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ABSTRACT
Speaker diarization for meetings data are recently coimegrtp-

This could lead to two different issues. Different featungght re-
quire GMMs of different complexities (number of gaussianf)

wards multistream systems. The most common complemergary f addition the dynamic range of individual feature streamsicde
tures used in combination with MFCC are Time Delay of Arrival totally different. Thus using a linear combination of lagelihoods

(TDOA). Also other features have been proposed althougtreth

are no reported improvements on top of MFCC+TDOA systems. |

this work we investigate the combination of other featutts aéong

may not be appropriate with multiple feature streams (sefefof5

fetails).

This study builds on our recent works [5], [6], [7]. In [6] wedp

with MECC+TDOA. We discuss issues and problems relatedeo thPoSed a non-parametric approach based on InformationeBettk

weighting of four different streams proposing a solutiosdzhon a
smoothed version of the speaker error. Experiments aremieson
NIST RT06 meeting diarization evaluation. Results revhat the
combination of four acoustic feature streams results 30% rela-

tive improvement with respect to the MFCC+TDOA feature cémb

nation. To the authors’ best knowledge, this is the first sssful
attempt to improve the MFCC+TDOA baseline including othea-f
ture streams.

Index Terms— Speaker diarization, Information bottleneck

principle, Feature combination

1. INTRODUCTION

Speaker diarization is an unsupervised learning paradigim tive
objective of finding‘who spoke when’in a given audio recording.
Both the number of speakers and speech segments corresgaadi
each speaker need to be learnt. Conventional systems usé¢esho
spectral features such as mel frequency cepstral coeffidigt-CC)
and follow an agglomerative approach for this purpose [1].

Recently diarization systems are converging to a mulastrap-
proach. Various other features that carry complimentdigrimation
have been explored in combination with MFCC features. I cds
data recorded with Multiple Distance Microphones (MDM)niB
Delay of Arrivals (TDOA) of the sound in different microphes
carry information about the location of the speaker [2]. Mafsthe
state of the art systems in speaker diarization uses a catidninof
MFCC and TDOA features. Different other features includiogg
term and prosodic features were used in combination with Rl
improve the diarization performance [3, 4]. However acowdo
the authors’ best knowledge there was little attempt toripoate
additional features to MFCC+TDOA baseline.

Conventional systems use an ergodic HMM where each speak
State

is modeled using an HMM state with minimum duration.
emission probabilities are modeled with Gaussian Mixturedi¥s
(GMM). In case of multistream diarization, separate modetsbuilt
for individual feature streams. The feature combinatigreigormed
by a linear combination of the two individual log likelihaedHow-
ever, different feature streams possess very diversetstatiprop-
erties. For example, the dimension of TDOA features depends
number of microphones used, which varies across meetings.oo

principle for speaker diarization. The system was thenreldd to
multiple streams (MFCC+TDOA) [7] and later a Kullback-Lkib
divergence based realignment was introduced [5]. Suchterays
solely depends on posterior probability distributions acte feature
stream and avoids combination of GMM log-likelihoods.

In this work, we extend this system beyond the combination
of two sets of acoustic features streams. We investigateigheof
cepstral like features obtained from frequency domairglimeedic-
tion(FDLP) and modulation spectrum(MS) features in additto
the conventional MFCC and TDOA. The paper examines issues in
estimating the feature weights of four different streanrs pértic-
ular we show that, when more than two acoustic streams ark use
the Diarization Error becomes a non-smooth function of teehts
without a well defined minimum. We investigate a solution vem®
come the problem. The paper is organized as follows. Thegsext
tion introduces speaker diarization based on Informatiotil&eck
(IB) principle. Section 3 describes the feature combimaticheme.
Performing a speaker realignment with multiple featureastrs is
described in Section 4. Section 5 describes the baselinaréea
combination of MFCC and TDOA features. Section 6 investgat
the feature combination of four acoustic features. The ip&peon-
cluded in Section 7.

2. 1B BASED DIARIZATION

Consider a set of speech segmefits= {zi,...,xr} obtained
from uniform linear segmentation of an input audio streambe
clustered into set of clustel§ = {c1,...,cx}. LetY be a set

of relevance variables, that contain relevant informaatout the
problem. Motivated by the wide success of GMM for speakengec
nition, we had proposed to use the components of a background
C%MMS as the set of relevance variables for speaker diaoizd€].

%ccording to IB principle the best clustering compressesitiput

variables while preserving as much mutual information assiide
about the relevance variabl&5[8]. This corresponds to the mini-
mization of:

Where 3 is a Lagrange multiplier. The clustering operates using
probabilitiesp(y|z) that are obtained using Bayes'’ rule. This crite-
rion is optimized with respect to the stochastic mappifgz) using



iterative optimization techniques [8].

The optimization of the objective function (1) can be done in
a greedy fashion using the agglomerative Information Bo#tk
method [9]. The algorithm is initialized with the trivialudtering
of each point considered as a separate clugiér¢lusters). At each
step of the algorithm a cluster merge is performed such Heairnt-
formation loss with respect to the relevance variables ismim.
The loss of mutual information at each step is given by a Jense
Shannon divergence which is straightforward to computeftbe
posterior distributiom(y|z). The optimal number of clusters are se-
lected based on a threshold on the Normalized Mutual Infooma

(NMI) fégf/)) The complete algorithm is summarized as follows.

1 Feature extraction from the beamformed audio.

2 Speech/non-speech segmentation and rejection of natispe

frames.
D=250ms i.e., sek.

variance matrix for each segment i.e., ¥et

5 Estimation of conditional distributiop(y|x).

C
6 alB clustering and model selection to determine the speake

clusters (Diarization output)
Full details can be found in [6].

3. MULTIPLE FEATURE COMBINATION

The feature combination is performed in the relevance bbgia
space, i.e, using the posterior probabilitigg|x). For each feature
streamF;, a background GMMM; is estimated, and a posterior
distribution p(y| M, z) calculated. The combined distribution is
then calculated as:

p(ylz) = Zp(ylMu z)P; )

WhereP; is the feature weight corresponding8 feature stream
(>, Pi = 1). The combination is more robust to different dimen-
sionality or different statistics of the features, since ttombina-
tion happens at the posterior level rather than combinigdikeli-
hoods [7].

4. REALIGNMENT

The alB algorithm produces clusters that are aligned to thag-
aries of the initial segments. Those boundaries can begreslius-
ing the speaker models to further improve the performancggi- T
cally an HMM/GMM based realignment is performed. The optima
speaker segmentatian,, is obtained as:

Copt = arg mcin Z — log(be, (xt)) - log(actct+1) (3)
t

Wherec; denotes the cluster ID at time indéxb., (.) the emission
probability (GMM) of clusterc; andac, ., the transition probability
from clustere; to clusterc;. In case of multiple feature streams, the
log likelihood log(be, (z+)) is computed as the linear combination
of likelihoods of individual GMM models. This might not be @p-
priate for streams with different number of features (e.feknt
number of delays as estimated from different microphones).
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Fig. 1. speaker error of the development data as a function of TDOA
weight in MFCC+TDOA feature combinatioPf, fcc = 1 — Praoa)

Uniform segmentation of speech in chunks of fixed size

In [5] we had proposed an alternative algorithm that depends

Estimation of a Gaussian component with shared diagoral caonly on posterior distribution of the relevance variablElse optimal

speaker segmentation is computed as:
opt = argmin Y KL(p(Y|z1)|[p(Y]er)) —log(aerery) (4)
t

Wherep(Y'|z.) is the posterior distribution of the relevance vari-
ables at a given speech segmepandp(Y |c;) is the posterior dis-
tribution of relevance variables in a given clusterlt can be shown
that Equation 4 optimizes a special case of IB criterion aitinin-
imum duration constraint [5]. The optimization is solveddyyEM
algorithm that operates in the posterior space. In case lifstneam
diarization, the combined posteriors estimated as in Egu& are
used for the realignment thus avoiding issues with log ililad
combination.

The entire diarization system (IB clustering, feature corab
tion and realignment )works in the space of relevance veasaénd
avoids the log-likelihood combination.

5. BASELINE MFCC AND TDOA FEATURES

The baseline system is based on the combination of MFCC and
TDOA features. We use the NIST RT06 evaluation data for mgeti
diarization task for evaluating the algorithm. The datas®tsists

of nine meetings recorded across different locations aadtimber

of channels and number of speakers vary across differertimgee
The data preprocessing and beamforming is performed Betm-
formlt [10] toolkit. The bug fixed version deamformit 2.2s used

for this purpose which provides different features compaoethose
used in [7]. We verified an improvement with the new beamfagni

in the MFCC based system as compared to what was reportef in [7

Diarization systems are evaluated using Diarization ERate
(DER). DER is the sum of speech/non-speech error ( missextbpe
and false alarm errors) and speaker errors. The same speerch/
speech segmentation is used across all the experimentstofethe
speech/non-speech errord$% in RT06 evaluation data. Hence
only the speaker error will be reported in all results.

Feature stream weight§P;} are optimized minimizing the
speaker error on a development data. The development data co
tains 10 meetings. Figure 1 represents speaker error ascaoiun
of TDOA weight. It can be seen that the function has a well de-
fined minimum atP;4,, = 0.3. Speaker error obtained on RT06
evaluation data is reported in Table 1 and is equallt6%.



Table 1. Baseline MFCC+TDOA speaker erroP,, fcc, Pidoa) =

(0.7,0.3)
Feature| no realgn| hmm/gmm| K g
mfcc+tdoa 11.6 10.7 9.9 |
Table 2. Evaluation data results — The minimum obtained from de- P~ T

velopment data i8.3% worst than the oracle.

Weight selection| spkr err
scheme
Devdata tun. 10.1 !
Oracle 6.8 ‘ g

The speaker boundaries can be realigned using an HMM/GMM
system or a KL divergence based system [5]. Table 1 repstdtse
with both realignments; the KL based realignment outpenfothe
HMM/GMM realignment by0.8%. Thus the baseline system used
for this study has a speaker error equad 1@%.

Fig. 2. Speaker error as a function of feature stream weights and
fdlp features in the neighborhood of global minimum. (Topee
6. COMBINATION OF FOUR FEATURES Piaoa = 0.25 (Bottom) FixedPya, = 0.05. Ppyjee = 1= (Prdgoa+

. . Prs + Praip)
In addition to conventional MFCC and TDOA features, we explo

two feature sets that are extracted from long time windows:

e Modulation Spectrum Features— The modulation spectrum ) i ]
(MS) represents the slowly varying components of the shorfWo. Figure 2 illustrates the speaker error as the functiotwo
term spectrum. The critical band energies trajectoriedilare feature stream weights in a local neighborhood of the glaal

tered using a gaussian low pass filter and the resultingrestu imum. It can be observed that the speaker error is a highly non
are decorrelated [4]. smooth function with no well defined minima unlike in the cage

MFCC+TDOA features. Note that the speaker error variesidens

e FDLP Features — Frequency Domain Linear Prediction ably (up to3%) in the nine nearest points itself (Table 3
(FDLP) provides a smoothed temporal envelope [11]. FDLP y (up 0 P ( )

is performed over the sub-bands of the audio signal over a In order to avoid points with considerable variation of dfgza
large time window (typically 1 second) that yields a para-error in the neighborhood, we proposed to use a smoothetwers
metric model of the temporal envelope. Short term temporaPf the speaker error. This would force the algorithm to deflea-
energy integration is performed over the smoothed envelopdure weights in a region that has low speaker error as cordgare
and the short term spectral energies are converted to shod isolated minima with lot of variation in the neighborhocthe
term cepstrum like features. A gain normalization step inoriginal speaker error function is convolved with a multiginsional
the linear prediction helps to remove the artifacts from the

reverberrent speech. Details can be found in [12].

Let us first, consider the four features combination witheut
alignment. As before, the weights are tuned on the developdsa ~ Table 3. Speaker error in the nine nearest points of the global min-
and the minimum is achieved fdiP,, ce, Prdoas Prmss Praip) = ima (denoted in bold). Other entries are at the same dist@ore
(0.70,0.25,0.00,0.05). Most of the weight is concentrated on the minima
MFCC and TDOA features; FDLP features receive a very small
weight and MS features are discarded. The results obtainédeo Prgee | Piaoa | Prms | Praiy | SPKrerr
evaluation data are reported in Table 2 (first line). The &iteams 0.65 0.25 | 0.00 | 0.10 114
reduce the speaker error froii.6% to 10.1%. However, if we 0.65 0.25 | 0.05 | 0.05 10.8
consider the lowest possible speaker error by oracle wsglhttion 0.65 0.30 | 0.00 | 0.05 8.5
(second line of Table 2 ), we can see that weights obtained fro 0.70 0.20 | 0.00 | 0.10 10.6
tuning perform worse by more tha¥ absolute. This shows that 0.70 0.20 | 0.05| 0.05 110
weight selection on the development data is not effectineortier 0.70 0.25 | 0.00 | 0.05 8.3
to understand how the speaker error varies on the develdpiaen 0.70 0.25 | 0.05| 0.00 113
let us study the error as a function of the feature weightse Th 0.70 0.30 | 0.00 | 0.00 8.3
four weights (P fec, Prdoas Pms, Praip) lie in a three dimensional 0.75 0.25 | 0.00 | 0.00 9.0
subspace X", P; = 1). The speaker error can be visualized by 0.75 0.20 | 0.00 | 0.05 110
fixing one of the weights and plotting as a function of the othe




Table 4. Comparison of speaker error : selecting the feature stream

7. CONCLUSIONS

weights based on minimum value of speaker error Vs minimump, this work we proposed a speaker diarization system tftat po-

value of smoothed speaker error

using spkr err

smoothed spkr er

validation data
evaluation data

10.9
10.1

7.5
8.3

rates four feature streams extending previous work on |Bdas

arization. In addition to the conventional MFCC and TDOAtigas,

we combine two other features: modulation spectrum and FDLP
When the weights are estimated according to minimum speaker

error on the development dataset, the four stream improyéssBo

absolute on the MFCC+TDOA baseline. However speaker efror o

Table 5. Meeting wise speaker error for two as well as four featurefoUr Stream system is not a smoothly varying convex funcistin
stream combination with and without KL realignment

mfcc+tdoa four feats
Meeting | no realgn| realgn | norealgn| realgn
CMU_20050912-0900 7.6 5.7 9.0 5.9
CMU_20050914-0900 4.8 3.1 4.4 3.1
EDI_20050216-1051 7.1 51 55 3.9
EDI_20050218-0900 18.6 15.7 7.4 5.5
NIST_20051024-0930 5.5 3.9 3.9 3.2
NIST-20051102-1323 25 1.6 4.1 2.8
TNO_20041103-1130 28.3 26.5 26.1 24.4
VT_20050623-1400 22.0 20.4 6.2 4.1
VT_-20051027-1400 12.1 11.0 8.4 8.1
ALL 11.6 9.9 8.3 6.7

case of two features. If the speaker error on developmesat idat
smoothed with a gaussian filter before weight selectionspieaker
error goes from 0.1% to 8.3%. After the KL realignment, the four
feature system achieves an error equab.tds i.e. 30% relative
improvement over the MFCC+TDOA baseline.

According to the authors’ best knowledge, this is the firgt-su
cessful attempt in combining more acoustic features beytbed
MFCC and TDOA features in speaker diarization.
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Gaussian given by:

e~ @) 1) ), fn] < 1

0, otherwise

gll, m,n]

The filter is a low pass filter centered at origin. The filter putes a
weighted average of the center point with its 26 nearesthheigrs

in the three dimensional input space. The weights are thesech
as the point where the smoothed speaker error is minimurmgusi
such an approach, the weights &, tcc, Prdoa; Pms, Prdaip) = 4]
(0.50,0.20, 0.05, 0.25) which are quite different from the global
minimum. We use a separate validation data (independentotof b
development and evaluation data) to verify the effectigsnef the
approach. The validation data consists of a s&tmieetings used in
NIST evaluations. The results are present in Table 4 (fing) liUs-
ing the smoothed version of speaker error resultsinté absolute
improvement in the validation data (first line). When tesbedthe
evaluation data, this approach produces an improvemeng#f ab-
solute over unsmoothed speaker error. Furthermore thénebtar-
ror 8.3% is only 1.5% worst then the oracle error. Also note that this
smoothing does not alter the weight selection in case of diselme
MFCC+TDOA feature combination for which the minimum stays i
the same point. (8]

After the feature combination and clustering, a KL realign- q
ment is performed to refine the speaker boundaries. Thegreali
ment improves the speaker error consistently across altingse
by 1.6%. Table 5 provides meeting-wise results for the baselingig;
(MFCC+TDOA) and for the four features with and without regali
ment. [11]

In summary before realignment, the four feature streams sys
tem outperform the MFCC+TDOA baseline By3% absolute (from
11.6% to 8.3%). After realignment the improvement 2% abso-
lute (from9.9% to 6.7%) i.e. 30% relative better then the baseline.

(6]

(12]

Idiap and ICSI for their help with setting up the system.
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