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Abstract

MLP based front-ends have shown significant complementary
properties to conventional spectral features. As part ef th
DARPA GALE program, different MLP features were devel-
oped for Mandarin ASR. In this paper, all the proposed front-
ends are compared in systematic manner and we extensively in
vestigate the scalability of these features in terms of theumt

of training data (from 100 hours to 1600 hours) and system
complexity (maximum likelihood training, SAT, lattice leV
combination, and discriminative training). Results on Grsmf
evaluation data from the GALE project reveal that the MLR fea
tures consistently produce relative improvements in thgeaf

15% — 23% at the different steps of a multipass system when
compared to the conventional short-term spectral basedrésa
like MFCC and PLP. The largest improvement is obtained using
a hierarchical MLP approach.

Index Terms: TANDEM features, Multi-Layer Perceptron,
Acoustic features, GALE project, LVCSR.

1. Introduction

Multi-Layer Perceptron (MLP) based front-ends originadhp-
posed in [1], have evolved in different fashions includihg t
use of long signal time span at the MLP input [2], the com-
bination of multiple MLP outputs based on probabilisticesul
(a.k.a. multi stream approaches) [3] and the use of more com-
plex architectures as compared to the conventional tlager|
MLP [2], [4]. Furthermore considerable improvements have
been reported in LVCSR systems whenever they are used in
concatenation with MFCC or PLP features (for a review see
[5]). More recently, MLP features have been applied in a num-
ber of different systems and languages like Mandarin and Ara
bic, e.g., see [4],[6],[7],[8]-

As part of the DARPA GALE program, the development
of different types of MLP features evolved along with the de-
velopment of ASR systems. The first contribution of this work
is to compare MLP front-ends used in a Mandarin ASR sys-
tem in a systematic manner, i.e., using the same phoneme set,
same speech-silence segmentation system, amount ohtyaini
data, and number of free parameters. Towards this endpsecti
2 briefly describes the different MLP features and benchmark
them using a system trained on 100 hours of data. In contrast
to [9], the comparison covers all the MLP front-ends intégpla
in the latest GALE Mandarin evaluation system. As an out-
come, two competitive feature sets are obtained and reféore
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as MLP1 and MLP2, which provide a relative reduction %
Character Error Rate compared to standard spectral feature

The second part of the paper, i.e., section 3, investigates
how the previously described improvements scale up with the
amount of training data (from 100 hours to 1600 hours of train
ing data) and with more complex LVCSR systems that include
Speaker Adaptative Training (SAT), lattice level combioat
and discriminative training. The study is done using the RWT
Mandarin LVCSR system [8]. Contrary to our previous related
works, the contrastive experiments are obtained usiriglla
multipass LVCSR system trained with and without the MLP
features on the entire 1600 hours of the training set. The re-
sults are then summarized and discussed in section 4 which co
cludes the paper.

2. Small scale experiments

These studies are based on a simplified version of the large vo
cabulary ASR system for transcription of the Mandarin lan-
guage described in [7], developed by SRI/UW/ICSI for the
GALE project. Recognition is performed using the SRI De-
cipher recognizer and results are reported in terms of Ctera
Error Rate (CER). The training is done using approximaivel
100 hours of broadcast news and conversational data mgnuall
transcribed including speaker labels. Results are repane
the DARPA GALE evaluation 06 data (eval06). The baseline
system uses 13 standard MFCC plus a smoothed log-pitch es-
timate, as described in [10], augmented with first and second
order temporal derivatives resulting in an acoustic veofati-
mension 42. \Vocal Tract Length Normalization (VTLN) and
speaker level mean-variance normalizations are applidte T
training consists of conventional Maximum Likelihood trai
ing. Details on acoustic modeling and language modeling can
be found in [7]. The decoding phase consists of two decoding
passes, a maximum likelihood speaker independent (sidddeco
ing followed by a speaker adapted (sa) decoding. Speakpr ada
tation is done using 3-class constrained Maximum Likelthoo
Linear Regression (CMLLR). Performance of this baselire sy
tem on eval06 data is 27.8% CER for the speaker independent
(si) and 25.8% CER for the speaker adapted (sa) models.

In the following section, we experiment with different MLP
features obtained equalizing the total number of pararséter
less the contrary is stated) in order to obtain a fair conspari
The training is done using the same toneme set composed of
71 tones and using the same alignment. After PCA, a dimen-
sionality reduction accounting for 95% of the total varlaypiis
applied. Let us briefly detail the different features.



Table 1: Summary of feature performances on evalO6 dataulRese reported using MLP features only and in concatenatiith
MFCC+f0 for the speaker independent/adapted system. bkétathe relative improvement w.r.t. the baseline is regbrThe two
front-ends that produce the largest improvements are basélde multi-stream approach (MLP1) and on the augmentedrictacal

MRASTA (MLP2).
Features MLP w/o MFCC+f0 MLP with MFCC+fO
CER (si) CER (sa) CER (si) CER (sa)
TANDEM-9framesPLP| 27.6 (+0%) | 25.5 (+1%) | 23.4 (+15%) | 22.2 (+13%)
HATS 30.5(-9%) | 29.1(-12%) | 23.8 (+14%) | 22.7 (+12%)
Multi-stream (MLP1) | 24.6 (+11%) | 23.1(+10%) | 22.8 (+18%) | 21.7 (+16%)
MRASTA 32.4 (-16%) | 30.7 (-19%) | 24.4 (+12%) | 23.1 (+10%)
Hier 27.8 (+0%) | 26.5(-2%) | 22.9 (+17%) | 21.9 (+15%)
A-Hier (MLP2) 26.4 (+5%) | 24.1(+6%) | 22.3(+20%) | 21.2 (+17%)

TANDEM- 9 frames PLP features: The input to the three-
layer MLP consists of 9 consecutive frames of PLP features
obtained after VTL normalization augmented with first anct se
ond order temporal derivatives. Furthermore this reprtasien

is augmented with 9 consecutive frames of the log pitch esti-
mate (fO) with its temporal derivatives. Speaker level maaah
variance normalization are performed. This produe & 9
dimensional input feature vector. Their performance isregul

in Table 1.

Hidden Activation TRAPS (HATS) features: The HATS fea-

ture extraction [2] aims at including information from riNely

long signal time spans. At first the 19 critical band auditory
spectrum of the speech signal is extracted. In a first stage, a
separate MLP is trained for each critical band in order tgcla
sify phonetic targets. The input for each MLP is represebted

51 consecutive log critical band energy vectors corresiognd

to 500 ms of speech. In a second stage a merger MLP is trained
with the hidden activations obtained (for the training Jlétam

the 19 MLPs in the first stage as input feature. This process pr
duces a single posterior stream out of the 19 different etéim
obtained at the previous stage. The phoneme probability est
mates obtained at the output of the second stage MLP are then
used for TANDEM features. Their performance is reported in
Table 1.

Multi-stream features: MLP outputs represent phoneme
posterior probabilities and they can be combined according
to probabilistic rules. This approach is known as Multi-
stream ASR [3]. Phoneme posterior estimates obtained using
TANDEM-PLP and HATS that correspond respectively to short
and long temporal context are combined using the Dempster-
Shafer (DS) method [13] Their performance is reported in
Table 1.

Multiple RASTA (MRASTA) features is an extension of
RASTA filtering introduced in [12]. Similarly to HATS, it use

the 19 critical bands auditory spectrum. A 600 ms long tem-
poral trajectory in each critical band is filtered with a baofk
Gaussian derivative filters aiming at dividing the avaiatnod-
ulation frequency range into its individual sub-bands.nta=l
filters are used for all critical bands. After MRASTA filtegn
frequency derivatives across three consecutive critiaatlb are
introduced. The total number of features at the MLP input is
432. Similarly to HATS, MRASTA aims at using long signal
time spans as input to the MLP. Their performance is reported
in Table 1.

Hierarchical MRASTA (Hier) features: Previous studies on
English and Mandarin data [13],[9] showed that significant

2DS combination has replaced the inverse entropy combimafier
experiments performed in [7]

gains can be obtained combining classifiers trained on atgpar
ranges of modulation frequencies in hierarchical fashibinis
represents the main motivation for the Hierarchical MRASTA
processing in which the filter-banks are split in two separat
filter banks that filter respectively fast and slow modulatice-
quencies. The cutoff frequency for both filter-banks is agpr
imatively 10 Hz. The output is then processed according to a
hierarchy of two MLPs progressively moving from high to low
modulation frequencies. Details can be found in [13]. Their
performance is reported in Table 1.

The MRASTA filtering can be also augmented with the
value of the critical band energy and the smoothed log-gzh
timates. We refer to this set of features as Augmented Hikyar
(A-Hier). Their performance is reported in Table 1.

Results of the different MLP features are summarized in
Table 1 both as stand-alone features and in concatenattbn wi
MFCC. Only the multi-stream approach uses a number of pa-
rameters doubled compared to other architectures. Results
veal that:

1) Most of the MLP features do not outperform the MFCC
baseline when used as stand-alone front end. Only complex
MLP front-ends significantly outperform the MFCC baseline
i.e., the multi-stream approach (row 7) and the augmented hi
archical approach (row 10). In the rest of the paper, we eiférr
to those as MLP1 and MLP2 respectively. The performance of
MLP features that use long signal time spans, e.g., HATS and
MRASTA is particularly poor as stand alone front-end.

2) On the other hand, even when their individual perfor-
mance is poor, MLP features in concatenation with MFCC al-
ways produce considerable improvements in the range of 12-
20% relative in the speaker independent system and in tige ran
of 10-17% in the speaker adapted system. The largest im-
provement after adaptation is obtained by the MLP2 featetre s
(+17% relative).

3) The relative improvements after speaker adaptation are
generally reduced by 2% relative respect to the speakepéame
dent system. This is consistent with what was already observ
in [14] on English ASR experiments.

4) MLP1 features (multi-stream approach that combines
TANDEM-PLP and HATS) produce the lowest CER as stand-
alone feature set while the MLP2 produces the lowest CER in
concatenation with MFCC features.

The following section investigates if these findings on fea-
tures MLP1 and MLP2 hold also on larger amounts of training
data (1600 hours of speech) and in a more complex multipass
ASR system.



Figure 1: RWTH evaluation system composed of two subsysteaireed on MFCC and PLP features. The two subsystems cafsist

ML training followed by SAT/CMLLR training. The subsysteratice outputs are finally combined together.
| |
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Table 2: CER for MFCC, PLP and MLPs features for the speaker Table 3: CER for MFCC, PLP and MLPs features for the speaker
independent system. In brackets relative improvemenseotgo adapted system. In brackets relative improvements respebe
the spectral features (MFCC or PLP) only are reported. spectral features (MFCC or PLP) only are reported.

Feature GALE-dev07 | GALE-dev08 | GALE-eval07 Feature GALE-dev07 | GALE-dev08 | GALE-eval07
MFCC 15.7 14.0 15.8 MFCC 14.0 12.5 14.5
MLP1 13.1 (+20%) | 12.4 (+11%) | 13.8 (+12%) MLP1 12.4 (+14%) | 11.4 (+8%) 13.4 (+7%)
MLP2 13.3 (+18%) | 13.1 (+6%) | 13.9 (+12%) MLP2 12.3 (+14%) | 11.6 (+7%) | 13.2 (+8%)
MFCC+MLP1 | 12.3 (+21%) | 11.5(+17%) | 13.1 (+17%) MFCC+MLP1 | 11.3 (+19%) | 10.2 (+18%) | 12.2 (+15%)
MFCC+MLP2 | 11.6 (+26%) | 11.3 (+19%) | 12.8 (+19%) MFCC+MLP2 | 10.6 (+24%) | 10.1 (+18%) | 11.8 (+19%)
PLP 16.4 14.9 16.2 PLP 14.4 13.4 14.5
MLP1 13.1(+20%) | 12.4 (+16%) | 13.8 (+14%) MLP1 12.4 (+14%) | 11.4 (+14%) | 13.4 (+7%)
MLP2 13.3 (+18%) | 13.1 (+12%) | 13.9 (+14%) MLP2 12.3 (+14%) | 11.6 (+13%) | 13.2 (+9%)
PLP+MLP1 | 12.3 (+25%) | 11.3 (+24%) | 12.9 (+20%) PLP+MLP1 | 11.4 (+20%) | 10.4 (+22%) | 12.2 (+16%)
PLP+MLP2 11.7 (+28%) | 11.2 (+24%) | 12.7 (+21%) PLP+MLP2 11.1 (+22%) | 10.3 (+23%) | 12.1 (+16%)

3. Largescale experiments

In order to study how the previous results generalize on more
complex LVCSR systems and large amounts of training data,
the experiments are extended using a highly accurate atitboma
speech recognizer for continuous Mandarin speech trained o
1600 hours of data collected by LDC. The data are used for
training of the HMM/GMM systems as well as the MLP front-
ends. The evaluation is done on the GALE 2007 development
corpus (dev07), used for hyper-parameters tuning, the GALE
2008 development and the sequestered data of the GALE 2007
evaluation (eval07-seq) for a total amount of 5 hours of data
The evaluation system is composed of two subsystems
trained using MFCC and PLP augmented with log pitch esti-
mates as base features. More details on feature normatizati
acoustic models, and language models can be found in [8].
Figure 1 shows the RWTH evaluation system. The first
pass consists of simple Maximum Likelihood training, reger

bination using a modified Minimum Phone Error criteria [16].
Speaker Independent - Adapted system Table 2 reports
the performance of the Sl system trained on MFCC and PLP

features as well as the two MLP front-ends. Furthermordtsesu
obtained concatenating spectral features with MLP framise

are also reported. The values in brackets represent thésecla
improvements w.r.t. systems trained on spectral featungs o
Table 3 reports the same performance for the Speaker Adapted
system.

The results show similar trends as for the 100 hours. In
other words, the MLP feature performance scales with the
amount of training data. In particular:

1) The MLP1 and MLP2 front-ends outperform the spec-
tral features and produce a relative improvement in thegarfig
15%-25% when used in concatenation with MFCC or PLP. The
improvements are verified on all the three data sets.

2) The relative improvements after Speaker Adaptative

as the speaker independent system (SI). In the second pass, Training (SAT) are generally reduced respect to the speaker

speaker variations are compensated for using Speaker ielapt
Training (SAT/CMLLR). During recognition, Maximum Like-
lihood Linear Regression (MLLR) is applied to the means of
the acoustic models. We will refer to it as the speaker atiapta
(SA) system. The recognition is performed using a 4-gram lan
guage model. Finally, the outputs of the different subsyste
are combined at the lattice level using the min.fWER combi-
nation method described in [15]; min.fWER has been shown
to outperform other lattice combination methods as ROVER or
Confusion Network Combination (CNC) [15], and also within
the GALE project it has shown to yield competitive systenis [8
This system is referred to as system combination (SC).
Furthermore, we also study the effect of discriminative
training both on individual sub-systems and on the lattm®-c

dependent system.

3) After SAT, the MLP2 features (based on a hierarchi-
cal approach) yield the best performance in concatenatitm w
both MFCC and PLP.

System combination The results of MFCC and PLP sub-
systems combination are reported in Table 4 (first row). for i
vestigation purposes, corresponding sub-systems traisied
MLP1 and MLP2 front-ends are combined in the same way and
their performance is reported in Table 4 (second row). Their
performance is superior to the MFCC-PLP systen® by 14%
relative.

In order to increase the complementarity of the sub-
systems, features MLP2 and MLP1 were concatenated with
MFCC and PLP, respectively. The performance of the lattice



Table 4: Lattice combination (designated with of MFCC or PLP subsystems in concatenation with MLP feature

| Features | GALE-dev07 | GALE-dev08 | GALE-eval07 ]
MFCC @ PLP 12.9 11.9 135
MLP1 & MLP2 11.1 (+14%) | 10.7 (+10%) | 12.3 (+9%)
MFCC+MLP2@ PLP+MLPL | 9.9 (+23%) | 9.4 (+21%) | 11.0 (+18%)

Table 5: Effect of discriminative Training on different @ylstems and their combination (designated wijh

Features GALE-dev07 | GALE-dev08 | GALE-eval07
PLP+MLP1 9.9 (+13%) | 9.3(+10%) | 11.0 (+9%)
MFCC+MLP2 9.6 (+9%) 9.2 (+9%) 11.0 (+7%)

MFCC+MLP2@ PLP+MLP1

8.8 (+11%)

8.5 (+10%) | 10.4 (+6%)

level combination of those two sub-systems is reported in Ta
ble 4 (third row). The results show that using MLP features in
concatenation with MFCC/PLP features produces an addition
relative improvement in the range o8 — 23% in system com-
bination.

Discriminative Training Table 5 reports CER obtained
after discriminative training. Results are reported foe th
PLP+MLP1 system, the MFCC+MLP2 system and their lattice
level combination. In all the three cases, discriminatieent
ing is reducing the CER in the range 6-13% relative, showing
that it is effective also when used together with differeritiv
front-ends. For computational reasons, fully contrastasilts
with and without discriminative training are not availatide
the 1600 hours system. However the relative improvements re
ported in Table 5 are comparable to those obtained withou® ML
features [17], showing that improvements obtained frontlee
techniques can be additive.

4. Summary and discussion

This paper first investigates several MLP front-ends pregdos
during the GALE project on a small scale experimental setup.
Results reveal that most of the MLP features do not outper-
form the MFCC baseline when used as stand-alone front end.
Only complex front-ends like, Multi-stream feature (MLRE)d
augmented Hierarchical features (MLP2) outperform spéctr
features. They outperform the MFCC when used as a stand
alone feature (10% relative improvement in CER for MLP1)
and a considerable improvement is obtained in concatenatio
with spectral features (up to 17% relative for MLP2).

In the second part of the paper, we investigate these two
features with large amount of training data as well as onta-sta
of-the-art multipass system. The findings from the smallesca
study hold for large amount of training data on speaker inde-
pendent, speaker adapted systems and after lattice lawdlico
nation. This is verified both in concatenation with MFCC and
PLP features. The hierarchical MLP approach (MLP2) holds
the largest reduction in CER. The final gain after lattice eom
bination is in the range of8 — 23% relative for the different
evaluation data sets.

In the future we intend to extend these studies to other
recently introduced MLP front-ends, such as bottleneck fea
tures [4] which has been mainly tested for Arabic language.
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