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1Idiap Research Institute, 1920, Martigny, Switzerland
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ABSTRACT

Speaker diarization for meetings data are recently converging to-
wards multistream systems. The most common complementary fea-
tures used in combination with MFCC are Time Delay of Arrival
(TDOA). Also other features have been proposed although, there
are no reported improvements on top of MFCC+TDOA systems. In
this work we investigate the combination of other feature sets along
with MFCC+TDOA. We discuss issues and problems related to the
weighting of four different streams proposing a solution based on a
smoothed version of the speaker error. Experiments are presented on
NIST RT06 meeting diarization evaluation. Results reveal that the
combination of four acoustic feature streams results in a30% rela-
tive improvement with respect to the MFCC+TDOA feature combi-
nation. To the authors’ best knowledge, this is the first successful
attempt to improve the MFCC+TDOA baseline including other fea-
ture streams.

Index Terms— Speaker diarization, Information bottleneck
principle, Feature combination

1. INTRODUCTION

Speaker diarization is an unsupervised learning paradigm with the
objective of finding“who spoke when”in a given audio recording.
Both the number of speakers and speech segments corresponding to
each speaker need to be learnt. Conventional systems use short term
spectral features such as mel frequency cepstral coefficients (MFCC)
and follow an agglomerative approach for this purpose [1].

Recently diarization systems are converging to a multistream ap-
proach. Various other features that carry complimentary information
have been explored in combination with MFCC features. In case of
data recorded with Multiple Distance Microphones (MDM), Time
Delay of Arrivals (TDOA) of the sound in different microphones
carry information about the location of the speaker [2]. Most of the
state of the art systems in speaker diarization uses a combination of
MFCC and TDOA features. Different other features includinglong
term and prosodic features were used in combination with MFCC to
improve the diarization performance [3, 4]. However according to
the authors’ best knowledge there was little attempt to incorporate
additional features to MFCC+TDOA baseline.

Conventional systems use an ergodic HMM where each speaker
is modeled using an HMM state with minimum duration. State
emission probabilities are modeled with Gaussian Mixture Models
(GMM). In case of multistream diarization, separate modelsare built
for individual feature streams. The feature combination isperformed
by a linear combination of the two individual log likelihoods. How-
ever, different feature streams possess very diverse statistical prop-
erties. For example, the dimension of TDOA features dependson
number of microphones used, which varies across meeting rooms.

This could lead to two different issues. Different featuresmight re-
quire GMMs of different complexities (number of gaussians). In
addition the dynamic range of individual feature streams could be
totally different. Thus using a linear combination of log-likelihoods
may not be appropriate with multiple feature streams (see [5] for
details).

This study builds on our recent works [5], [6], [7]. In [6] we pro-
posed a non-parametric approach based on Information Bottleneck
principle for speaker diarization. The system was then extended to
multiple streams (MFCC+TDOA) [7] and later a Kullback-Leibler
divergence based realignment was introduced [5]. Such a system
solely depends on posterior probability distributions of each feature
stream and avoids combination of GMM log-likelihoods.

In this work, we extend this system beyond the combination
of two sets of acoustic features streams. We investigate theuse of
cepstral like features obtained from frequency domain linear predic-
tion(FDLP) and modulation spectrum(MS) features in addition to
the conventional MFCC and TDOA. The paper examines issues in
estimating the feature weights of four different streams. In partic-
ular we show that, when more than two acoustic streams are used,
the Diarization Error becomes a non-smooth function of the weights
without a well defined minimum. We investigate a solution to over-
come the problem. The paper is organized as follows. The nextsec-
tion introduces speaker diarization based on Information Bottleneck
(IB) principle. Section 3 describes the feature combination scheme.
Performing a speaker realignment with multiple feature streams is
described in Section 4. Section 5 describes the baseline feature
combination of MFCC and TDOA features. Section 6 investigates
the feature combination of four acoustic features. The paper is con-
cluded in Section 7.

2. IB BASED DIARIZATION

Consider a set of speech segmentsX = {x1, . . . , xT } obtained
from uniform linear segmentation of an input audio stream, to be
clustered into set of clustersC = {c1, . . . , cK}. Let Y be a set
of relevance variables, that contain relevant informationabout the
problem. Motivated by the wide success of GMM for speaker recog-
nition, we had proposed to use the components of a background
GMMs as the set of relevance variables for speaker diarization [6].
According to IB principle the best clustering compresses the input
variables while preserving as much mutual information as possible
about the relevance variablesY [8]. This corresponds to the mini-
mization of:

F = I(X,C) − βI(C, Y ) (1)

Whereβ is a Lagrange multiplier. The clustering operates using
probabilitiesp(y|x) that are obtained using Bayes’ rule. This crite-
rion is optimized with respect to the stochastic mappingp(c|x) using



iterative optimization techniques [8].
The optimization of the objective function (1) can be done in

a greedy fashion using the agglomerative Information Bottleneck
method [9]. The algorithm is initialized with the trivial clustering
of each point considered as a separate cluster (|X| clusters). At each
step of the algorithm a cluster merge is performed such that the in-
formation loss with respect to the relevance variables is minimum.
The loss of mutual information at each step is given by a Jensen-
Shannon divergence which is straightforward to compute from the
posterior distributionp(y|x). The optimal number of clusters are se-
lected based on a threshold on the Normalized Mutual Information
(NMI) I(C,Y )

I(X,Y )
. The complete algorithm is summarized as follows.

1 Feature extraction from the beamformed audio.

2 Speech/non-speech segmentation and rejection of non-speech
frames.

3 Uniform segmentation of speech in chunks of fixed size
D=250ms i.e., setX.

4 Estimation of a Gaussian component with shared diagonal co-
variance matrix for each segment i.e., setY .

5 Estimation of conditional distributionp(y|x).

6 aIB clustering and model selection to determine the speaker
clusters (Diarization output)

Full details can be found in [6].

3. MULTIPLE FEATURE COMBINATION

The feature combination is performed in the relevance variable
space, i.e, using the posterior probabilitiesp(y|x). For each feature
streamFi, a background GMMMi is estimated, and a posterior
distribution p(y|Mi, x) calculated. The combined distribution is
then calculated as:

p(y|x) =
X

i

p(y|Mi, x)Pi (2)

WherePi is the feature weight corresponding toith feature stream
(
P

i
Pi = 1). The combination is more robust to different dimen-

sionality or different statistics of the features, since the combina-
tion happens at the posterior level rather than combining log likeli-
hoods [7].

4. REALIGNMENT

The aIB algorithm produces clusters that are aligned to the bound-
aries of the initial segments. Those boundaries can be realigned us-
ing the speaker models to further improve the performance. Typi-
cally an HMM/GMM based realignment is performed. The optimal
speaker segmentationcopt is obtained as:

copt = arg min
c

X

t

− log(bct(xt)) − log(actct+1
) (3)

Wherect denotes the cluster ID at time indext, bct(.) the emission
probability (GMM) of clusterct andacicj

the transition probability
from clusterci to clustercj . In case of multiple feature streams, the
log likelihood log(bct(xt)) is computed as the linear combination
of likelihoods of individual GMM models. This might not be appro-
priate for streams with different number of features (e.g. different
number of delays as estimated from different microphones).
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Fig. 1. speaker error of the development data as a function of TDOA
weight in MFCC+TDOA feature combination (Pmfcc = 1−Ptdoa)

In [5] we had proposed an alternative algorithm that depends
only on posterior distribution of the relevance variables.The optimal
speaker segmentation is computed as:

copt = arg min
c

X

t

KL(p(Y |xt)||p(Y |ct)) − log(actct+1
) (4)

Wherep(Y |xt) is the posterior distribution of the relevance vari-
ables at a given speech segmentxt andp(Y |ct) is the posterior dis-
tribution of relevance variables in a given clusterct. It can be shown
that Equation 4 optimizes a special case of IB criterion witha min-
imum duration constraint [5]. The optimization is solved byan EM
algorithm that operates in the posterior space. In case of multistream
diarization, the combined posteriors estimated as in Equation 2 are
used for the realignment thus avoiding issues with log likelihood
combination.

The entire diarization system (IB clustering, feature combina-
tion and realignment )works in the space of relevance variables and
avoids the log-likelihood combination.

5. BASELINE MFCC AND TDOA FEATURES

The baseline system is based on the combination of MFCC and
TDOA features. We use the NIST RT06 evaluation data for meeting
diarization task for evaluating the algorithm. The datasetconsists
of nine meetings recorded across different locations and the number
of channels and number of speakers vary across different meetings.
The data preprocessing and beamforming is performed withBeam-
formIt [10] toolkit. The bug fixed version ofBeamformIt 2.2is used
for this purpose which provides different features compared to those
used in [7]. We verified an improvement with the new beamforming
in the MFCC based system as compared to what was reported in [7].

Diarization systems are evaluated using Diarization ErrorRate
(DER). DER is the sum of speech/non-speech error ( missed speech
and false alarm errors) and speaker errors. The same speech/non-
speech segmentation is used across all the experiments. Thetotal
speech/non-speech error is6.6% in RT06 evaluation data. Hence
only the speaker error will be reported in all results.

Feature stream weights{Pi} are optimized minimizing the
speaker error on a development data. The development data con-
tains 10 meetings. Figure 1 represents speaker error as a function
of TDOA weight. It can be seen that the function has a well de-
fined minimum atPtdoa = 0.3. Speaker error obtained on RT06
evaluation data is reported in Table 1 and is equal to11.6%.



Table 1. Baseline MFCC+TDOA speaker error(Pmfcc, Ptdoa) =
(0.7, 0.3)

Feature no realgn hmm/gmm kl
mfcc+tdoa 11.6 10.7 9.9

Table 2. Evaluation data results – The minimum obtained from de-
velopment data is3.3% worst than the oracle.

Weight selection spkr err
scheme

Devdata tun. 10.1
Oracle 6.8

The speaker boundaries can be realigned using an HMM/GMM
system or a KL divergence based system [5]. Table 1 reports results
with both realignments; the KL based realignment outperforms the
HMM/GMM realignment by0.8%. Thus the baseline system used
for this study has a speaker error equal to9.9%.

6. COMBINATION OF FOUR FEATURES

In addition to conventional MFCC and TDOA features, we explore
two feature sets that are extracted from long time windows:

• Modulation Spectrum Features– The modulation spectrum
(MS) represents the slowly varying components of the short
term spectrum. The critical band energies trajectories arefil-
tered using a gaussian low pass filter and the resulting features
are decorrelated [4].

• FDLP Features – Frequency Domain Linear Prediction
(FDLP) provides a smoothed temporal envelope [11]. FDLP
is performed over the sub-bands of the audio signal over a
large time window (typically 1 second) that yields a para-
metric model of the temporal envelope. Short term temporal
energy integration is performed over the smoothed envelope,
and the short term spectral energies are converted to short
term cepstrum like features. A gain normalization step in
the linear prediction helps to remove the artifacts from the
reverberrent speech. Details can be found in [12].

Let us first, consider the four features combination withoutre-
alignment. As before, the weights are tuned on the development data
and the minimum is achieved for(Pmfcc, Ptdoa, Pms, Pfdlp) =
(0.70, 0.25, 0.00, 0.05). Most of the weight is concentrated on
MFCC and TDOA features; FDLP features receive a very small
weight and MS features are discarded. The results obtained on the
evaluation data are reported in Table 2 (first line). The fourstreams
reduce the speaker error from11.6% to 10.1%. However, if we
consider the lowest possible speaker error by oracle weightselection
(second line of Table 2 ), we can see that weights obtained from
tuning perform worse by more than3% absolute. This shows that
weight selection on the development data is not effective. In order
to understand how the speaker error varies on the development data,
let us study the error as a function of the feature weights. The
four weights (Pmfcc, Ptdoa, Pms, Pfdlp) lie in a three dimensional
subspace (

P

i
Pi = 1). The speaker error can be visualized by

fixing one of the weights and plotting as a function of the other
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Fig. 2. Speaker error as a function of feature stream weights and
fdlp features in the neighborhood of global minimum. (Top) Fixed
Ptdoa = 0.25 (Bottom) FixedPfdlp = 0.05. Pmfcc = 1−(Ptdoa+
Pms + Pfdlp)

two. Figure 2 illustrates the speaker error as the function of two
feature stream weights in a local neighborhood of the globalmin-
imum. It can be observed that the speaker error is a highly non
smooth function with no well defined minima unlike in the caseof
MFCC+TDOA features. Note that the speaker error varies consider-
ably (up to3%) in the nine nearest points itself (Table 3).

In order to avoid points with considerable variation of speaker
error in the neighborhood, we proposed to use a smoothed version
of the speaker error. This would force the algorithm to select fea-
ture weights in a region that has low speaker error as compared to
an isolated minima with lot of variation in the neighborhood. The
original speaker error function is convolved with a multidimensional

Table 3. Speaker error in the nine nearest points of the global min-
ima (denoted in bold). Other entries are at the same distancefrom
the minima

Pmfcc Ptdoa Pms Pfdlp spkr err
0.65 0.25 0.00 0.10 11.4
0.65 0.25 0.05 0.05 10.8
0.65 0.30 0.00 0.05 8.5
0.70 0.20 0.00 0.10 10.6
0.70 0.20 0.05 0.05 11.0
0.70 0.25 0.00 0.05 8.3
0.70 0.25 0.05 0.00 11.3
0.70 0.30 0.00 0.00 8.3
0.75 0.25 0.00 0.00 9.0
0.75 0.20 0.00 0.05 11.0



Table 4. Comparison of speaker error : selecting the feature stream
weights based on minimum value of speaker error Vs minimum
value of smoothed speaker error

using spkr err smoothed spkr err
validation data 10.9 7.5

evaluation data 10.1 8.3

Table 5. Meeting wise speaker error for two as well as four feature
stream combination with and without KL realignment

mfcc+tdoa four feats
Meeting no realgn realgn no realgn realgn

CMU 20050912-0900 7.6 5.7 9.0 5.9
CMU 20050914-0900 4.8 3.1 4.4 3.1

EDI 20050216-1051 7.1 5.1 5.5 3.9
EDI 20050218-0900 18.6 15.7 7.4 5.5

NIST 20051024-0930 5.5 3.9 3.9 3.2
NIST 20051102-1323 2.5 1.6 4.1 2.8
TNO 20041103-1130 28.3 26.5 26.1 24.4

VT 20050623-1400 22.0 20.4 6.2 4.1
VT 20051027-1400 12.1 11.0 8.4 8.1

ALL 11.6 9.9 8.3 6.7

Gaussian given by:

g[l, m, n] = e
−(l2+m2+n2)

, |l|, |m|, |n| ≤ 1

= 0, otherwise

The filter is a low pass filter centered at origin. The filter computes a
weighted average of the center point with its 26 nearest neighbours
in the three dimensional input space. The weights are then chosen
as the point where the smoothed speaker error is minimum. Using
such an approach, the weights are(Pmfcc, Ptdoa, Pms, Pfdlp) =
(0.50, 0.20, 0.05, 0.25) which are quite different from the global
minimum. We use a separate validation data (independent of both
development and evaluation data) to verify the effectiveness of the
approach. The validation data consists of a set of8 meetings used in
NIST evaluations. The results are present in Table 4 (first line). Us-
ing the smoothed version of speaker error results in a3.4% absolute
improvement in the validation data (first line). When testedon the
evaluation data, this approach produces an improvement of1.8% ab-
solute over unsmoothed speaker error. Furthermore the obtained er-
ror 8.3% is only1.5% worst then the oracle error. Also note that this
smoothing does not alter the weight selection in case of the baseline
MFCC+TDOA feature combination for which the minimum stays in
the same point.

After the feature combination and clustering, a KL realign-
ment is performed to refine the speaker boundaries. The realign-
ment improves the speaker error consistently across all meetings
by 1.6%. Table 5 provides meeting-wise results for the baseline
(MFCC+TDOA) and for the four features with and without realign-
ment.

In summary before realignment, the four feature streams sys-
tem outperform the MFCC+TDOA baseline by3.3% absolute (from
11.6% to 8.3%). After realignment the improvement is3.2% abso-
lute (from9.9% to 6.7%) i.e. 30% relative better then the baseline.

7. CONCLUSIONS

In this work we proposed a speaker diarization system that incorpo-
rates four feature streams extending previous work on IB based di-
arization. In addition to the conventional MFCC and TDOA features,
we combine two other features: modulation spectrum and FDLP.

When the weights are estimated according to minimum speaker
error on the development dataset, the four stream improves by 1.5%
absolute on the MFCC+TDOA baseline. However speaker error of
four stream system is not a smoothly varying convex functionas in
case of two features. If the speaker error on development data is
smoothed with a gaussian filter before weight selection, thespeaker
error goes from10.1% to 8.3%. After the KL realignment, the four
feature system achieves an error equal to6.7% i.e. 30% relative
improvement over the MFCC+TDOA baseline.

According to the authors’ best knowledge, this is the first suc-
cessful attempt in combining more acoustic features beyondthe
MFCC and TDOA features in speaker diarization.
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