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ABSTRACT

This paper studies the problem of multiple speaker localization
via speech separation based on model-based sparse recovery. We
compare and contrast computational sparse optimization methods
incorporating harmonicity and block structures as well as autore-
gressive dependencies underlying spectrographic representation of
speech signals. The results demonstrate the effectiveness of block
sparse Bayesian learning framework incorporating autoregressive
correlations to achieve a highly accurate localization performance.
Furthermore, significant improvement is achieved using ad-hoc mi-
crophones for data acquisition set-up compared to the compact mi-
crophone array.

Index Terms— Structured sparsity, Reverberant speech local-
ization, Autoregressive modeling, Ad-hoc microphone array

1. INTRODUCTION

Speech localization in the clutter of voice and acoustic multipath
is an active area of research on microphone arrays for hands-free
speech communication. The accurate knowledge of the speaker lo-
cation is essential for an effective beampattern steering and interfer-
ence suppression [1, 2]. We briefly review the main approaches to
address this problem.

High Resolution Spectral Estimation: These approaches are
based on analysis of the received signals’ covariance matrix and im-
pose a stationarity assumption for accurate estimation [3]. Important
techniques applied for speech localization include minimum vari-
ance spectral estimation as well as eigen-analysis methods such as
multiple signal classification (MUSIC). The underlying hypotheses
are not quite realistic in reverberant speech localization and alterna-
tive strategies have been usually considered [4, 5].

Time Difference Of Arrival (TDOA) Estimation: Another ap-
proach is based on TDOA estimation of the sources with respect
to a pair of sensors. The generalized cross correlation (GCC) is
the most common technique for TDOA estimation where the idea
is basically to map the peak location of the cross-correlation func-
tion of the signal of two microphones to an angular spectrum. A
weighting scheme is usually employed to increase the robustness
of this approach to noise and multi-path effects. Maximum like-
lihood estimation of the weights has been considered as an opti-
mal approach in the presence of uncorrelated noise, while the phase
transform (PHAT) has been shown to be effective to overcome re-
verberation ambiguities [6, 7]. In addition to the GCC-PHAT, iden-
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tification of the speaker-microphone acoustic channel has been in-
corporated for TDOA estimation and reverberant speech localiza-
tion [8, 9]. However, despite of being practical and robust, TDOA-
based techniques do not offer a high update rate. Alternative strate-
gies have thus been sought for multiple-target tracking and adaptive
beam-steering [10, 11].

Beamformer Steered Response Power (SRP): In this approach,
the space is scanned by steering a microphone array beam-pattern
and finding the direction associated to the maximum power. Delay-
and-sum, minimum variance beamformers, and generalized side-
lobe canceler have been the most effective methods for speaker lo-
calization [12]. The SRP-based approaches have a higher effective
update rate compared to TDOA-based methods, and are applicable in
multi-party scenarios using phase-transform weighting scheme [13].

In this paper, we adopt our speech separation framework us-
ing sparse component analysis [14] and conduct the evaluations in
terms of speech localization [15]. We analyze the reverberant mix-
tures of speech signals in spectro-temporal domain. The planar area
of the room is discretized into a dense grid such that the speakers
are located at particular cells exclusively. A spatio-spectral sparse
representation is obtained by concatenating the spectral components
attributed to the sources located on the grid. The compressive acous-
tic measurements associated to the microphone array recordings are
characterized using Image model of multipath propagation. The
spatio-spectral sparse representation is estimated from the compres-
sive array measurements using sparse optimization methods where
the supports of high energy components indicate the source loca-
tions. The computational approaches to model-based sparse recov-
ery of spectrographic speech are compared and contrasted consider-
ing block, harmonic as well as autoregressive dependencies.

The rest of the paper is organized as follows: Section 2 explains
the premises underlying model-based sparse component analysis of
reverberant recordings, and sets up the formulation of reverberant
speech source localization. The structured sparsity models underly-
ing speech components are elaborated in Section 3 followed by the
computational approaches to model-based sparse recovery in Sec-
tions 4. Section 5 presents the details of the experiments. Conclu-
sions are drawn in Section 6. The notations used in this paper are as
follows
� g ∈ {1, . . . ,G}: number of a cell on a grids.
� n ∈ {1, . . . ,N}: number of source; N� G.
� m ∈ {1, . . . ,M}: number of microphones;M < N.
� f ∈ {1, . . . , F}: number of spectral coefficients.
� {S, S}: spectral representation of single/all source signals.
� {X,X}: spectral representation of single/all micro. signals.
� Φ: microphone array manifold matrix.
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