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ABSTRACT

Archaeologists often spend significant time looking at tra-
ditional printed catalogs to identify and classify historical
images. Our collaborative efforts between archaeologists
and multimedia researchers seek to develop a tool to re-
trieve two specific types of ancient Maya visual informa-
tion: hieroglyphs and iconographic elements. Towards that
goal we present two contributions in this paper. The first
one is the introduction and analysis of a new dataset of
3400+ Maya hieroglyphs, whose compilation involved man-
ual search, annotation and segmentation by experts. This
dataset presents several challenges for visual description and
automatic retrieval as it is rich in complex visual details.
The second and main contribution is the in-depth analysis
of the Histogram Of Orientation Shape Context (HOOSC),
and more precisely, the development of 4 improvements that
were designed to handle the visual complexity of Maya hi-
eroglyphs: open contours, mixture of thick and thin lines,
hatches, large instance variability, and a variety of internal
details.Experiments demonstrate that the adequate combi-
nation of our improvements to retrieve Maya hieroglyphs,
provides results with roughly 20% more precision compared
to the original HOOSC descriptor. Complementary results
with the MPEG-7 shape dataset validate (or not) the pro-
posed improvements, showing that the design of appropriate
descriptors depend on the nature of the shapes one deals
with.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; 1.4 [Image Pro-
cessing and Computer Vision|: Feature Measurement—
Feature representation, size and shape
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1. INTRODUCTION

One of the many ways in which computer vision and mul-
timedia retrieval can help improve the work of archaeologists
and curators is by developing a machine that can rank auto-
matically digital versions of historical materials according to
visual similarity. Such a tool will have many positive impli-
cations within the realm of Cultural Heritage, starting with
a significant decrease in the usual time spent looking manu-
ally at traditional printed catalogs (e.g., [16, 28]). This is in
particular the case for the understanding of pre-Columbian
cultures like the Maya, who developed highly sophisticated
writing and counting systems based on hieroglyphs. Our
collaborative efforts between archaeologists and multimedia
researchers seek to develop tools capable of efficiently re-
trieving two specific types of highly encoded visual informa-
tion: namely, Maya hieroglyphs (syllabic and word glyphs)
and Maya iconographic elements (Maya art). Specifically on
this paper, we deal with a subclass of the Maya hieroglyphic
system: that of syllables or syllabographs.

1.1 Our contributions

The first contribution of this paper is the introduction of
a new dataset of Maya syllabic hieroglyphs for automatic
visual analysis. This dataset has been collected by expert
manual identification, annotation, and segmentation of hi-
eroglyphs that appear in Maya inscriptions of the Mexican
territory, it has been generated by the National Anthropol-
ogy and History Institute of Mexico (INAH) through the
AJIMAYA project, and it has been complemented with a
few glyphs taken from other sources [16, 20, 28]. In total,
it comprises 24 positive syllabic classes containing 1200+
glyphs, and other 2100+ examples in a negative class. To
the best of our knowledge, this is the largest Maya syllabic
dataset ever analyzed with computer vision techniques.

The second and main contribution of this work is the im-
provement of the Histogram of Orientation Shape Context
(HOOSC) [23], a shape descriptor recently proposed to re-
trieve complex shapes such as Maya hieroglyphs. Similar
to traditional shape descriptors like the Shape Context [3]
(SC), the HOOSC takes as input a set of points. This ro-
bust descriptor combines the log-polar regional segmenta-
tion of the Shape Context with a distribution of orienta-
tions (HOG-like) description [7], and it has proven to work
well in retrieval tasks with small databases in the order of a
few hundred glyphs. Our improvements include: 1) a refor-



mulation of the input to be described, going from a set of
points sampled from the raw and typically thick contours of
the shape, to a set of points taken from thinned versions of
them. This addresses the problem of inaccurate description
that arises as a consequence of the rough lines often found
in Maya hieroglyphs that generate duplicate contours; 2)
traditionally, only a subset of points from the input is used
in the description to avoid expensive computations, in con-
trast we propose an efficient way to integrate the complete
set of points, leading to more robust descriptors while still
avoiding redundancy and high computing cost; 3) we in-
creased the discriminative power of the descriptor by using
only the most informative portion of the spatial context; 4)
as complement to the implicit position that the HOOSC al-
ready features, we included the explicit relative self-position
within the global shape of each described point.

We conducted several experiments to validate our im-
provements on the Maya syllabic dataset. Our results show
that their adequate combination results in better retrieval
performance, with an increment of approximately 20% of
average precision, in comparison with the original HOOSC
[23]. Complementary experiments with the MPEG-7 Core
Experiment CE-Shape-1 test set [12] allowed us to validate
which of the proposed improvements are suitable to describe
other shape data sources in function of the nature of the
shapes at hand.

1.2 TheMaya source

The pictorial collection we analyze is not a modern con-
struct, it was devised several hundred years ago by a now
extinct civilization: the ancient Maya culture. The Maya is
generally regarded as the epitome of ancient (pre-industrial)
civilizations in the Americas, with many of its achievements
comparable to those of the Old-World cultures that devel-
oped in Egypt, Greece, Rome, Sumer, and Babylon, to name
but a few. Of concern here are the Maya hieroglyphic writ-
ing and Maya visual narrative or iconography (a substrate
of Maya Art), which are often more sophisticated than its
Old-World counterparts.

Roughly outlined, the ancient Maya was one of the sev-
eral civilizations belonging to a cultural super-area called
Mesoamerica, which encompassed the major parts of what
are now the countries of Mexico, Guatemala, Honduras, Be-
lize, and El Salvador (see Fig. 1). The Maya culture began
to flourish during a chronological period called the Preclas-
sic (c.a., BC 2000 - 250 AD), in a region labeled as the Maya
lowlands, which encompassed an area roughly the same size
of modern Germany. Although their development was dif-
ferential according to region and speed, generally speak-
ing, their heyday is regarded to have occurred during the
subsequent Classic period (c.a., AD 250 - 900), and it was
then when their hieroglyphic writing and the highly encoded
iconographic imagery attained the levels of sophistication
and consistency that we can rightly regard as a coherent,
self-contained visual system, capable of conveying speech
and ideas with admirable precision, even when compared
with our “new-era” devices for information exchange: e.g.,
alphabets, syllabaries, graphic conventions, and so forth.

In a nutshell, any ancient script could be defined as a sys-
tem for the visual recording of information through signs
(graphemes) related in some way to the meanings (lexemes)
and sounds (phonemes) that conform any given speech [5].
Only briefly, we note here that linguists generally ascribe
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Figure 2: Examples of syllabographs: (a) ’a, and (b)
b’a; and logographs: (¢) KAB’, (d) SUUTZ’, and (e)
K’AHK’. Images from [16, 28].

the Maya writing system to the class of the so-called logo-
syllabic writing systems, to which a large number of other
ancient-world scripts belong, such as the Anatolian from
Syria, or the Hiragana from Japan. These writing systems
are primarily composed of two distinct categories of signs:
syllabographs and logographs. The former are visual signs
which encode only specific phonetic value (i.e., phonemes)
and almost always comprise a consonant-vowel or single as-
pirated vowel structure. On the other hand, logographs en-
code both sound and meaning (roughly equivalent to the
notion of “word-signs”), and the vast majority of them have
a consonant-vowel-consonant structure, noting that the em-
bedded vowel could be either simple or complex, thus mak-
ing possible forms like KAB’ (earth); SUUTZ’ (bat) and
K’AHK’ (fire). Fig. 2 shows as visual examples 2 syllables
and 3 logographs.

Currently, almost 1000 different glyphs (semantic classes)
have been identified, including both syllabographs and lo-
gographs. However, only 80% have been deciphered and are
readable today. Note that these semantic classes might be
represented with instances containing high level visual vari-
ability, which increments as the temporal and spatial gaps
increase. For the purpose of creating an image dataset with
the highest applicability for retrieval, and under the logic of
a progressing scheme, we decided to focus exclusively on syl-
labic signs reserving logographs for later stages, going from
relative simplicity towards increased complexity, which in
future work would ultimately lead to the retrieval of queries
performed over Maya iconographic elements. Thus, for the
set of glyphs herein presented, we reach 24 classes, rely-
ing on their higher frequency of occurrence over other syl-
labic signs, thus facilitating the labor of manual localization,
segmentation, extraction, and annotation by archaeologists;
and allowing to have enough material for experimentation.

1.3 Outline

The remaining of this paper is organized as follows. Sec-



tion 2 highlights some of the most recent related work. Sec-
tion 3 introduces the novel dataset used in this work. Section
4 describes the HOOSC and presents the improvements we
propose. Section 5 describes the protocol we followed to test
our method. In section 6 we present and discuss the results.
Finally, in section 7 we present our conclusions.

2. RELATED WORK

Retrieval from image and shape representations have been
approached in several ways. In [17] local viewpoint-invariant
features are computed for specific areas automatically de-
tected, providing robustness to image clutter, partial visi-
bility, occlusion, and changes in viewpoint or lighting con-
ditions. A review of shape representation and retrieval is
found in [31], where the authors compare descriptors which
mainly differ according to whether they describe contours or
regions, and according to the locality scope of the descrip-
tion.

Some works rely on the robust Shape Context descriptor
[3] and tackle the resulting set-to-set matching problem us-
ing linear programming optimization methods [32]. With
similar approach, shapes can be represented by sets of local
contour segments organized as trees, and used to perform
search of shapes based on a particle filtering framework [15].
Descriptive object shape models can be learned combining
long salient bottom-up contours [26], where a latent SVM
learning formulation tunes the scores of a many-to-one con-
tour matching approach used to deal with the random frag-
mentation that might occur in the contours. However, these
techniques might not be computationally efficient enough
when the set size increases as a consequence of dealing with
complex shapes. The generalized version of the Shape Con-
text explored in [18] uses quantized descriptors and local ori-
entation information, which results in faster retrieval imple-
mentations and obtains better results than the original SC.
In general, modeling objects by bags-of-visterms has proven
very efficient [21, 25, 29], even though some issues related
to the loss of spatial information arise with this represen-
tation. A bag-of-features approach able to retains spatial
information has been proposed recently in [6].

Skeletal shape representations have been also studied. In
[27], both the geometric and topological information of 3-
D objects is combined in the form of a skeletal graph, using
graph matching techniques to match and compare skeletons.
The shape recognition problem is also approached with a
graph matching algorithm in [1], based on object silhou-
ettes where geodesic paths between skeleton endpoints are
compared without considering the topological graph struc-
ture. Appearance-based object representations of local de-
scriptors are explored in [8, 19, 24] to describe shape im-
ages as visual vocabularies of boundary fragments. For in-
stance, in [8] a local segment network representation is used.
More recently, shape retrieval has been boosted with graph
techniques like local diffusion process [30] and graph trans-
duction [2], achieving very good retrieval results. However,
rather than dealing with shapes, these methods focus on re-
trieval of silhouettes with no internal details, and very often
with closed and well defined boundaries.

In the specific field of automatic visual analysis of histor-
ical and cultural datasets, the work in [4] investigates how
to formulate region-of-interest queries, and perform retrieval
with relevance feedback. In [13], a system to retrieve paint-
ings and photos of art objects using content and metadata

is presented. Description and retrieval of Chinese characters
has been broadly studied. For instance, the work in [14], de-
tects visual patterns and trends in image collections of an-
cient Chinese paintings, lending to a correct identification
of the artist style. In [33], Chinese calligraphy characters
are retrieved using contour shapes and interactive partial-
distance-map-based high-dimensional indexing that speeds
up the performance. Another interesting work in cultural
heritage is presented in [10], where artist identification is
achieved using wavelets that characterize brushstrokes of
several van Gogh paintings.

Finally, with an archaeological approach, a set of rules
such as single symmetry axis and morphology is used in
[9] to recognize a single polymorphic Mesoamerican sym-
bol by describing its variations as sets of discrete curves.
Previous works on description and retrieval of Mayan hiero-
glyphs achieved competitive results in small datasets up to
a few hundreds of glyphs [22, 23]. In particular, in [23] the
HOOSC descriptor is proposed and shown to be promising.

3. DATA

The complex manual process commonly followed by ar-
chaeologists to obtain digital versions of the hieroglyphs, and
the laborious manual search needed to rank them according
to visual similarity, are two of the main motivations to con-
duct this research. We found it relevant to present a brief
outline of how the data has been compiled and organized.
Namely, the overall process is as follows:

1. At archaeological sites, digital photographs of inscrip-
tions are taken during the night. Instances with vari-
ations in the illumination are gathered to achieve high
levels of detail (e.g., to study eroded inscriptions).

2. Line drawing are obtained by tracing the inner features
of the inscriptions on top of multi-layers photographs.

3. Manual segmentation, search, and identification of hi-
eroglyphs is done consulting existing glyphic catalogs.

4. Experts transcript manually the identified glyphs. i.e.,
map the phonetic value of each Maya sign into alpha-
betical conventions.

5. When needed, transliteration is performed to represent
ancient Maya speech into modern alphabetic forms.

6. Morphemes and lexemes are obtained through mor-
phological segmentation.

7. Grammatical analysis is done to indicate the function
of each of these elements.

8. Finally, the translation of ancient Maya text into a
modern target language is achieved, e.g., English.

Figure 3 shows the first and second steps of this process.
The goal of this work is to improve the third step of this
process. To that purpose, we collected a dataset which com-
prises 1270 Maya glyphs belonging to 24 syllabic classes,
plus 2128 extra glyphs that do not correspond to any of
the 24 classes and that are grouped in a negative class.
The glyphs have been gathered from different archaeological
sources, including the AJIMAYA project of INAH, the Macri
and Looper syllabic catalog [16]; the Thompson catalog [28];
and the website of the Foundation for the Advancement of



Figure 3: First two steps in the collection process.

Table 1: Thompson numbers, visual examples, and
sounds for the classes of the Maya syllabic dataset.
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Mesoamerican Studies, FAMSI [20]), generating what to our
knowledge is the largest dataset of Maya glyphs that has
been analyzed with automatic techniques.

As simple as it might sound, this task required non-trivial
work of archaeologists expert in Mayan iconography, who
spent several months looking manually for the images in
complex inscriptions. A dataset like this cannot be pro-
duced by non-trained annotators. Table 1 shows one visual
example of each positive class, along with their Thompson
number which traditionally is used as identifier, and their
syllabic value, i.e., their sound. Note that this dataset posits
many challenges in terms of visual complexity due to the
richness in internal details of its elements, their variability,
the fact that some of the classes might be visually similarity,
and that conversely some glyphs inside each class might not
be as similar as expected in visual terms.

The instances in this dataset correspond to glyphs that
often appear in inscriptions from 4 main subregions of the
Maya area (Petén, Usumacinta, Motagua, and Yucatdn),
and the participation of archaeologists in our team helped
validating the localization and segmentation of each instance
within the inscriptions. Finally, each glyph was manually
aligned to the orientation most commonly seen for its class.

We divided the dataset into two subsets. Approximately
80% of the glyphs from each class are in the first subset
(candidates, denoted by G¢), comprising 1004 instances and
leaving the remaining 266 glyphs (=20%) in the seconds

Il Candidates
I Queries

8
8

Number of Instances

a
g

0
T1 T17 T23 T24 T25 T59 T61 T82 T92 T102T103T106T110T116T117T126T136T173T178T181T229T501T534T671

Figure 4: 1270 glyphs distributed over 24 classes.
Number of candidates in blue and number of queries
in red. (Best viewed as pdf).

subset (queries, denoted by Gg). Fig. 4 shows the number
of glyphs in each class.

The dataset features many of the complex phenomena pre-
sented in Maya glyphs. For instances, the class T534 shown
in Table 1 is a “pars pro toto” version of T178 (i.e., a frac-
tion of the original sign containing diagnostic features that
account for the whole), both referring to syllable la. Since
we address the retrieval problem from a visual perspective
rather than semantic, and taking advantage of the availabil-
ity of data, we decided to treat them as two different classes.

The negative class was gathered from the same sources,
taking at random as many glyphs as possible. Note that
some of the glyphs in this class might be logographs.

4. OUR APPROACH

This section explains the HOOSC descriptor introduced
in [23], which is motivated to cope with several drawbacks
from the Shape Context (SC) [3] and Generalized Shape
Context (GSC) [18] descriptors. This section also explains
the approach used to perform retrieval using the HOOSC as
shape descriptor. Finally, we present the improvements we
propose to the HOOSC.

4.1 HOOSC descriptor

The HOOSC is a robust shape descriptor that combines
the log-polar regional formulation of the Shape Context (SC)
[3], with a distribution of orientations (HOG-like) descrip-
tion [7]. According to [23], for a given shape whose contours
are represented by a set P of N points, a HOOSC descriptor
hoosc; is a vector that describes the point p; as a function
of the distribution of the local orientations of the N — 1
remaining points.

This descriptor is computed on a log-polar space whose
origin (f = 0, p = 0) corresponds to the position of p;. The
remaining points are distributed over 12 angular intervals
accounting for a complete perimeter, and 5 distance intervals
(that we refer to as rings) covering in total as twice as the
average pairwise distance between every pair of points in the
shape P, thus resulting in a space of 60 log-polar regions as
shown in Fig. 5.

More precisely, let us denote by P the subset of points



Figure 5: Pivots (red) and points (blue) on the 60
log-polar regions (12 orientations and 5 rings) used
for shape description.

falling within the r-th region with respect to the point p;:
P] ={p; € P:p; #pi,(pj — pi) € R+ }, (1

where p; — p; means vector difference, and R, denotes one
of the 60 regions in the log-polar grid indexed by 7.

The region R, is further characterized by a histogram of
the local orientations in P;". Since the histogram is encoded
with 8 bins, the final hoose; descriptor has 480 dimensions *.
To take into account uncertainty in orientation estimation
and to avoid hard binning effects, the distribution of local
orientation is calculated through a kernel-based approach for
orientation density estimation. More precisely, the density
for angle 6 in the log-polar region R, of point p;, is denoted
by hi(0),

hi(0)= Y N(6;65,07), (2)

PEP]

where N (9; I, 02) is the value at angle 0 of a Gaussian of
mean u and variance o (0 = 10° works well in practice).
The actual value of the 8-bins orientation histogram in bin
[a, b] is obtained by integrating the density hj (f) within this
interval. Independent normalization of each of the 5 rings
is suggested in [23]. The final HOOSC descriptor hoosc; for
point p; is the concatenation of all the 60 histograms hj after
the normalization:

hoosc; = [hi, hi,... k. (3)

Note that SC and GSC [3, 18] compute either the number
of points in each region or its dominant local orientation,
resulting in 60 and 120 dimensional descriptors respectively.
However, previous attempts demonstrated that those meth-
ods are not as suitable to describe Maya hieroglyphs effec-
tively [22, 23].

4.2 Shaperetrieval with the HOOSC

Computing the HOOSC descriptor for every point of a
given shape can be thought of as describing the shape from

!Though both log-polar bins and orientation bins are com-
ponents of histograms, we use the terms region and bins to
refer to them respectively.

different perspectives, which allows for a robust representa-
tion of the shape. However, direct comparisons of shapes is
difficult because the number of points might differ from one
shape to other, and solving the point-to-point correspon-
dence problem is computationally expensive in some cases.

Often, the k-means algorithm is used to quantize the de-
scriptors and build a bag of visual words or visterms (bov),
such that shapes are more efficiently described. Two shapes
can be further compared by simply computing the distance
between their respective bov [18, 23]. To perform shape re-
trieval, we rank the bov of candidate-shapes according to
their L1 similarity with respect to the bov of a given query-
shape, as proposed in [23].

4.3 Improving the HOOSC descriptor

Several limitations arise as consequences of the HOOSC

construction (large dimensionality, redundancy in the de-
scription, the need to find a trade off between the number
of points for the description and computational efficiency),
and the nature of the considered shapes (thick and thin
lines, noisy shapes, hatched drawings, instance variability,
complex internal details). In the following, we explain four
improvements we propose to the HOOSC descriptor that
address these limitations and that are key to achieve good
retrieval results when dealing with Maya syllabic instances,
as shown in section 6.
Thinned contours as input. Computing HOOSC de-
scriptors for a set of points sampled along the raw contours
of a shape works well with silhouettes and shapes whose
internal details are not of crucial importance. This also per-
forms well when accurate contours can be easily extracted.
However, the Maya glyphs often present lines of different de-
grees of thickness, both along the contours as well as in their
internal details. Thus, the use of contour extractors some-
times generates “double” contours as shown in Fig. 6(a),
which can result in noisy descriptors and in an increase of
intra-class variability.

We propose the use of thinning algorithms [11] to prepro-

cess the binary shapes and estimate thinned versions of their
contours, as the one shown in Fig. 6(c). This often provides
more input to the HOOSC descriptor.
Pivot points. Instead of computing descriptors for each of
the points in the whole input set P, usually only a uniformly
sampled subset of points P’ is considered in order to make
the description computationally efficient [3, 23]. This means
that each point p} is described using all the other points in
P’ to compute the HOOSC histograms explained in section
4.1. Fig. 6(b) illustrates in red a subset of points sampled
from original set in 6(a). Attention is needed to ensure that
P’ is large enough to describe the shape in a reliable way.

We propose to compute HOOSC descriptors at each point
in the subset P’ as a function of all the points in the orig-
inal set P, rather than only on those belonging to P’. The
resulting descriptors will be more accurate, yet will remain
computationally efficient. We call the points in P’ “pivots”
to differentiate them from the points in P, which are simply
referred to as “points”. Fig. 6(d) shows in red the selected
pivots from the set of points in 6(c).

Spatial span of the descriptor. As shown in Fig. 5, the
most internal regions of the log-polar space usually include
very few points (sometimes only the point to be described
is in those regions). Also very often, many of the external
regions are empty or only contain points that are close to the



(b)
Figure 6: Different contour extractions and subsampling. (a) from raw contour. (b) subsampling of points
from the contours in (a). (¢) from thinned contours. (d) the pivots of (c¢) in red. (Best viewed as pdf).

inner boundary of the ring. These two facts might result in
several empty or noisy sections of the 480-D HOOSC vector
that can affect the representation accuracy.

Since the most discriminative information is found in the

intermediate spatial scope of the log-polar space, we use only
the 288 dimensions of the descriptor that correspond to rings
2, 3, and 4. This reduces the dimensionality of the vector
while improving its discriminative power.
Explicit spatial position. The HOOSC implicitly en-
codes continuous information about the position of each
pivot within the shape, e.g., few observations in the lower
regions of the log-polar grid means that the pivot point is
located towards the bottom of the image.

The descriptive ability of the HOOSC can be improved
further if the position is explicitly incorporated within the
descriptor. We concatenate the coordinates (x;,y;) of each
pivot p}, as two additional dimensions in the descriptor, thus
representing the relative position within the bounding box
encapsulating the glyph, i.e., within the interval [0,1]. With
this normalization, the distance between the information ex-
plained by the position of two descriptors weights approxi-
mately twice the distance between the information contained
in each of their rings.

5. EXPERIMENTS

In this section we describe the experimental protocol fol-
lowed to evaluate the improvements proposed in section 4.

5.1 Evaluated methods

On the syllabic Maya dataset, we evaluated the General-
ized Shape Context (GSC) [18] and five different variants of
the HOOSC descriptor: HOOSCO is the original method ex-
plained in section 4.1. The HOOSCI1 takes as input thinned
versions of the shape contours. The HOOSC2 describes the
subsampled pivot points with respect to the whole set of
points. HOOSC3 trims the log-polar space and only uses
intermediate spatial scope (i.e., only rings 2, 3, and 4). Fi-
nally in HOOSC4, the relative self-position is explicitly in-
corporated within the description. As a consequence of the
modifications proposed in section 4.3, the vectors named as
HOOSC3 and HOOSC4 only have 288 and 290 dimensions
respectively, instead of 480 as is the case of the HOOSCO,
HOOSC1, and HOOSC2. Table 2 summarizes the differ-
ences between the 5 evaluated methods, note that these im-
provements are key to achieve good retrieval performance.

5.2 Evaluation protocol

We followed [23] to decide the number of pivot points to
be described. With GSC and HOOSCO we use one tenth

Table 2: The 5 HOOSC variants evaluated in this
paper in the Maya syllabic dataset. Improvements
are highlighted in blue.

HOOSC | o0 1 2 3 4
Contours Raw Thin Thin Thin Thin
Pivots from | Pivots Pivots Points Points Points
Rings 1:5 1:5 1:5 2:4 2:4

self-position NO NO NO NO YES

of the number of points in the original raw contours, con-
straining it when possible to be at least 100 points, i.e.,
maz(10%,100). Sampling from thinned contours usually
results in less points than sampling from the double lines
generated by the raw contour. To avoid very sparse pivot-
sets when sampling from thinned contours, we increased the
sampling rate to maxz(20%, 150), obtaining on average the
same number of pivots per glyph than in the raw contour
cases: 161.7 and 169.5 respectively.

From the subset of candidate-glyphs (denoted G¢, see end
of section 3), we randomly selected 1500 descriptors (i.e.,
GSC or HOOSC#) in each of the 24 positive classes, and
using k-means clustered them into 2500 visual words. Then,
we estimated the bov of each glyph in G¢ and G, and per-
formed retrieval experiments to evaluate the retrieval preci-
sion. Our results are reported as Mean Average Precision
(mAP). More precisely, for each method mentioned in Table
2 we implemented the following protocol:

1. Compute the descriptors, (i.e., GSC or HOOSC#).

2. Learn a visual vocabulary, using only descriptors in
G of the 24 classes. This ensures that the vocabulary
does not contain information about the queries in Gg.

3. Describe every glyph in G¢ and G as a bov distribu-
tion over the resulting vocabulary.

4. Query from G¢ using each glyph of G, rank the re-
trieved vector, and compute the retrieval precision.

Additionally, we repeated the retrieval experiment adding
to G¢ all the glyphs of the negative class, and representing
them by their bov computed over the visual vocabulary. This
experiment is referred to as “24+1”.

5.3 Applicability to other datasets

As already stated, our research is mainly motivated by
the current needs of the archaeological community and the
complexity of the glyphs they need to deal with. That said,
to further asses which of our improvements are suitable and



Table 3: HOOSC variants evaluated in the A-
MPEG-7 dataset. Improvements are highlighted in

blue.
HOOSC | 0 5 6 7 4
Contours Raw Raw Raw Raw Thin
Pivots from | Pivots Points Points Points Points
Rings 1:5 1:5 2:4 1:5 2:4

self-position NO NO NO YES YES

Table 4: mAP for the 6 methods evaluated in the
Maya dataset: GSC, and HOOSCO to HOOSC4.

HOOSC
Classes ‘ GSC ‘ 0 1 9 3 4

24 ‘0.236 0.350 0.422 0.492 0.502 0.538

24 +1 10195 0.201 0.281 0.341 0.341 0.374

beneficial to describe and retrieve shape data of different na-
ture, we conducted experiments on the MPEG-7 Core Ex-
periment CE-Shape-1 test set [12]. This dataset comprises
70 classes of silhouettes with 20 instances each. We divided
it randomly at the same rate as the Maya dataset: 80%
Gc and 20% Ggq, and repeated the experimental protocol
described in section 5.2.

The original HOOSC descriptor was not designed to han-
dle neither rotation nor reflexion since hieroglyphs under
this transformation may have different meanings. Thus, we
started by manually aliging 283 instances (~20%) that were
either rotated or reflected, and tested the HOOSC variants
summarized in Table 3. In our experiments we refer to this
version of the data as A-MPEG-7. Later, we tested the best
HOOSC variant on the original unaligned MPEG-7 dataset.
To handle the rotation issue, we followed the same approach
used in [3], where the tangent vector at each pivot is treated
as the positive z-axis of the reference log-polar, thus result-
ing in a theoretical rotation invariant descriptor.

6. RESULTS

We present the results obtained with our improvements
on retrieval experiments with the Maya syllabic dataset. We
also show results of the generalization of these improvements
to retrieve common shapes, i.e., the MPEG-7 dataset.

6.1 Mayasyllabic glyphs.

The first row of results in Table 4 shows the mean Av-
erage Precision (mAP) of each method evaluated using the
24 positive classes. The original method (HOOSCO) obtains
a precision 12% higher than the GSC in absolute terms.
Changing the input to be thinned contours makes the de-
scription more robust and leads to better retrieval results
(HOOSC1). The mAP of HOOSC2 shows that taking into
account all the points for the description improves the re-
sults. We also notice that computing the descriptors at the
complete set of points P, does not provide substantial im-
provements (results not shown). When we trim the HOOSC
to only its intermediate distance scope (rings 2, 3, and 4)
as in the case of the HOOSC3, the resulting descriptors are
shorten while leading to a slightly higher precision. Finally,
the explicit addition of the self-position (HOOSC4) allows
for a mAP result of 0.532, for a total improvement of almost
20% in absolute terms with respect to the original HOOSC.

The classes might vary in terms of size and visual com-
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Figure 7: mAP precision vs standard recall for the
whole collection (dashed line), plus the correspond-
ing results for the 5 classes with highest average pre-
cision and the three with lowest average precision.

plexity. We present in Fig. 7 the per-class average precision
AP versus the standard recall. These curves correspond to
the 5 classes with the highest AP and the 3 with the lowest
AP. Although class T117 has very few instances (see Fig.
4), it is the one with highest average precision. This is be-
cause it contains unique features that are not shared with
any other class, such as its vertical orientation and the cir-
cles in the right hand side. Similar trends occur with classes
T534 (inverted face), T229 (one circle in a superior section,
and some circles in a vertical arrangement on the left hand
side), T59 (concentric circles and quasi parallel lines), and
T501 (circles and lines in specific internal regions).

The curve of class T136 degrades relatively fast because its
instances are often confused with class T126 (Table 5). We
observed a similar behavior with class T24 which is confused
with classes T1, T17, and T23. In the case of class T106, the
high variability among their instances, which could be split
into two visual subclasses, results in a relative low precision.
Despite the relative low precision for few classes, note that
on average the precision is acceptable as shown in the dashed
line in Fig. 7, and in the examples of Table 5.

Finally, the second row of results in Table 4 presents the
mAP when the 2128 elements in the negative class are in-
corporated within the pool G¢. Note that the degrada-
tion roughly follows the same trend as before, keeping the
method with our improvements as the best one in both cases.

6.2 Visual retrieval machine.

One of the long term objectives of our research is the im-
plementation of an accurate visual retrieval system for Maya
hieroglyphs. This tool will allow archaeologists to quickly
search in large corpus for instances of visual queries. Fig. 8
shows an example of the preliminary version of this system.
When such a tool is further improved, it will ameliorate
the amount of time invested by archaeologists in manual
searches, it also will help in the training of scholars learn-
ing about the Maya writing system. A video demo of this
preliminary tool is available in the suplementary material.

6.3 Resultson the MPEG-7 dataset.

Previous methods tested on this dataset for retrieval tasks



Table 5: Retrieval results. The first and second columns show the name of each class and one random query,
followed by its Top 15 retrieved candidate-glyphs in ascending order from left to right. Relevant glyphs are
enclosed in a gray square.
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Figure 8: The segmented instances that are most
similar to a selected glyph are retrieved from a
database (Best viewed as pdf).

Table 6: mAP and bes for the methods evaluated in
the A-MPEG-7 dataset.

HOOSC
Classes ‘ GSC ‘ 0 4 5 6 -
0.849 0.867

mAP | 0.813 0.848 0.790 0.852
bes 0.882 0.905 0.848 0.908 0.906 0.918

are compared via the Bull’s eye score (bes) [2], we present
our results in terms of both mAP and bes. Table 6 shows
the results for the GSC and the evaluated variants of the
HOOSC on the A-MPEG-7 dataset.

The HOOSC4 which uses our 4 improvements and that
works the best with the Maya hieroglyphs does not perform
as well with the MPEG-7 dataset. The reason is due to
two factors: a) as these shapes are dominantly filled and
clean convex silhouettes with very well defined boundaries,
the morphological thinning transformation results in a loss
of information and in descriptors with lower discriminative
power. For these shapes, directly sampling the descrip-
tors from the raw contours produces better results as shown
with the HOOSC5 to HOOSCY in table 6; b) unlike to the
Maya hieroglyphs, where using the 5 rings (the whole spa-
tial scope) adds noise to the description, using the 5 rings
with the MPEG-7 silhouettes does not harm the description
and the retrieval performance remains competitive as shown
by HOOSC5 and HOOSC6. We can see that computing de-
scriptors at pivots with respect to the whole set of points,
and incorporating the relative self-position in the descriptor
provide good results (HOOSCT).

Finally as explained in section 5.3, we incorporated ro-
bustness to rotation and experimented with the original un-
aligned shape instances achieving results of 0.733 of mAP
and 0.811 of bes with the HOOSC7. Examples of this ex-
periment are shown in Table 7, we can see that while ro-
tated instances are well retrieved, the HOOSC is not robust
to reflected shapes yet. It is important to mention that the
quality of the hieroglyphs varies drastically due to the na-
ture of the documents from which they are extracted. Thus,
some improvements of the HOOSC descriptor (thinning and
using only rings 2, 3, 4) are specifically designed to deal
with noise (e.g., due compression). In contrast, the MPEG-
7 shape dataset is cleaner.

7. CONCLUSIONS

Table 7: 15 queries randomly chosen from the
MPEG-7 dataset and their corresponding Top 7 re-
trieved candidates via the HOOSC7 method.
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We have compiled a new digital set of Maya hieroglyphs
that comprises 3400+ instances distributed over 24 positive
and 1 negative classes. This dataset presents several chal-
lenges for automatic visual description, and to the best of
our knowledge is the largest one that has been analyzed with
automatic tools.

We analyzed the Histogram Of Orientation Shape Con-
text (HOOSC) descriptor with a set of retrieval experiments
of Maya hieroglyphs. We proposed four improvements to
the descriptor that allow for better retrieval results, roughly
achieving 20% absolute improvement in terms of retrieval
precision compared to the original HOOSC descriptor. Over-
all, our results demonstrate that relevant elements are re-
trieved first for most of the cases, and that only a few of
them fail, either because of their intra-class variability or
because of the high visual similarity across some classes. To
validate the generalization of our improvements, we evalu-
ated them on a general shape dataset, the MPEG-7 dataset.
We found that two out of these four improvements proposed
to describe complex shapes are also suitable to describe con-
vex and clean silhouettes. Although the HOOSC was not
designed to handle rotations, we found that this feature is
easy to incorporate. Future work is still required to provide
the HOOSC descriptor with robustness against reflection.

Overall, we believe that the proposed descriptor is suit-
able for general shapes and that it will be able to handle
other shape datasets, to the condition that the right combi-
nations of the options presented here is used, depending on
the target shapes. We think that our results will motivate
its implementation into several systems to support queries of
scholars in archaeology and, in the long term, from general
audiences like visitors to museums.
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