PUBLISHED IN THE INT. CONFERENCE ON MULTIMEDIA AND EXPOSITION (ICME), AMSTERDAM, JULY 2005.

EVALUATION OF MULTIPLE CUE HEAD POSE ESTIMATION ALGORITHMS
IN NATURAL ENVIRONEMENTS

Sileye O. Ba and Jean-Marc Odobez
{ba, odobez} at idiap dot ch
IDIAP Research Institute and Ecole Polytechnique Federale de Lausanne (EPFL)

ABSTRACT

Head pose estimation is a research area which has many applica-
tions, e.g. in human computer interfaces design or in the analysis
of people’s focus-of-attention. The paper addresses the issue of
head pose estimation, and makes two contributions. First it intro-
duces a database of more than 2 hours of video with head pose
annotation involving people engaged in office activities or meet-
ing discussion. The database is publicly available. The second is
an algorithm which couples tracking and head pose estimation in a
mixed-state particle filter. The approach combines the robustness
of color-based tracking by exploiting skin head/face models with
the localization accuracy of texture-based head models, as demon-
strated by the reported experiments.

1. INTRODUCTION

The automatic analysis of the gestures, activities and behaviour
of people constitutes an emerging research field in computer sci-
ence. It can rely on the extraction of many person-oriented infor-
mation, such as their localization, the localization of their limbs, or
their speaking activity. In particular, the visual focus-of-attention
(FOA) plays an important role in the recognition of people activity
or the understanding of non-verbal behaviour in human interac-
tions. In principle, the FOA should be estimated from a person’s
gaze. However, in the absence of high-resolution images of faces,
which prevents from the analysis of eyes orientation, the head pose
can be employed as a surrogate.

A large amount of head pose algorithms have been proposed
in the past. However, in most cases, algorithms are evaluated ei-
ther qualitatively [1] on some sample videos, or quantitatively but
on static images (e.g. [2, 3, 1]). There are several exceptions (e.g.
[4]), but unfortunately, no data has been made publicly available.
Moreover, in many occasions, the recorded sequences involve peo-
ple performing constrained head motions in front of the camera, a
situation which does not reflect the whole variety of natural head
attitudes encountered in real environements. In this paper, we in-
troduce a video database with 3D head pose ground-truth which
is publicly available at http://mmm.idiap.ch/HeadPoseDatabase/.
The videos depict people engaged in either some office activity,
or in a meeting discussion. The ground-truth has been obtained
by exploiting the output of magnetic flock-of-birds (FOB) sen-
sors attached to people’s head. We believe that the use of com-
mon databases is important to evaluate and compare different al-
gorithms, in order to have a better understanding of them, and hope
that our database will contribute to such goals.

The second contribution of the paper is an algorithm that per-
forms jointly head tracking and pose estimation, exploiting both
texture and skin information. Most of the existing work for head
tracking and pose estimation defines the task as two sequential and
separate problems: the head is tracked, its location is extracted and
then used for pose estimation [2, 4, 5]. As a consequence, the es-
timated head pose totally depends on the tracking accuracy. In-
deed, it has been showed in the past [2] that head pose estimation
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is very sensitive to head location. Hence, the above formulation
of the task misses the fact that knowledge about head pose could
be used to improve head modeling and thus improve tracking ac-
curacy. Thus, like others [6, 7] before, we recently proposed [1]
an algorithm that couples the head tracking and pose estimation
problem. The method relies on a Bayesian formulation of the task,
which is implemented using a particle filter (PF) approach [8]. The
head modeling is achieved by learning discrete head pose models
from training sets [2]. In [1], only texture-like features were used.
We preferred this approach to the use of 3D head models, since
the latter usually require higher resolution head images than those
considered in our experiments. Initial results evaluated on some
sample sequences using manual ground-truth showed that the algo-
rithm worked better than the track-then-pose paradigm. In this pa-
per, this is confirmed on the much larger database described above.
However, these experiments also show that due to the presence of
highly textured background in our data (see Fig. 3), the tracker
sometimes temporarily locks on the background. To improve its
robustness, we propose here to exploit skin masks to model head
poses, and during tracking, to automatically build skin maps us-
ing a skin color adaptation framework. This way, the approach
combines the robustness of standard color trackers [9] with the ac-
curacy of textured-based head modeling.

The paper is organized as follows. Section 2 describe the head
pose representation and head modeling. Section 3 presents the
probabilistic setting for joint head tracking and pose estimation.
Section 4 compares head pose tracking algorithms and Section 5
concludes the paper.

2. HEAD POSE MODELS
2.1. Head Pose Representation

There exist different parameterizations of head pose. Here we
present two of them which are based on the decomposition into
Euler angles («, 3, ) of the rotation matrix of the head configu-
ration with respect to the camera frame, where o denotes the pan,
[ the tilt and ~y the roll of the head. In the Pointing database rep-
resentation [3], the rotation axes are rigidly attached to the head.
In the PIE representation [10], the rotation axes are those of the
camera frame. The Pointing representation leads to more direct
interpretable values. However, the PIE representation has a com-
putational advantage: the roll angle corresponds to in-plane rota-
tions. Thus, only poses with varying pan and tilt values need to be
modeled, as the head roll can be estimated by applying in-plane
rotation to images. Thus, we will perform the tracking in the PIE
angular space.

2.2. Head Pose Modeling

We use the Pointing’04 database to build our head pose models
since the discrete set of pan and tilt values available covers a larger
range poses. The left plot of Figure 1 shows the discretization that
was used in building the Pointing database, while the right plot
displays the same head poses in the PIE representation. While
the discretization is regular in Pointing, this is no longer true in
the PIE representation. Texture and color based head pose models
are built from all the sample images available for each of the 93
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Fig. 1. Left: pan-tilt space discretization in the Pointing represen-
tation. Right: same discretization in the PIE representation.

discrete head poses 0 € © = {0; = (o;,,0),57 =1,...,93}. In
the Pointing database, there are 15 people per pose.

2.2.1. Head Pose Texture Model
Head pose texture is modeled by the output of four filters: a Gaus-
sian at coarse scale and 3 Gabor filters at three different scales
(finer to coarser). Training image patches are obtained by locating
a tight bounding box around the head and resizing it to a reference
size of 64 x 64. Then, patches are filtered by each of the above
filters, and the filter outputs at subsampled locations inside a head
mask are concatenated into a single feature vector of dimension
736. The feature vectors associated with each head pose 8 € ©
are clustered into K clusters using a kmeans algorithm. The clus-
ter centers e = (e} ;),k = 1,..., K are taken to be the exemplars
of the head pose 6. The diagonal covariance matrix of the features
ol = diag(o(gk,i)) inside each cluster is also exploited to define
the pose likelihood models. Here, due to the small amount of train-
ing data, we considered only K=2 clusters. We chosed K = 2
because experiments we conducted (see [1]) showed that with still
images head pose recognition rates for K=2 were better than for
K=1. Together with the head pose models, by defining the head
eccentricity as the ratio of the width over the height of the head,
the head eccentricity distribution inside each cluster k of a head
pose 0 is modeled by a Gaussian p,.9,x) Where the mean and the
standard deviation of learned from the training head image eccen-
tricities.

The texture likelihood with respect to an exemplars k of the
head pose 6 of an input image characterized by its extracted fea-

tures z*“** is given by:
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where T' = exp f% is a lower threshold set to reduce the effects
of outlier components of the feature vectors.

2.2.2. Head Pose Color Model

To make our head models more robust to background clutter, we
learn for each head pose exemplar e a face skin color model de-
noted by M? using the training images belonging to the cluster of
this exemplar. Training images are resized to 64 x 64, then their
pixels are classified as skin or non skin. The skin model M} is
a binary mask in which the value at a given location is 1 when
the majority of the training images have this location detected as
skin, and O otherwise. Additionally we model the distribution of
skin pixel values with a Gaussian distribution [11]. Skin colors are
modelled in the normalized RG space, and the parameters of the
Gaussian (means and variances), denoted by mo, are learned using
the whole set of training images in the database.

The color likelihood of an input patch image at time ¢ with re-
spect to the k'™ exemplar of a pose @ is obtained in the following
way. Skin pixels are first detected on the 64x64 grid using the skin
color distribution model, whose parameters m. have been obtained
in time through standard Maximum A Posteriori techniques, pro-
ducing this way the skin color mask z£°!. This skin mask is then

compared against the model M}, and we defined the likelihood as:
pe(zlk, 0) oc exp —A||2f” — M|l @

where ) is a hyper parameter learned from training data.

3. HEAD POSE TRACKING

3.1. Mixed State Particle Filter
Particle filtering (PF) implements a recursive Bayesian filter by
Monte-Carlo simulations. Let Xo.x = {X,,7 = 0,...,t} (resp.
z1:t = {zj,j = 1,...,t}) represents the sequence of states (resp.
of observations) up to time ¢. Furthermore, let {Xéjt,wi}ﬁv:sl
denote a set of weighted samples that characterizes p(Xo:t|zo0:¢)
the posterior probability density function (pdf), where {X St =
1,..., N} is a set of support points with associated weights w}.
The samples and weights can be chosen using the Sequential Im-
portance Sampling (SIS) principle [8]. Assuming that the observa-
tions {z¢} are independent given the sequence of states, the state
sequence Xo.; follows a first-order Markov chain model, and that
the prior distribution p(Xo:+) is employed as proposal, we ob-
tain the following recursive update equation [8] for the weight
wi o< wi_y p(z¢|X}). To avoid sampling degeneracy an addi-
tional resampling step is necessary [8]. The standard PF is given
by :

1. Initialization : Vi, sample X§ ~ p(Xo);sett = 1

2. IS step: Vi sample X~ p(X{|X{_1); evaluate 0.

3. Selection: Resample N particles {Xti, wi = NLS} from the
set { X7, wi};sett =t + 1; go to step 2.

In order to implement the filter, three elements have to be specified:
a state model, a dynamical model and an observation model.

3.2. State Model

The mixed state particle filter approach [12], allows to represent
jointly in the same state variable discrete variables and continuous
variables. In our specific case the state X = (.S, ~,1) is the con-
junction of a discrete index [ = (6, k) which labels an element of
the set of head pose models ¢?, while both the discrete variable ~
and the continuous variable S = (z,y, s”, s¥) parameterize the
transform 7 s .,y defined by:

s 0 cosy —sinvy x
T(S’”)u:( 0 sy><sin’y cos 7y )u+<y>'

3)
which characterizes the image object configuration. ~y specifies the
in-plane rotation of the object, (z,y) specifies the translation po-
sition) of the object in the image plane, and (s%, s¥) denote the
width and height scales of the object according to a reference size.
We need to define what we use as output of the particle filter. The
set of particle defines a probability density function (pdf) over the
state space. Thus, we can use as output the expectation value of
this pdf, obtained by standard averaging over the particle set. Note
that usually, with mixed-state particle filters, averaging over dis-
crete variable is not possible (e.g. if a discrete index represents a
person identity). However, in our case, there is no problem since
our discrete indices indeed correspond to real Euler angles which
can be combined.

3.3. Dynamical Model

The process density on the state sequence is modeled as a sec-
ond order process P(X¢|X¢—1, X¢—2). We assume that the three
components of the states are conditionnaly independent, and that



a head pose at a given time ¢, [;, depends only on the head pose at
the previous time /;_1. The equation of the process density is:

P(X¢|Xi—1, Xi—2) = p(Se|Se—1, Se—2)p(le]le—1) )
xp(velve—1, li—1,lt)

The dynamics of the continuous variable Sy is modeled as a second
order auto regressive dynamical model, which includes the prior
model on the head eccentricity (see 2.2.1) p,(x,0) (:—Z ).

The dynamics of the discrete variable [, is defined by the transition
process p(l¢|li—1) = p(Or, ke|Or—1, ki—1):

(01, ke|0i—1, ki—1) = p(ke|0s, ke—1,0:-1)p(0:]0:-1).  (5)

where the dynamics p(6¢|0:—1) is modelled as a Gaussian pro-
cess in the continuous space, and Gaussian parameters are learned
from the training sequences of our dataset. This Gaussian process
is then used to compute the transition matrix between the different
discrete pose angles. The probability table p(k:|0:, kt—1,0:—1),
which encodes the transition probability between examplars, is
learned using the training set of faces. That is, for different head
poses, the exemplars are more related when the same persons were
used to build them. When 6 # ¢’, p(k|0,k’,0") is taken propor-
tional to the number of persons who belong to the class of ef and
who are also in the class of ¢?,. Thus, when 6 = ¢, p(k|6, k', 0)
is large for k = k' and small otherwise.

Finally, p(v¢|yt—1, 1l = (ki, 6¢)), the dynamic of the in plane ro-
tation variable, is also learned using the sequences in the training
dataset, and comprises a Gaussian prior on the head roll pe (y¢).
More specifically, the pan tilt space has been divided into nine re-
gions, with pan and tilt ranging from -90 to 90 with a step of 60
degrees. Inside each region, roll transition tables and roll prior are
learned from the training data. Hence, the variable [; acts on the
roll dynamic like a switching variable, and this also holds for the
prior on the roll value.

3.4. Observation model
The observation likelihood p(z|X) is defined as follows :

p(z| X = (S,7,0)) = pr(z" " (S, ) Dpe(" (S, 7)), (6)

where the observations z are composed of texture and color obser-
vations (z¢**, 2¢°!), and we have assumed that these observations
where conditionally independent given the state. The texture like-
lihood pr and the color likelihood. p. have been defined in 2.
The computation of the observations is done as follows. First
the image patch associated with the image spatial configuration
of the state space, (z,), is cropped from the image according to
C(S,7) = {Z(s,yyu, u € C}, where C corresponds to the set of
64x64 locations defined in a reference frame. Then, the texture and
color observations are computed using the procedure described in
sections 2.2.1 and 2.2.2.

4. HEAD POSE TRACKING EVALUATION

4.1. Dataset and Protocol Evaluation

We built a head pose video database of people in real situation
with their head poses continuously annotated using a device called
flock-of-bird, a magnetic field 3D location and orientation tracker.
The device was well camouflaged behind people’s ear. After cal-
ibration of the sensor with camera frame, we can output at each
time frame the person’s head pose. With this system, we recorded
two databases, one in an office environment (not used here) and
one in a meeting environment. In the meeting environment, 8
meetings were recorded each lasting approximatively 8 minutes.
In each meeting, two out of four persons had their head poses con-
tinuously annotated. The scenario of the meeting was to discuss
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Fig. 2. Histograms of pan tilt and roll values of the evaluation data

mean std ‘median
M1 28.15 14.6 25.2
M2 32.6 17.7 29.2
M3 23.4 16.6 19.2
M4 21.3 152 14.1

Table 1. Mean, standard deviation and median of head pointing
vector errors over evaluation data

statements displayed on the projection screen. There were restric-
tions neither on head motions, nor on head poses. This results in a
video database of 16 different people. For our experiments we use
half of the database as train set to train pose dynamic model and
the half remaining as test set to evaluate the tracking algorithms.

The tracking evaluation protocol is the following. In each one
of the 8 meetings of the test set, we selected 1 minute of record-
ing (1500 video frames) for evaluation data. We decided to use
only one minute to save machine computation time, as we use a
quite slow matlab implementation. Figure 2 shows the distribution
of the pan, tilt and roll values on the evaluation data. Because of
the scenario used to record data, people often have negative pan
values corresponding to looking at the projection screen. But the
pan values range from -60 to 60 degree. Tilt values range from -60
to 15 degrees and roll value from -30 to 30 degrees. To evaluate
tracking performances, we used four error measures. The three
first measures are the errors in pan, tilt and roll angle expressed
in the Pointing representation, i.e. the absolute difference between
the pan, tilt and roll of the ground truth (GT) and the tracker esti-
mation. Also, as a head pose defines a vector in the 3D space, the
vector indicating where the head is pointing at, the angle between
the 3D pointing vectors defined by the head pose GT and the pose
estimated by the tracker can be used as pose estimation error mea-
sure. This vector depends only on the head pan and tilt values in
the Pointing representation.

4.2. Experiments Results

Experiments were conducted to compare two classes of trackers.
The first class track the head then estimates the pose. In this class
we used two methods, an histogram and correlation tracker (M1)
[13] and an histogram, correlation and shape tracker (M2) [13].
The second set of algorithms jointly track head and estimate pose.
Two methods were also used in this class. Both methods follow the
framework described in Section 3 of this paper. The first tracker
(M3) rely on head texture likelihood models only while the second
(M4) exploits both texture and color likelihood models.

We ran the four trackers on the test data . Table 1 reports the
head pointing vector errors of the four methods. The mean and the
median errors are smaller for methods M3 and M4. As illustrated
in Figure 3, this is due to a better head localization obtained by
the methods performing jointly tracking and head pose estimation.
Furthermore M4 is surpassing M3 because of the use of the multi-
ple visual cues. More precisely, the Texture cue is very accurate for
head pose estimation but is very sensitive to localization accuracy
and is sometimes distracted by the heavy cluttered background.
The color cue is complementary to the texture cue because it helps
in removing most of the ambiguities. According to the head point-
ing error measure the ranking of the methods from best to worst is
M4, M3, M1, and M2.

Table 2 provides the pan, tilt and roll error measures. As for



pan tlt roll
mean std med mean std med mean std med
Ml 16.2 13.6 13.1 224 15.0 19.1 15.1 12.0 12.5
M2 19.0 17.4 14.2 26.4 17.5 21.5 16.1 12.7 134
M3 13.6 14.9 8.3 17.6 13.8 12.8 11.5 10.3 12.9
M4 8.7 9.1 6.2 19.1 15.41 14.0 9.7 7.1 8.6

Table 2. pan, tilt and roll errors statistics over evaluation data
(Pointing representation)

abs(pan of GT) < 45 45 < abs(pan of GT) < 90
pan Tt roll pan It roll
| M4 7.6 20.86 8.05 135 11.6 17.1
| Wu 01 19.2 12.0 X 33.6 16.3 X

Table 3. mean of pan, tilt and roll errors for abs(pan of GT)< 45
and 45 < abs(pan of GT)< 90 (Pointing representation)

the head pointing errors, the mean and the median of the errors are
smaller for methods performing jointly tracking and pose estima-
tion (M3 and M4). The results of Table 2 are showing also that for
all the methods, the head pan and head roll estimation are more
accurate than the head tilt estimation. This is due to the fact that
head tilt estimation is more sensitive to head head localization than
head pan estimation, as also reported in [2].

To have more details about the performances of (M4), we give
in Table 3 the mean of the pan tilt and roll error values depending
on whether the absolute value of the pan component of the head
pose ground truth is lower or higher than 45 degrees. For com-
parison purposes, this table displays also the results reported in [4]
(Wu 01) for a similar experimental setup. From the results of our
tracker (M4) we can conclude that pan estimation is more reliable
when the pan value is in the interval [—45, 45]. According to the
results, our method M4 is performing better than Wu 01 for pan
estimation. For head tilt estimation Wu 01 performs better when
pan values are within [—45, 45]. A possible explanation is that we
have more head tilt variations in our test data. In our test data,
the tilt angle are varying from -60 to 15 degrees. Also for near
frontal head pose, head appearances are very similar for different
tilt values. When pan values are out of the range [—45, 45] their is
a noticeable increase of performance of our method M4 for head
tilt estimation and it performs better than Wu 01.

Finally, results on individual people are displayed in Figure
4. The results of this figure show that for all the persons, method
M4 estimates the pan and roll with lower errors. Additionnaly
they show that there are substantial performance variations across
people. This is in good part due to presence or not of a similar
looking head in the training set. (e.g. person 5).

5. CONCLUSION

In this paper, we described a probabilistic setting for joint head
tracking and pose estimation with multiple visual cues. This al-
gorithm was compared to three other algorithms on a set of 8 one
minute long annotated real data sequences with a defined proto-
col of evaluation. The experimental results show that our method
outperforms the others for two main reasons. Firstly, the method
performs the tracking and pose estimation tasks jointly. Secondly,
the use of multiple cues improves head localization. Although our
algorithm performs very well for single person tracking without
occlusions, in the future we plan to extend the model to situations
with multiple people and possible occlusions.

Our data are part of a larger database which comprises more than
two hours of annotated data. This database is publicly available
at http://mmm.idiap.ch/HeadPoseDatabase, as well as the protocol
we followed. We hope that, as people have been working on head
pose tracking for many years, such a database will be helpful in
allowing for better algorithm evaluation and performance compar-
ison.

Fig. 3. Head localization results for M2 (top row) and M4 (bottom
row); left column: frame 571; right column: frame 661

50

Fig. 4. Mean of pan, tilt and roll pose estimation errors for indi-
vidual meeting evaluation data
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