., /bcl/,/b/→/b/). The garbage class handles frames with no labels, and
the glottal stop /q/ and its closure /qcl/. The garbage and silence classes are
excluded while evaluating the recognition accuracies.

3The h5train03 setup consists of around 296 hours of speech from
Switchboard-I [43], Switchboard Cellular, and Callhome English speech
corpora, distributed by the Linguistic Data Consortium. Fortraining the AMI
RT05 system [44], the sentences containing words which do not occur in the
dictionary were removed, resulting in 277.7 hours ofctstrain04data set.

TABLE II
THE NUMBER OF SPEAKERS AND THE AMOUNT OF DATA IN THE TRAIN,

CROSS-VALIDATION (CV) AND TEST SETS OFTIMIT AND CTS.

TIMIT CTS
train CV test train CV test

speech (hours) 2.6 0.6 1.1 232.0 36.3 9.4
speakers 375 87 168 4538 726 182

of the MLP and the phoneme n-gram models are estimated on
the training set. The cross-validation set is used to control the
learning rate of the MLP. In addition, it is also used to optimize
the the phoneme insertion penalty (and language model scaling
factor, if phoneme n-gram models are used) of the decoder.
All the results reported in this paper are on the test set, which
is not seen in the entire training phase.

On CTS task, training an MLP with 232 hours of speech
is computationally expensive.4 In order to speed up the ex-
periments to obtain various plots, the training data set is split
randomly into two equal parts. The first MLP is trained with
one half of the training data, and the second MLP is trained
with the remaining half. The single MLP based system is,
however, trained on the complete training data. On TIMIT, as
the amount of training data is small, both the MLPs in the
hierarchical system are trained on the full data.

The MLPs are trained using the Quicknet package [46].
The phoneme n-gram models are trained using the SRILM
toolkit [47] and phoneme recognition is performed using the
weighted finite state transducer based Juicer decoder [48].

B. Experimental Results

Table III shows the phoneme recognition accuracies ob-
tained by hierarchical modeling (system S2) in comparison
with the standard single MLP modeling (system S1). The
single MLP system is trained using PLP features with a 90
ms context. The second MLP in the hierarchical system is
trained using the output of the single MLP based system S1,
with a temporal context of 230 ms. It can be seen that, by
hierarchical modeling we obtain an absolute improvement of
3.5% in recognition accuracy on TIMIT, and 9.3% on CTS.
To study the effect of increase in the model capacity on the
recognition accuracies, we also compare these results to those
obtained by a single MLP based system with the same number
of parameters as in the hierarchical system (system S3). In this
case, the improvement in the recognition accuracies is 2.5%
and 8.3% respectively.

In Fig. 2, we compare the phoneme recognition accuracies
obtained using hierarchical approach to those obtained using
the single MLP approach for different values of the temporal
context. In the case of hierarchical system, the first MLP
is always trained with a temporal context of 90 ms on the
acoustic features. As the temporal context on the posterior
features at the second MLP is increased, the total number
of parameters in the MLP is kept constant by appropriately

4Using multi-threaded version of Quicknet [46] (with eight threads and
bunch size of 2048), training an MLP of size351× 5000× 45 on 232 hours
of speech takes roughly 72 hours to complete 8 epochs on a 2.4 GHz, AMD
Opteron processor, with eight cores.
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TABLE III
PHONEME RECOGNITION ACCURACIES OBTAINED BY USING

HIERARCHICAL POSTERIOR ESTIMATION AS COMPARED TO THE

STANDARD SINGLE MLP ON TIMIT AND CTS DATABASES.

single MLP hierarchical single MLP
baseline (S1) two MLPs (S2) same capacity (S3)

TIMIT 68.1 71.6 69.1
CTS 54.3 63.6 55.3

reducing the size of its hidden layer.5 In the case of single MLP
estimator, as the temporal context on the acoustic featuresis
increased, the total number of parameters is kept constant,
and equal to those in the hierarchical system (sum of the
parameters in both the MLPs).
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Fig. 2. (a) Phoneme recognition accuracy on TIMIT using an hierarchical
setup as well as single MLP with the same number of parameters. In
hierarchical system, the size of the first MLP is351 × 1000 × 40, and the
size of the second MLP for 23 frame context is920 × 1083 × 40. (b) A
similar plot on the CTS, where the size of the first MLP is351×5000×45,
and the size of the second MLP for 23 frame context is1035 × 1334 × 45.
Any two points in the plot correspond to systems with the same number of
parameters, and can be calculated using.5

It can be seen from the figure that:

1) The hierarchical system consistently outperforms the
single MLP based system with the same number of
parameters for all values of context. As the context at
the second MLP is increased, even though the number
of hidden nodes is decreased, there is a steady increase
in the recognition accuracies. Thus it can be concluded
that improvement is due to the topology of two MLPs
in tandem, and not merely due to the increase in overall
model capacity.

2) In case of CTS, the recognition accuracies begin to satu-
rate at around 230 ms of temporal context at the input of
the second MLP. In case of TIMIT, the accuracies begins
to saturate after 150 ms, but this could be due to the lack
of sufficient training data. In both cases, the effective
temporal context of 150-230 ms extends well beyond
the typical duration of phonemes (50-70 ms), which
suggests that the second MLP is integrating temporal
information in the posteriors features corresponding to
the neighboring phonemes as well.

5 If F denotes the dimensionality of the features,C denotes the temporal
context, andH (andO) denote the size of the hidden (and output) layers, the
number of parameters in the MLP is given byC ∗F ∗H +H +H ∗O +O.

3) A long temporal context is more effective when applied
on the posterior features rather than on the acoustic
features. On increasing the temporal context on the
acoustic features at the input of the single MLP system,
recognition accuracies peak for a context of around 90-
110 ms, but are significantly lower when compared to
the hierarchical system.

From the above discussion it is clear that the hierarchical
system is useful as a phoneme posterior probability estimator,
and that a long temporal context is more effective on the
posterior features rather than on the acoustic features. As
the second MLP is trained using posterior features, which
represents the underlying sequence of phonemes, it is clear
that the second MLP learns the phonetic-temporal patterns.

The following questions, however, remain unanswered: (a)
what are the phonetic-temporal patterns learned for each
phoneme ? (b) as the long temporal context extends beyond
the typical duration of phonemes, has the second MLP also
learned the phonotactics of the language ? and (c) why is
the relatively longer temporal context more effective on the
posterior features ?

The first two questions can be answered by analyzing the
input-output relationship learned by the second MLP classifier.
In this work, we use Volterra series for the analysis, and this is
discussed in Section IV. The effectiveness of temporal context
on the posterior features is discussed in Section V.

C. Second MLP as a Function

The second MLP can be viewed as a vector valued function
fmlp2(.), which takes the estimates of posterior probabilities
of phonemes from the first MLP denoted byxt−d2:t+d2

as
its arguments, and gives a new estimate of the posterior
probabilities of phonemeszt as

zt = fmlp2(xt−d2:t+d2
). (3)

In the second MLP classifier, letW denote the weight matrix
connecting the input layer to the hidden layer,C denote the
weight matrix connecting the hidden layer to the output,bh

and bo denote the bias vectors at the hidden and output
layers respectively, andfsoft(.) andfsigm(.) denote the vector
valued softmax and sigmoid functions at the output and the
hidden layers of the MLP respectively. Then, equation (3) can
be expressed as

zt = fsoft (yt) , (4)

where the vectoryt = [y1(t), . . . yj(t), . . . yN (t)]′ denotes the
linear activation vector before the softmax nonlinearity at the
output layer of the MLP, and is given by

yt = bo + Cfsigm (bh + Wxt−d2:t+d2
) . (5)

It is difficult to analyze or interpret the input-output relation-
ship (xt, zt) of the MLP, given by (4) and (5), due to the
presence of nonlinear functionsfsigm(.) and fsoft(.). The
output nonlinearity can be conveniently dropped from the
analysis as parameters of the discriminatively trained MLP
{W,bh, C,bo} can still be interpreted from the input-output
relationship(xt,yt). This does not affect the interpretability
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as the output units are still phonemes, and the ordering of the
estimates are not altered. The nonlinearity at the hidden layer,
however, can still make the analysis of (5) difficult.

In our previous work [12], this problem was circumvented,
but not solved, by using a single layer perceptron (SLP) in
place of the second MLP in the hierarchical system. The SLP
retained the same input-output architecture, training data, and
optimization criterion as that of the MLP. The weights of
the trained perceptron revealed the linear fit to the observed
training data. However, the MLP classifier which was actually
used in ASR studies was not analyzed.

In this work, we follow a more principled approach and
represent the second stage of the hierarchical system using
Volterra series. For this, we treat the multi-inputxt, multi-
output yt system characterized by (5) as a nonlinear time-
invariant system. Traditionally, in the literature, such systems
have been analyzed using Volterra series [14][15]. By using
Volterra series, the nonlinear system can be decomposed into
its linear, quadratic, and higher order parts and analyzed.

At this stage, we digress from the discussion on hierarchical
systems to present the theory of Volterra series. We also briefly
discuss our earlier work on representing a cascade of finite
impulse response (FIR) filter bank and an MLP using Volterra
series [49][50]. The analysis of the hierarchical system using
Volterra series is resumed from Section IV-C onwards.

IV. V OLTERRA SERIES

A Volterra series is an infinite series which can model the
input-output relationship of a nonlinear time-invariant system.
As an illustration, we first discuss the Volterra series expansion
for a single-input, single-output system.

A. Volterra Series: Single Input - Single Output System

If x(t) is the input to a nonlinear system, andy(t) its output,
the Volterra series expansion for the system is given by

y(t) =

∞
∑

n=0

Gn [gn, x(t)]

where,{Gn} is the set of Volterra functionals, and{gn} is
the set of Volterra kernels of the nonlinear system. The first
three functionals in the Volterra series are given by

G0 [g0, x(t)] = g0,

G1 [g1, x(t)] =

∫

R

g1(τ)x(t − τ)dτ, and

G2 [g2, x(t)] =

∫

R2

g2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2

Each term in the Volterra series is a multi-dimensional con-
volution between the input to the system and its Volterra
kernels. The Volterra kernels{g0, g1, g2 . . . g∞} completely
characterize the nonlinear time-invariant system.

The first order Volterra functionalG1 is the linear convolu-
tional integral, and its kernelg1 is impulse response function,
which characterizes the linear part of the nonlinear system. As
a special case, if the system is linear, then the Volterra series

reduces to order one, and its first order Volterra kernel gives
the actual impulse response function of the system.

Volterra series has been extensively used in the analysis
of biological systems [51]. It has also been used in the
literature to analyze artificial neural networks in variousfields
of engineering. For example, in the analysis of neural networks
used for velocity estimation in computer vision [52], analysis
of perceptron based nonlinear noise filtering and beamform-
ing [53], analysis of time-delay neural networks used to model
the nonlinear behavior of electronic devices [54], etc.

B. Volterra series : Three Layered MLP

In recent works [49][50], we proposed a mathematical
framework to apply Volterra series to a nonlinear time-
invariant system comprising of an FIR filter bank, followed
by a three layer MLP. This generic framework was developed
to analyze MLP classifiers trained using standard acoustic
features such as mel frequency cepstral coefficients (MFCC),
along with the dynamic coefficients. In such cases, if the MLP
is analyzed as a standalone system, then the functionality of
the trained MLP is revealed in terms of input features (e.g.,
cepstral patterns), which is difficult to analyze. However,in
most cases, ASR features are obtained by processing an inter-
mediate representation (e.g., spectro-temporal) using a linear
time-invariant system. For instance, in MFCC, the intermediate
representation is thelog energies in the mel critical bands, and
the linear system consists of discrete cosine transformation
matrix and the FIR filters that compute the dynamic cepstral
features. By including the linear system in the analysis, the
parameters of the trained MLP can be analyzed using more
interpretable spectro-temporal patterns.

Application of Volterra series to the second stage of the hier-
archical system forms a special case in this generic framework.
The input to the system are the posterior features estimatedby
the first MLP. The temporal context on the posterior features
can be viewed as being obtained using a bank of FIR filters
with time-shifted Kronecker delta impulse response functions.

Fig. 3 is a block diagram of the system under analysis. Let
xt = [x1(t), . . . xk(t), . . . xK(t)]

′ denote the input to the FIR
filter bank, whereK is the number of inputs. IfL denotes
the number of filters in the filter bank, andhl(t) denotes the
impulse response of these filters, then the input features to
the MLP is given byut = [u1,1(t), . . . uk,l(t), . . . uK,L(t)]

′,
whereuk,l(t) is given by the convolution6 betweenxk(t) and
hl(t) as

uk,l(t) =

∫

τ

hl(τ)xk(t − τ)dτ (6)

Furthermore, letM andN denote the size of the hidden and
output layers respectively,wi

k,l denote the weight connecting
the node(k, l) in the input layer to the nodei (with a bias
bi
h) in the hidden layer,cj

i denote the weight connecting the
hidden nodei to the output nodej (with a biasbj

o), andφ(.)
denote the nonlinear activation function at the hidden layer.
The output of the systemyt =

[

y1(t), . . . yj(t), . . . yN (t)
]′

is

6Even though the above system is a discrete-time system, continuous-time
notations are used for clarity. This helps in distinguishing the integral operator
in the convolution from the summation in the MLP function.
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Fig. 3. Block schematic of the system analyzed using a Volterra series. It consists of an FIR filter bank followed by a three layer MLP.

the linear activation values before the output nonlinearity in
the MLP, and is given by

yj(t) = bj
o +

M
∑

i=1

c
j
iφ

(

bi
h +

K
∑

k=1

L
∑

l=1

wi
k,luk,l(t)

)

. (7)

The nonlinear time-invariant system characterized by (6)
and (7) cannot be analyzed in its present parametric form
due to the nonlinear functionφ(.). However, if the nonlinear
function can be expressed as a power series, then the same
system can be alternatively represented using Volterra series
as

yj (t) = g
j
0 +

K
∑

k1=1

∫

τ1

g
j
k1

(τ1) xk1
(t − τ1) dτ1 +

K
∑

k1=1

K
∑

k2=1

∫

τ1

∫

τ2

g
j
k1k2

(τ1, τ2) xk1
(t − τ1) xk2

(t − τ2) dτ1dτ2 + . . . (8)

and analyzed. In the above equation,g
j
0, g

j
k1

(τ1), and
g

j
k1k2

(τ1, τ2) respectively denote the zeroth, first, and second
order Volterra kernels of the trained MLP for the output
class j. The variablesτ1, τ2 . . . denote time, andk1, k2 . . .

denote the components of the input vectorxt. The first order
Volterra kernel is the linear part of the nonlinear system, and
can reveal the contribution of the inputxk1

(t) to the output
yj (t). Similarly, the second order Volterra kernels reveal the
quadratic part of the nonlinear system.

The Volterra kernels of the system can be identified in
terms of the impulse response of the FIR filter bank and the
parameters of the trained MLP. Suppose that the nonlinear
activation functionφ(.) at the hidden nodei with a biasbi

h

can be approximated as a polynomial expansion as

φ(. + bi
h) = a0,i + a1,i (.) + a2,i (.)2 + . . . , (9)

where,a0,i, a1,i, a2,i . . . are the coefficients of the polynomial
expansion. By substituting (6) and (9) in (7), and comparing

the resulting equation to (8), the first three Volterra kernels are
identified as

g
j
0 = bj

o +

M
∑

i=1

c
j
i a0,i (10)

g
j
k1

(τ1) =

M
∑

i=1

c
j
i a1,i

L
∑

l1=1

wi
k1l1

hl1 (τ1) (11)

g
j
k1k2

(τ1, τ2)=

M
∑

i=1

c
j
ia2,i

L
∑

l1=1

L
∑

l2=1

wi
k1l1

wi
k2l2

hl1 (τ1)hl2(τ2)

(12)
The complete derivation of the Volterra kernels is described
in [49]. Note that the bias at the hidden layer is captured in
the polynomial coefficients and the bias at the output layer
is incorporated into the zeroth order Volterra kernel. The
identified Volterra kernels are in continuous-time notations.
The corresponding discrete time kernels are obtained by using
discrete-time expressions for the impulse response functions
of the filter bank in (10)-(12).

Polynomial expansion:The key step in the analytical iden-
tification of the Volterra kernels is the polynomial approxi-
mation of the hidden nonlinearity. Polynomial expansion of
saturating functions such as sigmoid or hyperbolic tangent
are divergent if approximated for all possible values of the
input (−∞,∞). However, since the MLP is trained using
posterior features, which are trained to be linearly separable as
discussed in Section V-A3, and as a consequence of feature
normalization, the operating point on the nonlinearity is in
a relatively small region containing the linear part of the
function. To estimate the polynomial coefficients, the operating
region on the hidden nonlinearity is first identified using cross-
validation data. The coefficients are subsequently optimized to
minimize the least square error between the sigmoid function
and its polynomial approximation in the operating region of
the hidden nonlinearity, leaving a small percentage (1%) ofits
tail. The estimation of polynomial coefficients is described in
detail in [49].
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C. Application of Volterra Series

In this section, we compute the Volterra kernels for multi-
input xt, multi-output yt = [y1(t), . . . yj(t), . . . yN (t)]′ sys-
tem characterized by (5). This system can be viewed asN

parallel, multi-input, single-output, nonlinear, time-invariant
systems, and represented by

y
j
t = bj

o + Cjfsigm (bh + Wxt−d2:t+d2
) , j = 1 . . . N,

(13)

where, Cj denotes the weight row vector connecting the
hidden layer to the output nodej, and bj

o the bias at the
output nodej. The system represented by (13) can be realized
using the framework shown in Fig. 3, where the temporal
context of2d2 + 1 frames on the posterior features, denoted
by xt−d2:t+d2

, can be created by filteringxt using a bank of
L = 2d2 + 1 FIR filters. The impulse response of the2d2 + 1
tap FIR filter is given by

hl(n) = δ

(

n + l −
L + 1

2

)

l = 1, 2 . . . L

n = −d2, . . . 0, . . . d2

The Volterra kernels are computed in terms of the above
impulse response functions and the weights of the trained MLP
using the discrete-time versions of (10)-(12). In practice, due
to feature normalization,xt represents posterior features which
are normalized to zero mean and unit variance.

In the remaining part of this section, we analyze trained sec-
ond MLPs in the hierarchical system (see Table III for results)
- one trained on TIMIT (K = 40, L = 23,M = 1083, N =
40), and the other trained on CTS (K = 45, L = 23,M =
1334, N = 45). Before analyzing the Volterra kernels, the
accuracy of first and second order truncated Volterra seriesis
evaluated. For this, we substitute the identified kernels inthe
synthesis equation (8) to obtain the linear activation values
of phonemes. Approximate estimates of phoneme posterior
probabilities are obtained by applying softmax nonlinearity,
and subsequently used in phoneme recognition.

TABLE IV
PHONEME RECOGNITION ACCURACY OBTAINED BY LINEAR AND

QUADRATIC APPROXIMATION OF THEMLP USING THE VOLTERRA SERIES.

model series phoneme accuracy
order TIMIT (%) CTS (%)

linear 1 68.7 50.1
quadratic 2 70.1 54.9

MLP ∞ 71.6 63.6

Table IV shows the phoneme recognition accuracies ob-
tained by the first and second order Volterra series approxima-
tion of the second MLP classifier. In theory, the recognition
accuracy obtained by the Volterra series approximation should
approach asymptotically to the accuracy obtained by the direct
evaluation of the MLP, as the order of the series is increased.
However, the computation of the higher order Volterra kernels
is computationally intensive and hence not practical.

It can be seen that on TIMIT, the phoneme recognition
accuracy obtained by the first order Volterra approximation
is only three percent lower compared to direct evaluation of

the MLP function. In other words, the second (quadratic),
third (cubic), and higher order parts contribute very little to
nonlinear modeling ability of the second MLP. Hence, in this
case, the linear Volterra kernels reveal most of the information
learned by the nonlinear classifier.

In the case of a more complex CTS task, the phoneme
recognition accuracy obtained using first order Volterra series
is 13.5% lower compared to the direct evaluation of the
MLP. This implies that second and higher order Volterra
kernels contribute significantly to the modeling ability ofthe
second MLP and that the linear Volterra kernels can only
partially explain its functionality. The remaining information
is complemented by the higher order Volterra kernels. In this
work, we restrict the analysis to linear Volterra kernels.

D. Interpretation of the First Order Volterra Kernels

It is clear from (8) that the first order Volterra kernels reveal
the linear part of the nonlinear system under analysis. Suppose
that the second MLP is trained using a temporal context of
230 ms, then the Volterra kernel for phonemej = 1, 2 . . . N

at the output of the second MLP is given byg
j
k(t), and reveals

the contribution of each of the phonemesk = 1, 2 . . . K at the
input of the MLP, in a window of[t−11, . . . t, . . . t+11], which
amounts to 230 ms of context. As the input to the second MLP
is in terms of phonemes, the first order Volterra kernels can be
interpreted as phonetic-temporal patterns. In our experiments,
N = K as both the MLPs in the hierarchical system are
trained on the same phoneme set.

The phonetic-temporal patterns observed in the first order
Volterra kernels can reveal two important aspects learned by
the second MLP classifier: 1) the acoustic confusion among
phonemes at the output of the first MLP classifier, and 2) the
phonotactics of the language as observed in the training data.
In the remaining part of this section, we discuss these aspects
in detail.
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Fig. 4. (a) First order Volterra kernel of the phoneme /iy/ (e.g.,beat) obtained
on TIMIT. (b) A similar plot on CTS database.

1) Volterra kernels revealing acoustic confusions among
phonemes:Fig. 4 (a) and (b) are the plots of the first order
Volterra kernel of the second MLP classifier for the vowel /iy/
(e.g.,beat) on TIMIT and CTS respectively. The figure shows
the impulse response functions corresponding to the top four
contributing phonemes at the input of the MLP. The impulse
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response function corresponding to other phonemes are not
plotted in the figure for clarity. The top contributing phonemes
are selected based on the energy in their impulse response
functions. It is not surprising that the maximum contribution is
from the same phoneme /iy/ at the input. There are, however,
positive contributions from other confusing vowels such as
/ih/, /ey/, and /eh/.
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Fig. 5. First order Volterra kernel of the phoneme /g/ (e.g.,goat) obtained
on TIMIT. (b) A similar plot on CTS database.

Fig. 5 (a) and (b) are plots of first order Volterra kernel
of the phoneme /g/ (e.g.,goat) obtained on TIMIT and CTS
databases respectively. It can be seen that the kernels show
positive contributions from other confusing consonants such
as /k/, /t/, and /d/. Moreover, the MLP has also learned to
give negative weight to the vowel /ih/. This is due to the
discriminative training of the MLP and this information is
otherwise not intuitive. It suggests that the consonant /g/is
less likely to be confused with the vowel /ih/.

As both the input and output representations of the second
MLP are in terms of phonemes, the first order Volterra kernel
can be interpreted as a phonetic-temporal confusion patterns.
However, unlike the standard phonetic confusion matrix, the
first order Volterra kernels reveal the contribution of the input
phonemes in a window of certain duration depending on the
temporal context used. In Table V, we show the top three
contributing phonemes at the center (t = 0) of the Volterra
kernels for both TIMIT as well as CTS databases. These
confusions patterns are compared to the standard confusion
matrix, obtained by performing frame-level phoneme classi-
fication at the output of the first MLP. Only entries in the
confusion matrix with values greater than 0.06 are shown in
the table.

It can be seen from the table that the confusions at the center
of the Volterra kernels match to a certain extent with standard
phonetic confusion matrix derived from the posterior features.
However, these confusion entries need not be the same because
the Volterra kernels represent the discriminatively trained
second MLP classifier, whereas the phonetic confusion matrix
is a measure of the phonetic confusion in the posterior features,
which are used to train the second MLP.

It is interesting to note that the ability of the second classifier
(an MLP in our case) in the hierarchical setup to learn the
acoustic confusion among phonemes at the output of the first
MLP has also been observed in the CRF based hierarchical

TABLE V
CONFUSING PHONEMES AT THE CENTER OF THEVOLTERRA KERNELS

(TOP THREE) AS COMPARED TO THE PHONETIC CONFUSION MATRIX

(VALUE > 0.06).

phonemes confusions confusion phonemes confusions confusion
TIMIT Volterra matrix CTS Volterra matrix

iy ih, ey, eh ih iy ih, eh, ey ih, ey
ih iy, eh, ae ah ih iy, sil, eh ax, iy
ey ih, iy, ae ih, iy ey ih, ay, eh iy, ih
eh ih, ae, ah ih, ae, ah eh ah, ih, ey ae, ih, ax, ah

aa ah, ay, ow ah, ay, ao
ah ih, ao, eh ih, ao, ow ah ay, eh, l ax, ow

ax axr, ah, m ih, ah
axr r, ax, ih r, ax

uw ih, iy, w ih, iy uw iy, ih, ow iy, ax
uh ih, ah, eh ih, ah, ow, l, uw uh ih, s, ey ax, ih
ae ao, ah, aw eh ae eh, ah, ay eh
ao ae, ay, ah ao aa, l, w aa, ow
aw ao, ah, ae ao, ae aw ah, ay, eh ae, ow, ah, aa, eh, ay
ay ao, ah, ey ao ay ah, eh, aa ah
ow ah, ao, l l, ah, ao ow ah, l, ao ah, l
oy ao, ih, ay ao, ey oy r, w, ay w, l, ao, ow
y iy, ih, oy iy, uw, ih y iy, ae, ch iy, sil
w l, uh, oy l w l, r, ao
l ao, ah, ow ow, ao l ah, el, w ow

el l, ow, ao l, ow, ax
r er, ae, ao er r axr, iy, w axr
er r, ih, ah r er r, axr, ih r, axr
hh sil, k, p sil hh s, ae, dh sil
m n, p, b n m n, ng, w n, sil

em n, ah, m, en m, ah, sil, n, ax
n m, dx, dh m n m, ng, en d

en n, m, ng n, ax, d, m
ng n, m, uw n ng n, m, iy n
p t, b, k p k, t, f t, sil
t d, p, k d, k t d, k, m sil
k sil, t, p t k sil, p, t sil, t
b p, d, m p b p, dh, w dh
d t, dx, k t d t, sil, s t, n, sil
g k, d, t k, d g k, d, dh k
dx d, n, dh d
f p, s, sil f s, sil, k s, sil
th s, t, f f, t th s, sil, f s, t, sil
s z, sh, f z s f, sh, z sil, z
sh s, z, jh s sh s, f, ch s, ch
v f, b, m v sil, f, z ax
dh t, th, d sil dh y, b, g t, d
z s, sh, th s z s, sil, f s, sil

zh iy, ih, z z, sh, uw
ch s, jh, sh sh, t, jh, s ch t, s, k t, s, sh
jh s, z, sh ch, sh jh ch, d, y t, d, ch

system [19] (refer system G5 in section II-C).
2) Volterra kernels revealing the phonotactics of the lan-

guage: A closer look at the first order Volterra kernels
reveals that the MLP has also learned the phonotactics the
language. In the ensuing discussions, the following notations
are used.P (p1+|p2) = P (pn+1 = p1|pn = p2) denotes the
probability that phoneme /p1/ follows /p2/, and is typically
used using n-gram statistical language modeling. In contrast,
P (p1−|p2) = P (pn−1 = p1|pn = p2) denotes the probability
that phoneme /p1/ precedes /p2/. To estimate this language
model, the sequence of phonemes in the training data are
reversed, and bigram statistics are estimated.

Fig. 6 (a) is a plot of the first order Volterra kernel of
the phoneme /y/ on TIMIT, showing the contributions of two
phonemes /uw/ and /er/ that are most likely to follow /y/. It
can be seen that the corresponding kernels have higher valueto
the left of the origin as compared to the right. This is because
P (uw+|y) = 0.52 ≫ P (uw−|y) = 0.04. As Volterra kernels
are impulse response functions, the corresponding matched
filters are obtained by time-reversing the kernels about their
origin t = 0.

Fig. 6 (b) is a plot of the Volterra kernel of phoneme /y/ on
CTS, showing the impulse response functions of phonemes
/uw/ and /eh/, that are most likely to follow /y/. It can be
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Fig. 6. (a) The Volterra kernel of phoneme /y/ on TIMIT.P (uw+|y) = 0.52,
P (uw−|y) = 0.04, P (er+|y) = 0.16, and P (er−|y) = 0.03. (b) The
Volterra kernel of phoneme /y/ on CTS.P (uw+|y) = 0.54, P (uw−|y) =
0.04, P (eh+|y) = 0.30, andP (eh−|y) = 0.001.

seen that the kernel for /uw/ is consistent with the bigram
language model probabilities, but in case of /eh/, there is no
such agreement as the kernel is close to zero for all values of
the context.
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Fig. 7. (a) The Volterra kernel of phoneme /dh/ on TIMIT.P (ih+|dh) =
0.34, P (ih−|dh) = 0.04, P (ah+|dh) = 0.29, andP (ah−|dh) = 0.11 (b)
The Volterra kernel of phoneme /f/ on CTS.P (ih+|f) = 0.07, P (ih−|f) =
0.17, P (ax+|f) = 0.05, andP (ax−|f) = 0.10.

Fig. 7 (a) is the plot of the impulse response functions
of phonemes /dh/, /ah/, and /ih/ in the first order Volterra
kernel of phoneme /dh/ (e.g., this) on TIMIT. It can be seen
that the impulse response functions of phonemes /ih/ and /ah/
have higher weight to the left of origin as compared to the
right. This is because the pairs of phonemes /dh//ah/ and
/dh//ih/ occur more frequently in the training data than the
pairs /ah//dh/ and /ih//dh/.

In Fig. 7 (b), we plot the impulse response functions of
phonemes /f/, /ih/, and /ax/ in the first order Volterra kernel of
phoneme /f/ (e.g.,far) on CTS. Phonemes /ih/, and /ax/ are the
two most likely phonemes to precede /f/ and as a consequence,
their impulse response functions have higher values to the right
of the origin. Moreover, it can also be seen that at the origin,
the impulse response functions of /ih/ and /ah/ have negative
weights, which suggests that these vowels are not confusable
with the consonant /f/. It should be noted that the Volterra
kernels reveal the properties of the discriminatively trained
MLP. Hence, they need not always be consistent with the

bigram probabilities between phonemes (derived from simple
counts) in all cases.

The interpretations that can be drawn by analyzing the linear
Volterra kernels are summarized below. Ifg1

1(τ) andg1
2(τ) are

the impulse response functions (indicating the contributions)
of phonemes /p1/ and /p2/ respectively in the Volterra kernel
of the phoneme /p1/. The functiong1

1(τ) will always have a
positive peak at the originτ = 0. Depending on the shape of
the functiong1

2(τ), the interpretations could be as follows: (a)
a positive peak at the origin indicates the acoustic confusion
between the phonemes, (b) a negative valley at the origin
indicates the anti-confusion due to the discriminative training
of the MLP, and (c) a peak which is shifted away from the
origin reveals the phonotactics implicitly learned by the MLP.
Moreover, the Volterra kernels can also reveal the effective
temporal duration learned by the system.

E. Decoding with Language Models

First order Volterra analysis of the hierarchical system
reveals that, apart from the acoustic confusions, the second
MLP has also implicitly captured the phonotactics of the
language. However, it is not clear if the implicitly learned
phonotactics has indeed contributed towards the increase in the
recognition accuracies of the hierarchical system. To ascertain
this, we performed phoneme recognition by explicitly using
phoneme n-gram models.

Fig. 8 (a) and (b) are plots of the phoneme recognition
accuracies on TIMIT and CTS respectively, obtained by de-
coding with nogram (loop of phonemes with equal transition
probabilities), bigram and trigram phoneme language models.
The accuracies are shown for temporal context at the second
MLP ranging from 10ms to 250ms. As the input context is
increased, the total number of parameters of the second MLP
is kept constant by appropriately modifying the size of the
hidden layer. The horizontal dotted lines in the plot indicate the
recognition accuracies obtained by a single MLP based system
using different language models. It can be seen from the figure
that recognition accuracies increase by explicitly using bigram
and trigram models. This improvement is observed for all
values of the temporal context on the posterior features, but the
gain in the accuracies decreases with the increase in context.

0 50 100 150 200 250

66

68

70

72

74

mlp2 context (ms)

a
c
c
u

ra
c
y
 (

%
)

0gram 2gram 3gram

0 50 100 150 200 250

54

56

58

60

62

64

66

mlp2 context (ms)

a
c
c
u

ra
c
y
 (

%
)

0gram 2gram 3gram

(a) (b)

Fig. 8. (a) Phoneme recognition accuracies on TIMIT using nogram, bigram,
and trigram phoneme language models. The horizontal lines show the accuracy
of the first MLP using language models. (b) A similar plot on CTS database.
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To illustrate this, in Fig. 9 we plot the relative gain in
the recognition accuracies obtained on CTS by decoding
with bigram and trigram language models over no language
model, as a function of the temporal context at the input
of the second MLP classifier. It can be seen that the gain
in accuracy obtained by explicitly using a phoneme n-gram
model decreases with the increase in the temporal context.
This is because, with increase in the temporal context, the
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Fig. 9. Relative gain in recognition accuracy on CTS database obtained
by decoding with bigram and trigram language model as comparedto no
language model for different values of the temporal context atthe input of
the second MLP.

second MLP is able to learn the phonotactics more effectively,
and gain in accuracy by introducing explicit language models
reduces. This further supports the observations from the linear
Volterra kernels. However, even with 230 ms context, the MLP
has only partially learned the phonotactics and we still obtain
1-2% improvement in accuracies by using bigram/trigram
language models in decoding.

To summarize briefly, we showed in this section that
the second MLP classifier in the hierarchical system learns
the phonetic-temporal patterns (acoustic confusions among
phonemes and and the phonotactics of the language) in the
posterior features spanning a temporal context of 150-230 ms.
In the following section, we discuss the important properties
of the posterior features that enabled the second MLP to
effectively learn these patterns.

V. M ODELING FLEXIBILITY OF POSTERIOR FEATURES

In this section, we discuss the important properties of poste-
rior features such as (a) lesser nonlinguistic variabilities when
compared to the acoustic features, (b) sparse distribution, and
(c) linear separability in the posterior feature space. We also
discuss the consequence of these properties on the complexity
of the second MLP classifier and the amount of training data.

A. Characteristics of Posterior Features

1) Variability in posterior features:The acoustic features
are known to exhibit a high degree of nonlinguistic variabil-
ities such as speaker and environmental (e.g.,noise, channel)
characteristics. The first MLP classifier can be interpretedas
a discriminatively trained nonlinear transformation fromthe
acoustic feature space to the posterior feature space. It has
been shown that a well trained (large population of speakers,
and different conditions) MLP classifier can achieve invariance

to speaker [3] as well as environmental [8] characteristics.
Moreover, it has also been shown that the effect of coarticu-
lation is less severe on the posterior features when compared
to the acoustic features [55][56].

In other words, the posterior features are soft-decisions
on the underlying sequence of phonemes (i.e., the linguistic
message), and have much lesser nonlinguistic variabilities
when compared to acoustic features.

2) Sparseness in the posterior features:The posterior
features represent the probabilities of the phonetic classes
conditioned on the acoustic features, and hence sum up to
unity at any given time instant. In addition, they are also
sparsely distributed in the posterior feature space. To illustrate
this, in Table VI, we show the average number of components
(or phonemes) in the posterior feature vector that capture 90,
95, and 99% of the probability mass value. It can be seen
that on TIMIT, on an average, 3.6 phonemes capture 95%
of the probability mass value. The other phonemes share the
remaining 5% of the probability mass. On CTS, on an average
6.2 phonemes capture 95% of the probability mass value,
indicating the more complex nature of the task.

TABLE VI
AVERAGE NUMBER OF COMPONENTS(PHONEMES) IN THE POSTERIOR

FEATURE VECTOR THAT CAPTURE90, 95,AND 99% OF THE PROBABILITY

MASS IN THE POSTERIOR PROBABILITIES OF PHONEMES ESTIMATED BY

THE FIRSTMLP.

probability mass value
>90% >95% >99%

TIMIT (max 40) 2.7 3.6 6.6
CTS (max 45) 4.4 6.2 11.3

The sparse distribution of the posterior features has been
previously studied in [3], where the authors termed the poste-
rior features as moreregular compared to the standard acoustic
features. It was argued that sparse distribution was one of the
favorable properties of posterior features.

3) Linear separability: The model parameters of the first
MLP are optimized to minimize the cross entropy between the
estimated posterior probability vectors and the output target
vectors, which are typically in the hard-target format. In other
words, if K denotes the number of phonemes, the hard target
vector lpi

∈ R
K for the phonemepi, i = 1, 2 . . . K is given

by lpi
(k) = δ(k − i). The target vectors are, therefore, at

the simplex of theK dimensional space, which makes them
linearly separable. Hence, a well trained model attempts to
achieve linear separability in the estimated posterior features.

The properties of posterior features discussed in this section
can influence the choice of the second MLP classifier in the
following ways:

1) Since the posterior features are trained to be linearly
separable and have a sparse distribution, a simpler
classifier (in terms of model capacity) may be sufficient
at the second stage of the hierarchy. We validate this
hypothesis in Section V-B.

2) Since the posterior features have lesser variability, the
second MLP could be trained with lesser amount of
training data. We test this hypothesis in Section V-C.
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B. Complexity of the Second MLP

In this section, we study the effect of the model capacity (in
terms of the number of parameters) of the second MLP in the
hierarchical system on the phoneme recognition accuracies.
Fig. 10 is a plot the phoneme recognition accuracies obtained
by using the hierarchical approach, as a function of the number
of parameters in the second MLP classifier (relative to the
number of parameters in the first MLP). The number of
parameters is controlled by reducing the size of the hidden
layer until it equals the size of the input layer. On both
TIMIT as well as CTS, the second MLP is trained using a
temporal context of 230 ms. The horizontal dotted lines in the
plot indicate the recognition accuracies obtained by usingthe
output of the first MLP classifier.
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Fig. 10. Phoneme recognition accuracies as a function of the number of
parameters in the second MLP classifier (relative to the numberof parameters
in the first MLP classifier, which has a size of351 × 1000 × 40 on TIMIT,
and a size of351 × 5000 × 45 on CTS). In both cases, a temporal context
of 230 ms is applied at the input of the second MLP, and the horizontal lines
indicate the recognition accuracies obtained by using a single MLP system.

It can be seen from the figure that on both TIMIT as well
as CTS, the recognition accuracies drop with the reduction in
the number of parameters, and the drop in accuracy is more
significant in the case of CTS. Nonetheless, the hierarchical
system still outperforms the single MLP based system on both
the tasks. The second MLP with just 20% of the parameters
in the first MLP can still yield significantly higher recognition
accuracies over the single MLP based system.

As an extreme case, a single layer perceptron (SLP) is used
as a second classifier in the hierarchical system. It can be seen
from Table VII that even a linear classifier in the second stage
of the hierarchy can yield higher recognition accuracies (2.3%
and 1.1% respectively on TIMIT and CTS respectively) when
compared to the baseline system.

TABLE VII
PHONEME RECOGNITION ACCURACIES OBTAINED BY HIERARCHICAL

POSTERIOR ESTIMATION USING MULTILAYER AND SINGLE LAYERED

PERCEPTRON(SLP) CLASSIFIERS.

experiment no MLP SLP
hierarchy(%) hierarchy(%) hierarchy (%)

TIMIT 68.1 71.6 70.4
CTS 54.3 63.6 55.4

It can be recalled from Table IV that, on TIMIT, the
phoneme recognition accuracy obtained by first order Volterra

series approximation was only three percent lower compared
to the accuracy obtained by directly evaluating the MLP,
indicating the linear separable nature of the posterior features.
Therefore, at the second stage of the hierarchy, an MLP
classifier with fewer number of parameters (mildly nonlinear)
is sufficient. On CTS, however, it can be seen that there is
a 13.5% drop in recognition accuracy by approximating the
MLP using first order Volterra series, which indicates that the
posterior features estimated by the first MLP are not as linearly
separable as those in TIMIT. This explains the higher drop in
recognition accuracies with the reduction in the number of
parameters on CTS task.

C. Size of Training Data

In this section, we study the effect of the amount of data
required to train the second MLP in the hierarchical system
on the phoneme recognition accuracies. In Fig. 11, we plot the
phoneme recognition accuracies obtained by using the hierar-
chical approach as a function of the amount of training data
used to train the second MLP classifier (relative to the amount
of training data used to train the first MLP classifier). The
amount of training data is controlled by randomly dropping
the sentences in the training set. It can be seen that even with
80% reduction in the training data, the hierarchical system
yields higher recognition accuracies when compared to the
baseline system.

In this work, in order to speed up the training time on the
CTS task, the training data was split into two halves, and
the two MLPs in the hierarchical system were trained on the
disjoint data sets. By training the hierarchical system using the
above strategy, where the MLPs have sizes351 × 5000 × 45
and 1035 × 1334 × 45, we obtained a recognition accuracy
of 63.6%. However, only a slight improvement in recognition
accuracy, about 0.7%, is obtained by training both the MLPs
in the hierarchical system on the full 232 hours of data.
Moreover, the training strategy for the hierarchical system -
same training set or disjoint sets - did not affect the recognition
accuracies.
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Fig. 11. Phoneme recognition accuracies as a function of the amount of
data used to train the second MLP. 100% data corresponds to 153 minutes on
TIMIT, and 116 hours on CTS. An MLP with fewer number of hidden nodes
(200 on TIMIT and 400 on CTS) is used. In both cases, a temporal context
of 230 ms is applied at the input of the second MLP. The horizontal lines
indicate the accuracies obtained by using a single MLP basedsystem.



IEEE AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL.X, NO. Y, MONTH2010 14

VI. D ISCUSSION

We investigated a simple hierarchical system consisting of
two MLP classifiers in tandem. The second MLP is trained
using the posterior features estimated by the first with a
temporal context of 150-230 ms. The effectiveness of the
hierarchical system is a consequence of the long temporal
context being applied in the posterior features, which are
trained to be linearly separable, possess a sparse distribution,
and lesser nonlinguistic variabilities.

A similar hierarchical system was previously studied in [19],
where a CRF was used at the second stage of the system.
It was argued that the system learns the phonetic confusion
patterns in the posterior features estimated by the MLP. The
findings from the present study further strengthens this argu-
ment. We show using Volterra analysis that the second MLP
indeed learns the phonetic-temporal patterns which capture the
phonetic confusions at the output of the first MLP. In addition,
we also showed that it learns the phonotactics of the language
as observed in the training data.

In the following subsections, we discuss some of the in-
teresting aspects of the MLP based hierarchical system and
possible future directions.

A. Choice of the Subword Units

In this work, the second MLP is trained on posterior features
where each dimension corresponds to a phoneme. Further
improvements in recognition accuracies have been observed
using posterior features corresponding to the sub-phonemic
states,e.g.,three states per phoneme [12]. A Volterra analysis
of the second MLP classifier in such a scenario would reveal
the phonetic-temporal patterns in the sub-phonemic posterior
feature space.

The second MLP could also be trained using posterior
features corresponding to the articulatory or phonological
attributes of phonemes,e.g.,place and manner of articulation.
A Volterra analysis of the second MLP in this case would
reveal the articulatory-temporal patterns that are learned for
each of the phonemes. Similar hierarchical systems have been
previously studied where the second classifier is a RNN [33]
or a CRF model [18].

B. Choice of the classifiers

In this work, the second MLP classifier in the hierarchical
system is trained using posterior probabilities of phonemes
conditioned on acoustic features, which are estimated by an
MLP. In general, however, these phonetic class conditional
probabilities could be estimated using other statistical models
as well. For example, in an earlier work, the posterior proba-
bilities of phonemes were estimated using a GMM, and similar
improvements in recognition accuracies were observed [57].

The basic idea is to transform the acoustic features into
posterior features corresponding to linguistically meaningful
units such as phonemes, sub-phonemic states, or articulatory
attributes using any classifier. In the posterior feature space,
the temporal information spanning durations as long as 250
ms can be effectively learned.

C. The Second MLP as a Matched Filter

In the hierarchical system discussed in this paper, the second
MLP can be viewed as a discriminatively trained nonlinear
matched filter. Matched filters have been investigated previ-
ously in phoneme spotting in [58], where the matched filter
for each phoneme was derived independently by averaging its
phoneme posterior trajectory. The width of the matched filter
implicitly captured the duration of the phoneme. The phoneme
posteriors are multiplied with their respective matched filters
and peaks are picked to spot phonemes.

D. Choice of the Databases

Experiments were performed on two databases (TIMIT and
CTS), mainly to confirm the effectiveness of the hierarchical
system in different data conditions. The results on the two
tasks also exhibit certain differences. Firstly, the improvement
in recognition accuracies obtained using the hierarchicalap-
proach is much higher on CTS, about 9.3%, when compared to
3.5% on TIMIT. Secondly, on TIMIT, the recognition accuracy
obtained by first order Volterra series approximation is just 3%
lower to that obtained by a direct evaluation of the MLP. In
contrast, this difference is about 13.5% on CTS.

The TIMIT and CTS tasks differ in three aspects namely,
the channel conditions (microphone versus telephone), the
speaking styles (read speech versus conversational), and the
labeling strategy (hand labeling versus forced alignment). It
is not clear from the present study how the speaking style
or the labeling strategy affects the hierarchical system asthe
experimental conditions differ in more than one respect.

These aspects can be studied using carefully designed
experiments. For example, the impact of speaking styles on
the hierarchical system can be studied by using two different
databases which differ only in the speaking style, with all other
relevant factors (the channel conditions, the labeling strategy,
etc) the same. In such a scenario, the differences in the Volterra
kernels of the second MLP for the two systems will bring out
the impact of speaking style.

E. MLP based Hierarchical system for Adaptation

A potential application of the MLP based hierarchical
system is in task adaptation. At the first stage of the hier-
archical system, a well trained MLP available off-the-shelf
could be used. The second MLP is trained on the posterior
features estimated for the target task (adaptation data). It has
already been observed that the second MLP in the hierarchy
requires fewer number of parameters and can be trained using
lesser amount of data, making it an ideal case for adaptation,
especially in scenarios where the training data is limited.

VII. SUMMARY AND CONCLUSIONS

We investigated a simple hierarchical architecture for esti-
mating the posterior probabilities of phonemes. The system
consisted of two MLP classifiers in tandem. The first MLP is
trained on PLP features, with a temporal context of 90 ms.
The second MLP is trained on the posterior probabilities of
phonemes (posterior features) estimated by the first classifier,
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but with a relatively longer temporal context of around 150-
230 ms. The hierarchical system yielded an absolute improve-
ment of 3.5% and 9.3% over the conventional single MLP
based system on TIMIT and CTS databases respectively.

The posterior features are endowed with two important
properties. Firstly, they are trained to be linearly separable and
possess a sparse distribution. Secondly, the posterior features
carry very little information on the undesirable nonlinguistic
variabilities such as speaker and noise characteristics. In other
words, the posterior features represent the soft-decisions on
the underlying sequence of phonemes, and are much simpler
to classify. Consequently, the second MLP classifier can effec-
tively learn the contextual information present in the temporal
trajectories of the posterior features, spanning about 230ms
of context.

In order to unearth the phonetic-temporal patterns learned
by the second MLP classifier, we applied Volterra series
to model the second stage in the hierarchical system, and
analyzed its first order Volterra kernels (linear part of the
nonlinear system). The analysis of the linear Volterra kernels
showed that the second MLP has effectively captured the
phonetic confusion patterns at the output of the first classifier,
as well as the phonotactics of the language, as observed in the
training data.

Furthermore, we demonstrated that a simpler MLP with
fewer number of parameters is sufficient at the second stage
in the hierarchy, and that it can be trained using lesser amount
of training data. We attribute this to the salient properties of
the posterior features such as lesser nonlinguistic variabilities,
sparse distribution, and linear separability.

APPENDIX A
NORMALIZATION OF POSTERIOR FEATURES

The expression for the posterior features is given by (1).
In the following derivation, we drop the subscript for time
t and simplify the notations by denoting the eventqt = k

by simply qk. The model for the first MLP is denoted byΘ.
Subsequently, (1) reduces toxk = P (qk | f ,Θ), where qk

denotes the phoneme,f denotes the input feature vector. The
mean of the componentk in the posterior feature vector is
given by

mk = Ef [xk]

= Ef [P (qk | f ,Θ)]

=

∫

p(f)P (qk | f ,Θ) df

= P (qk | Θ) (14)

Hence, the sample mean of the posterior features is an estimate
of the prior probability of the phonemesqk. In the above
simplification, the propertyp(f | Θ) = p(f) is exploited. The

mean and variance of the posterior features are related as

σ2
k + m2

k = Ef

[

(xk)2
]

=

∫

p(f)
p(f | qk,Θ)P (qk | Θ)

p(f | Θ)
xk df

= P (qk | Θ)

∫

p(f | qk,Θ) xk df

= P (qk | Θ) Ef |qk
[xk] (15)

The conditional expectation in the above expression can be
estimated as the average posterior probability of a phoneme
obtained using data belonging to that particular phoneme only.
If x̂k denotes the scaled likelihood of the phonemeqk, and
given by

x̂k =
xk

mk

=
P (qk | f ,Θ)

P (qk | Θ)
,

(15) can be expressed using (14) as

σ2
k

m2
k

+ 1 = Ef |qk
[x̂k] (16)

The posterior feature vector component, normalized to zero
mean and unit variancê̂xk can be be simplified using (16) as

ˆ̂xk =
xk − mk

σk

=
x̂k − 1

[

Ef |qk
[x̂k] − 1

]
1

2

(17)

From (17), it is clear that mean and variance normaliza-
tion on the posterior features is equivalent to taking scaled
likelihoods as features. In other words, by taking scaled
likelihoods as features and normalizing them to zero mean
and unit variance would yield the same features as in (17). The
only difference is that in the latter, the prior probabilities are
estimated by normalizing the relative frequency of the phonetic
labels in the training data. In the above formulation, the priors
are estimated using the MLP model. In effect, by normalizing
the posterior feature to zero mean and unit variance, the effect
of priors in them are removed.
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