
Object Classification and Detection

in High Dimensional Feature Space

THIS IS A TEMPORARY TITLE PAGE
It will be replaced for the final print by a version

provided by the service académique.

Thèse n. 6043
présentée le 17 Décembre 2013
à la Faculté Sciences et Techniques de l’Ingénieur
Laboratoire de l’Idiap
Programme doctoral en Informatique, Communications et Infor-
mation
École Polytechnique Fédérale de Lausanne

pour l’obtention du grade de Docteur ès Sciences
par

Charles Dubout

acceptée sur proposition du jury:

Prof Mark Pauly, président du jury
Dr François Fleuret, directeur de thèse
Prof Pascal Fua, rapporteur
Prof Gilles Blanchard, rapporteur
Prof Frédéric Jurie, rapporteur

Lausanne, EPFL, 2013

Acknowledgements
First and foremost, I would like to thank my thesis advisor, Dr. François Fleuret, for giving

me the opportunity to carry out this very exciting project. François has all the qualities a PhD

student can dream of: he is always there when you need him, ready to discuss new ideas, he

has a deep knowledge not only of the field but also of CS and math in general, and he never

urges you but instead gives you all the freedom you might need to carry out your work to

fruition. He also taught me what it means to be a real scientist, in addition of an engineer,

which I always wanted to be.

I would like also to thank my three jury members, Prof. Pascal Fua, Prof. Gilles Blanchard, and

Prof. Frédéric Jurie, as well as my jury president, Prof. Mark Pauly, for doing me the honor to

supervise my oral exam.

Many thanks to Dr. Raghuraman Krishnamoorthi, Dr. Bojan Vrcelj, and all their colleagues

for giving me the opportunity to come to the U.S. and mentoring me during my internship at

Qualcomm San Diego. Experiencing life in California and working in a large IT company was

very interesting and something I always wanted to try.

Working at Idiap would not have been as fun without all my office mates and colleagues:

Adolfo, Alexandre2, Alexandros, André, Arjan, Ashtosh, Barbara, Bastien, Cheng, Chidansh,

Chris, Cosmin, Daira, David, Elie, Flavio, Francesco, Gulcan, Gwénolé, Hugo, Hui, Ilja, Ivana,

Jagan, James, Jean-Marc, Joan, Joel, Kenneth, Laurent2, Leo, Majid, Manuel, Marc, Marco,

Maryam, Mathew, Minh-Tri, Nadine, Nesli, Nicolae, Nik, Nikolaos, Novi, Olivier, Oya, Paco,

Paul, Philip2, Pierre-Edouard, Radu, Raphaël, Riwal, Roger, Romain, Ronan, Roy, Rui, Rémi2,

Samira, Serena, Sylvie, Tatiana, Teodora, Thomas, Valérie, Vincent, Yann and probably a few

others which I forgot, sorry! I will not soon forget all the long baby foot games we played, all

the Friday afternoon beers, and all our (sometimes a bit pointless, Boosting vs. SVM anyone?)

discussions.

I would finally like to thank my parents, in-laws, brothers and sisters, and all the rest of my

family for their constant support. Special thanks to my wife Wenqi, always there to share with

me the highs and lows of PhD life and without who none of it would have been possible.

Charles Dubout was supported by the Swiss National Science Foundation under grant 200021-

124822 – VELASH.

Lausanne, 20 December 2013 Charles

2Both of you.

iii

Abstract
Object classification and detection aim at recognizing and localizing objects in real-world

images. They are fundamental computer vision problems and a prerequisite for full scene

understanding. Their difficulty lies in the large number of possible object positions and the

appearance variations of object classes. This thesis improves upon several classical machine

learning algorithms, enabling large computational gains in high dimensional feature space.

A common trend in machine learning and computer vision research is to go large scale. In

particular, the advent of huge datasets mined from the Internet, and the combination of

multiple feature sources have considerably broadened the applications of computer vision.

Tasks which were thought impossible a few years ago, such as human action recognition or

pose estimation, automatic outdoor navigation, etc., now seem within reach.

This dissertation is divided into two parts. The first one deals with the efficient training of a

classifier or detector based on a large number of feature extractors, outside the control of the

learning algorithm, and therefore of unknown suitability to the task at hand. More precisely,

this part presents two kinds of strategies to accelerate the training of Boosting algorithms

in such a context: (a) a method to better deal with the increasingly common case where

features come from multiple sources (e.g. color, shape, texture, etc., in the case of images) and

therefore can be partitioned into meaningful subsets; (b) new algorithms which balance at

every Boosting iteration the number of weak learners and the number of training examples to

look at in order to maximize the expected loss reduction. Experiments in image classification

and object recognition on four standard computer vision datasets show that the adaptive

techniques we propose outperform both basic sampling and state-of-the-art bandit methods.

The second part deals with linear object detectors, currently the most popular class of detec-

tion systems, encompassing template matching, deformable part models, poselets, convolu-

tional neural networks (which internally use linear filters), etc. The main bottleneck of many of

those systems is the computational cost of the convolutions between the multiple rescalings of

the image to process and the linear filters. We make use of properties of the Fourier transform

and clever implementation strategies to obtain a speedup factor proportional to the filter size,

both while training and at test time. We also introduce a few modifications to the original

Deformable Part Model (DPM) of Felzenszwalb et al. improving its detection accuracy. The

gains in performance are demonstrated on the well-known Pascal VOC benchmark, where

an increase by one order of magnitude in the speed of said convolutions, and an average

improvement of 15% in the accuracy of the detector are established.

v

Acknowledgements

Keywords: Boosting, large scale learning, feature selection, linear object detection, deformable

part model

vi

Résumé
La classification et la détection d’objets visent à reconnaître et à localiser des objets dans

des images du monde réel. Ce sont des problèmes fondamentaux de vision par ordinateur

qui constituent un prérequis à la compréhension de scènes complètes. Leur difficulté vient

du large nombre de positions potentielles et de la diversité d’apparence propres à chaque

classe d’objets. Cette thèse présente plusieurs améliorations d’algorithmes classiques d’ap-

prentissage automatique, diminuant grandement leur coût computationnel en espaces de

caractéristiques de grandes dimensions.

Une des tendances actuelles de la recherche en apprentissage automatique et en vision par

ordinateur est de considérer des échelles toujours plus grandes. En particulier, l’avènement

d’énormes ensembles de données compilés à partir d’Internet, et la combinaison de plusieurs

sources de caractéristiques visuelles ont considérablement étendu les champs d’application

de la vision par ordinateur. Des tâches qui semblaient impossible il y a quelques années, telles

que la reconnaissance de l’activité ou de la pose d’êtres humains, la navigation automatique

en extérieurs, etc., semblent maintenant proches d’être réalisables.

Cette dissertation est divisée en deux parties. La première traite de l’entraînement efficace d’un

classificateur ou d’un détecteur basé sur un grand nombre d’extracteurs de caractéristiques

visuelles, hors du contrôle de l’algorithme d’apprentissage, et dont la pertinence vis-à-vis de

la tâche à résoudre est inconnue. Plus précisément, cette première partie présente deux types

de stratégies visant à accélérer l’entraînement d’algorithmes de Boosting dans ce contexte :

(a) une méthode pour gérer le cas de plus en plus courant où les caractéristiques sont issues

de plusieurs sources (ex. couleur, forme, texture, etc., dans le cas d’images) et peuvent donc

être partitionnées en sous-ensembles de façon non-arbitraire ; (b) de nouveaux algorithmes

qui équilibrent à chaque itération de Boosting le nombre de classifieurs faibles et le nombre

d’exemples d’apprentissage dans le but de maximiser l’espérance de la réduction de la fonction

de coût. Quatre expériences en classification d’images et en reconnaissance d’objets sur

des ensembles de données standards montrent que les techniques adaptatives que nous

proposons surpassent des techniques d’échantillonnage basiques ainsi que des méthodes de

pointe utilisant des bandits manchots.

La seconde partie traite de détecteurs d’objets linéaires, actuellement la classe de détecteurs

la plus populaire, incluant la comparaison avec des motifs standards, les modèles à parties

déformables, les poselets, les réseaux de neurones à convolution (qui utilisent des filtres

linéaires en interne), etc. Le principal goulot d’étranglement de la plupart de ces systèmes est

vii

Acknowledgements

le coût computationnel des convolutions entre les multiples redimensionnements de l’image

à traiter et des filtres linéaires. En utilisant certaines propriétés de la transformée de Fourier

ainsi que d’ingénieuses stratégies d’implémentation, nous obtenons un gain d’accélération

proportionnel à la taille des filtres, à la fois durant l’entraînement et durant le test. Nous

présentons aussi quelques modifications apportées au modèle à parties déformables originel

de Felzenszwalb et al. améliorant sa précision en détection. Les gains apportés en performance

sont démontrés sur le célèbre Pascal VOC benchmark. Une accélération de la vitesse des

convolutions d’un ordre de grandeur, ainsi qu’une amélioration moyenne de la précision du

détecteur de 15% sont démontrées.

Mots-clés : Boosting, apprentissage à grande échelle, sélection de caractéristiques, détection

d’objet linéaire, modèle à parties déformables

viii

Contents
Acknowledgements iii

Abstract (English/Français/Deutsch) v

List of figures xi

List of algorithms xiv

List of tables xv

1 Introduction 1

1.1 Learning in High Dimensional Feature Space: Advantages and Challenges . . . 1

1.2 Organization and Contribution of this Thesis . 3

1.3 Notation . 5

Part I: Boosting in High Dimensional Feature Space 7

2 Influence of the number of Training Examples and Features on Boosting 9

2.1 Introduction and related works . 11

2.1.1 AdaBoost . 11

2.2 Experiments . 13

2.3 Conclusion . 19

3 Adaptive Sampling for Large Scale Boosting 21

3.1 Introduction . 23

3.2 Related works . 23

3.3 Preliminaries . 25

3.3.1 Standard Boosting . 25

3.3.2 Feature subsets . 26

3.4 Tasting . 26

3.4.1 Main algorithm . 26

3.4.2 Tasting variants . 27

3.4.3 Relation with Bandit methods . 28

3.5 Maximum Adaptive Sampling and Laminating . 29

3.5.1 Edge estimation . 29

ix

Contents

3.5.2 Modeling the true edge . 30

3.5.3 M.A.S. variants . 31

3.5.4 Laminating . 32

3.6 Experiments . 35

3.6.1 Features . 35

3.6.2 Datasets . 35

3.6.3 Uniform sampling baselines . 36

3.6.4 Bandit sampling baselines . 37

3.6.5 Results . 38

3.7 Conclusion . 39

Part II: Object Detection in High Dimensional Feature Space 53

4 Accelerated Evaluation of Linear Object Detectors 55

4.1 Introduction . 57

4.2 Related works . 57

4.3 Linear object detectors and Fourier transform . 58

4.3.1 Evaluation of a linear detector as a convolution 59

4.3.2 Leveraging the Fourier transform . 60

4.4 Implementation strategies . 62

4.4.1 Patchworks of pyramid scales . 62

4.4.2 Taking advantage of the cache . 63

4.5 Experiments . 66

4.6 Conclusion . 67

5 Accelerated Training of Linear Object Detectors 69

5.1 Introduction and related Works . 71

5.2 Evaluation of the gradient of a linear detector as a convolution 71

5.3 Computational cost of the gradient computation 73

5.4 Experiments . 74

5.4.1 Implementation details . 75

5.4.2 Results . 76

5.5 Conclusion . 78

6 Extensions to the original Deformable Part Model 79

6.1 Introduction . 81

6.2 Related works . 81

6.3 Standard Deformable Part Models . 82

6.4 Additional features . 84

6.4.1 Histograms of uniform Local Binary Patterns 84

6.4.2 Color histograms . 85

6.4.3 Experiments . 86

6.5 Independent part scaling . 87

x

Contents

6.5.1 Extension to 3D . 88

6.5.2 Approximation to the generalized distance transform 88

6.5.3 Experiments . 90

6.5.4 Results . 92

6.6 Joint appearance constraints . 93

6.6.1 Post-scoring (DPM†) . 94

6.6.2 Joint-scoring (DPM‡) . 94

6.6.3 Learning . 94

6.6.4 Experiments . 95

6.7 Conclusion . 95

7 Summary and Future Directions 97

7.1 Discussion . 97

7.2 Future Directions . 98

A Proof of Lemma 1 99

B Proof of Theorem 1 101

Bibliography 108

Curriculum Vitae 109

xi

List of Figures
1.1 Influence of the number of training examples and features on SVRT. 3

2.1 Exponential loss . 12

2.1 The 23 visual categorization problems. 15

2.2 Results of AdaBoost on the 23 visual categorization problems. 18

3.1 Simulation of the expectation of ε∗ in the Gaussian case 30

3.2 Difference between the maximum edge and the best edge for Laminating . . . 34

3.3 Example images from the four datasets used in the experiments 36

3.4 Mean Boosting loss on the MNIST dataset. 44

3.5 Mean test error on the MNIST dataset. 45

3.6 Mean Boosting loss on the INRIA Person dataset. 46

3.7 Mean test error on the INRIA Person dataset. 47

3.8 Mean Boosting loss on the Caltech 101 dataset. 48

3.9 Mean test error on the Caltech 101 dataset. 49

3.10 Mean Boosting loss on the CIFAR-10 dataset. 50

3.11 Mean test error on the CIFAR-10 dataset. 51

4.1 Histogram of Oriented Gradients . 58

4.2 HOG feature planes . 59

4.3 Standard convolution process . 60

4.4 Fast Fourier convolution process . 61

4.5 Patchwork of images . 62

4.6 Fragment strategy . 64

4.7 Fragment size . 65

5.1 Computation of the gradient of the loss . 72

5.2 Root filters for a bicycle model of normal size . 76

5.3 Root filters for a bicycle model of double the normal size 76

6.1 Examples of detections on the Pascal VOC challenge 2007. 82

6.2 Standard Standard Deformable Part Model. 83

6.3 Local Binary Pattern operator using a 3×3 neighborhood. 84

6.4 The 10 kinds of uniform Local Binary Patterns. 85

xiii

List of Figures

6.5 Color histograms . 86

6.6 Examples of detections on the Pascal VOC challenge 2007 using a 3D model. . . 88

6.7 Deformation across scales . 89

6.8 Root and part locations in 2D and 3D. 90

xiv

List of Algorithms
2.1 AdaBoost, the most common Boosting algorithm. 13

3.1 Tasting 1.Q . 27

3.2 Tasting Q.1 . 28

3.3 M.A.S. 32

3.4 Laminating . 33

4.1 Fast Fourier convolution process . 66

5.1 Fourier-based stochastic gradient descent algorithm 74

xv

List of Tables
1.1 Single feature versus feature combination methods comparison. 2

2.1 Mean results of AdaBoost on the 23 visual categorization problems. 18

3.1 Mean Boosting loss on MNIST . 40

3.2 Mean test error on MNIST . 40

3.3 Mean Boosting loss on INRIA Person . 41

3.4 Mean test error on INRIA Person . 41

3.5 Mean Boosting loss on Caltech 101 . 42

3.6 Mean test error on Caltech 101 . 42

3.7 Mean Boosting loss on CIFAR 10 . 43

3.8 Mean test error on CIFAR 10 . 43

4.1 Asymptotic memory footprint and computational cost for the three approaches

described in § 4.4.1 . 63

4.2 Pascal VOC 2007 challenge results. 67

4.3 Pascal VOC 2007 challenge convolution time and speedup. 68

5.1 Performance of our trained mixture on Pascal VOC 2007 77

5.2 Average time to compute the gradient of the loss 77

6.1 Performance of models using additional features on Pascal VOC 2007 87

6.2 Performance of the 2D and 3D models on Pascal VOC 2007 91

6.3 Comparison between exact and approximate distance transform methods . . . 92

xvii

1 Introduction

This introduction presents an overview of learning in high dimensional feature space (§ 1.1)

and the contribution of this thesis (§ 1.2). The motivations presented here are elaborated further

in the following chapters. At the end of this chapter, we also introduce the notation and the

necessary mathematical tools used in this thesis § 1.3.

1.1 Learning in High Dimensional Feature Space: Advantages and

Challenges

A common trend in machine learning and computer vision research is to go “large scale”,

both in the number of training examples (e.g. ImageNet (Deng et al., 2009) contains currently

close to ten million images, i.e. approximately ten terabyte of raw data) and the number of

features considered (e.g. shape, color, texture, etc.). Such increase in the size of datasets and

the number of features, together with the advent of more sophisticated learning algorithms

led to major improvement in classification performance and in the range of problems which

can now be tackled (action recognition, pose estimation, automatic outdoor navigation, etc.).

In particular using more features can improve performance by increasing the amount of

information given to the learning system, make the system more robust, and can even make

the problem simpler by making it more separable. Two practical examples are displayed in

table 1.1 and in figure 1.1. The first example, adapted from (Gehler and Nowozin, 2009), reports

the test accuracy of various kernel methods trained either on a single or on a combination of

all the seven features used by the authors in their experiments. The main observation they

made is that the learning method often does not matter much, all of the algorithms performing

similarly in that particular experiment, but that using a combination of features can be crucial

in order to get the best out of a classifier. The second example, adapted from (Fleuret et al.,

2011), plots the test error of an AdaBoost classifier on the Synthetic Visual Reasoning Test

(SVRT) for various number of training examples and groups of features. SVRT is a series of 23

image classification problems, each containing images of simple shapes, positive or negative

according to some high-level rule, typically easy to understand for humans but hard for off-

1

Chapter 1. Introduction

Table 1.1 – Mean classification accuracy on the Oxford Flowers dataset (Nilsback and Zisser-
man, 2006) of several classification methods using either a single features or a combination of
all of them. The learning method does not matter much, combining features is much more
important. Reprinted from (Gehler and Nowozin, 2009).

Single feature Combination methods

Method Accuracy Time Method Accuracy Time

Color 60.9±2.1 3 product 85.5±1.2 2

Shape 70.2±1.3 4 averaging 84.9±1.9 10

Texture 63.7±2.7 3 CG-Boost 84.8±2.2 1225

HOG 58.5±4.5 4 MKL (SILP) 85.2±1.5 97

HSV 61.3±0.7 3 MKL (Simple) 85.2±1.5 152

siftint 70.6±1.6 4 LP-β 85.5±3.0 80

siftbdy 59.4±3.3 5 LP-B 85.4±2.4 98

the-shelf machine learning algorithms. The features from group 1 only count pixels in boxes,

those of group 2 also look at edges, and the ones in group 3 also look at properties of the whole

image (Fourier and wavelet coefficients). The performance of the classifier increases with

both, overfitting decreasing with the number of training examples, while the more complex

features make some tasks much easier to solve. For example tasks which necessitate to match

shapes become easier with features from group 2, while tasks necessitating to look at the

whole image (for example to detect alignment or symmetry) become much easier with the

ones from group 3. A more in-depth analysis of SVRT and these results is the topic of chapter 2.

But this trend towards larger and larger datasets also poses deep scalability issues, since it

might become difficult to store and process all this information. For instance it might be

impossible for an object detector to extract and store all patches from all training images of a

large dataset on current hardware.

Current feature combination techniques such as classifier or feature concatenation, multiple

kernel learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004) or LP-β (Gehler and Nowozin,

2009) pay little attention to their computational cost, and assume that all the features have

been selected by an expert, meaning that they do not expect most features to be irrelevant.

Even when considering a single kind of feature, as is often the case in object detection, the

amount of data that has to be processed is often huge due to the sheer number of overlapping

image sub-windows, so that even ‘fast’ linear methods can struggle.

Our aim is therefore to address the following research questions:

• How to train a classifier efficiently using multiple kind of uncontrolled features, of

various usefulness?

2

1.2. Organization and Contribution of this Thesis

 0

 0.25

 0.5

 10 100 1000 10000

T
es

t e
rr

or
 r

at
e

Number of examples

(a) Influence of the number of examples.

 0

 0.25

 0.5

 1 2 3

T
es

t e
rr

or
 r

at
e

Feature groups

(b) Influence of the number of features.

Figure 1.1 – Influence of the number of training examples and the amount/complexity of the
features on the Synthetic Visual Reasoning Test (SVRT). The features from group 1 only count
pixels in boxes, those of group 2 also look at edges, and the ones in group 3 look at properties
of the whole image (Fourier and wavelet coefficients). Reprinted from (Fleuret et al., 2011).

• How to make large scale learning faster (large in the number of examples and features)?

• Is it possible to speed up object detection over dense features by exploiting the overlap

between samples?

• How to best exploit this speed up to improve detection accuracy?

We propose to consider the first two questions in the Boosting framework. We believe Boosting

to be well suited for this task due to its iterative building process, enabling it to do feature

selection while training. Each training iteration can be restricted to look only at a small

subset of examples and features, limiting the total computational cost, instead of looking at

everything all the time, as would be the case with support vector machines (Vapnik, 1995) or

classical neural networks. Its linear nature also makes it easy to understand the contribution

of each feature, and to prune away useless ones.

For the last two questions we turned to linear classifiers, which have been hugely popular in

recent years in the vision community. We focus particularly on the Deformable Part Model

(DPM) of Felzenszwalb et al. (Felzenszwalb et al., 2010b), which has received the most attention

in recent years, but our analyses remain applicable to a wider range of object detectors.

1.2 Organization and Contribution of this Thesis

This thesis is organized in two parts. After defining Boosting and stressing out the importance

of large scale learning in chapter 2, using SVRT as an illustration, chapter 3 describes three

new families of algorithms to improve Boosting in high dimensional feature space, particularly

when dealing with multiple kind of features and a large number of examples.

3

Chapter 1. Introduction

The first one, Tasting, is a strategy to bias feature sampling towards promising subsets. Con-

trarily to previously existing methods (LazyBoosting (Escudero et al., 2000), AdaBoost.UCB

(Busa-Fekete and Kegl, 2009) and its later variants (Busa-Fekete and Kegl, 2010), etc.), it con-

tinuously estimates the expected quality of each feature subset from a limited set of features

sampled prior to the learning, as well as the current Boosting weights. As for the bandit-related

methods which we use as baselines, Tasting exploits the fact that the full feature set is a hetero-

geneous union of somehow homogeneous subsets of features. It exploits the main strength of

Boosting which is to spot and combine complementary features, and can thus discard features

redundant with features already chosen.

The second one, Maximum Adaptive Sampling (abbreviated M.A.S.) is a family of algorithms

targeted at learning in high dimensional feature space with or without multiple feature subsets.

They model at every Boosting step the distribution of the performance of the weak learners,

and computes from it the optimal number of examples and weak learners to sample under a

given cost constraint.

The third one, Laminating, tries to reduce the requirement for a density model of the weak

learners’ performance. At every Boosting step it iteratively halves the number of considered

weak learners, and doubles the number of samples, until only one weak learner remains.

The second part proposes acceleration strategies applicable to a wide class of linear object

detector. It focuses particularly on the currently state-of-the-art linear object detector of

Felzenszwalb et al. (Felzenszwalb et al., 2010b), and describes improvement to its efficiency

and its detection accuracy.

Current state-of-the-art linear object detection methods compute the convolutions between

image features and trained linear filters directly, with a cost proportional to the size of the

linear filters. They work by first extracting features from the input images, often at multiple

resolutions. Those image and filter features can be seen as being organized in planes, each

containing a distinct feature at the same image locations. Existing methods compute the

convolution of an image feature planes and a linear filter by first convolving each feature

plane independently, and summing the results together. The novelty of our invention exposed

in chapter 4 is to do the convolution using a Fast Fourier Transform (FFT) algorithm and to

take advantage of the linearity of the transform to reduce the number of required inverse

transforms to one per filter at detection time (instead of the number of features). We also

came up with two additional implementations strategies, both necessary in order to get the

most out of the method, and obtain one order of magnitude speedup compared to previous

implementations.

In chapter 5 we rewrite the computation of the gradient of the loss minimized during training

as a convolution. This enables us to accelerate training as well for any loss written as a sum

over the examples, making the overall training computational cost independent of the filters’

sizes. It relieves all the constraints inherent to sparse and approximate methods, but is not

always as efficient, as we experimentally observed.

4

1.3. Notation

Chapter 6 presents three extensions to the original DPM of Felzenszwalb et al. The first one

is to use different kinds of features in addition to HOG. We settled for histograms of Local

Binary Patterns (LBP), a widely used texture descriptors, and our own color histograms. These

are similar to HOG in that they are local histograms computed over the pixels of each cell

of a dense grid, but instead of being histograms of the gradient orientation weighted by

the gradient magnitude, they are respectively histograms of the LBP binary code or the hue

weighted by the saturation.

The second one removes a limitation of current DPMs, in which parts deform only at a fixed

predetermined scale relative to that of the root of the models (typically at twice the resolution).

They do so because it enables them to find the optimal placement of each part efficiently, using

a fast 2D distance transform algorithm. By settling for approximately optimal placements,

we were able to efficiently deform the parts across scales as well, by reusing the original

convolutions and distance transforms. Allowing parts to move in 3D increases the expressivity

of the models, and might approximate an increase in the scanning resolution.

The third extension addresses a shortcoming of the standard DPM: its complete ignorance of

joint aspects of appearance, marginalizing it completely over the parts. We therefore proposes

to add to the model a term looking jointly at the appearance of the part and the root together,

which has the advantage compared to other joint models to be simpler and more efficient.

1.3 Notation

In this section we introduce formally the notations as well as the necessary mathematical tools

used in this thesis.

Notation. We indicate scalars with lower case letters (e.g. x and λ), vectors and matrices with

bold letters (e.g. x and w), and sets with calligraphic font (e.g. X and H). In order to make

index expressions more readable, we use x(i , j) rather than xi j to refer to the element in the

i th row and the j th column of matrix x. Thus xk (i , j) signifies the element of indices i and j in

xk , the matrix of index k. The set of real numbers is denoted by R and the indicator function,

taking the value 1 if the expression inside is true and 0 otherwise is denoted by 1{·}.

5

Boosting in High Dimensional Feature
Space

Part I

7

2 Influence of the number of Training
Examples and Features on Boosting

In this chapter we present our observations on the influence of the number of training examples

and features on the classification performance of AdaBoost, the most popular Boosting algo-

rithm. The dataset that we used is the Synthetic Visual Reasoning Test (SVRT), a collection of

twenty-three synthetic image classification problems. While only a few images are necessary

for humans to grasp the rule underlying each problem, general machine learning methods

often require thousands of examples as well as elaborate image features to achieve their optimal

performance. Content presented in this chapter is based on the following publications (Fleuret

et al., 2011):

F. Fleuret., T. Li, C. Dubout, E. K. Wampler, S. Yantis, and D. Geman. Comparing machines

and humans on a visual categorization test. In Proceedings of the National Academy of

Sciences, 2011.

9

2.1. Introduction and related works

2.1 Introduction and related works

Boosting is a powerful approach to improve the performance of a given “weak” learning

algorithm (i.e. one that performs just slightly better than random guessing) by combining

them into a “strong” learning algorithm. While Boosting is not algorithmically constrained,

most Boosting algorithms work by iteratively training the same weak classifier with a different

weighting over the training examples. At each iteration, the weighting distribution gives em-

phasis to the “hardest” (most incorrectly classified) examples. The final “strong” classifier is

obtained as an average of the trained weak learners, weighted by some function of their re-

spective accuracy. Under some mild assumptions, and given a sufficient number of iterations,

the training error of the final combination can become arbitrarily low (Schapire et al., 1998). It

has also been repeatedly observed in practice that Boosting is relatively immune to overfitting,

as the testing error typically continues to decrease long after the training error reaches zero.

2.1.1 AdaBoost

In this thesis we will focus on the (discrete) AdaBoost (short for Adaptive Boosting) algorithm,

by far the most popular and extensively studied Boosting algorithm (Friedman et al., 2000).

We concentrate on the binary classification task and let the training set be

(xn , yn) ∈X × {−1, 1}, n = 1, . . . , N . (2.1)

The goal is to construct a strong classifier of the form

F (x) = sign
(

f (x)
)

(2.2)

with

f (x) =
T∑

t=1
αt ht (x) (2.3)

where ht (x) denotes a binary weak learner, i.e. a function of the form X → {−1, 1} and αt ∈R
denotes its weight.

Given a set of weak learners H , the choice of ht ∈ H at each iteration results from the

minimization of the Exponential loss

L(f) =
N∑

n=1
exp

(−yn f (xn)
)

. (2.4)

This cost function penalizes samples that are wrongly classified (yn f (xn) ≤ 0) much more

heavily than those that are classified correctly (yn f (xn) > 0). It upper-bounds the Hamming

loss, which in the binary case is equivalent to the training error (see figure 2.1). Directly

optimizing (2.4) is complex and AdaBoost employs instead a greedy approach, optimizing

each pair of αt , ht iteratively (see algorithm 2.1).

11

Chapter 2. Influence of the number of Training Examples and Features on Boosting

yn f (xn)

loss

−1.5 −1 −0.5 0 0.5 1 1.5
0

1

2

3

4

5
Exponential: exp

(−yn f (xn)
)

Hamming: 1{yn f (xn)≤0}

Figure 2.1 – An illustration of how the Exponential loss (in red) upper-bounds the Hamming
loss (in blue), directly related to the training error since 1{F (xn) 6=yn } = 1{yn f (xn)≤0}.

Suppose that t pairs of αt , ht have already been optimized, and let

ft =
t∑

i=1
αi hi . (2.5)

stands for the current classifier. The next pair picked by AdaBoost is

(αt+1, ht+1) = argmin
(α∈R,h∈H)

L(ft +αh) (2.6)

= argmin
(α∈R,h∈H)

N∑
n=1

exp
(−yn

(
ft (xn)+αh(xn)

))
(2.7)

= argmin
(α∈R,h∈H)

N∑
n=1

exp
(−yn ft (xn)

)
exp

(− ynαh(xn)
)
. (2.8)

If we define

ωt (n) = exp
(−yn ft (xn)

)∑N
i=1 exp

(−yi ft (xi)
) = exp

(−yn ft (xn)
)

L(ft)
(2.9)

the normalized weight associated with example n, we can rewrite (2.8) as

(αt+1, ht+1) = argmin
(α∈R,h∈H)

N∑
n=1

ωt (n)exp
(− ynαh(xn)

)
. (2.10)

12

2.2. Experiments

Algorithm 2.1 AdaBoost, the most common Boosting algorithm.

Input: (xn , yn) ∈X × {−1, 1}, n = 1, . . . , N , H , T
for n ← 1, . . . , N do
ω1(n) = 1

N # Set the Boosting weights uniformly
end for
for t ← 1, . . . , T do

ht ← argmax
h∈H

εt (h), where εt (h) =
N∑

n=1
ωt (n)ynh(xn) # Find the best weak learner

αt ← 1

2
log

(
1+εt (ht)

1−εt (ht)

)
Optimal weak learner weight

for n ← 1, . . . , N do

ωt+1(n) = ωt (n)exp
(−ynαt ht (xn)

)∑N
i=1ωt (i)exp

(−yiαt ht (xi)
) # Update the Boosting weights

end for
end for

Output: f =
T∑

t=1
αt ht # Return the strong classifier

It is now easy to see that the solution of (2.10) is

ht+1 = argmax
h∈H

εt (h) (2.11)

αt+1 = 1

2
log

(
1+εt (ht+1)

1−εt (ht+1)

)
. (2.12)

where εt (h) is called the edge of weak learner h and is defined as

εt (h) =
N∑

n=1
ωt (n)ynh(xn). (2.13)

2.2 Experiments

The Synthetic Visual Reasoning Test is a collection of twenty-three binary image classification

problems. Each problem consists of two sets of images, each generated by a computer program.

This ensures that the potential number of images is virtually infinite and can not be modeled

properly with a brute-force memorization. The images are black and white and of resolution

128 × 128 pixels (see figure 2.1). The problems are designed so that the two categories can be

separated without mistakes if the underlying rule is known.

The authors created seven non-exclusive families of rules: (1) parts with identical shape,

differing only in size and/or orientation, (2) proximity and contact of parts, (3) intra-distance

in groups of parts, (4) symmetry of (group of) parts, (5) groups of parts of specific cardinality,

(6) inclusion of parts inside larger parts, and finally (7) ordering of parts along a line.

13

Chapter 2. Influence of the number of Training Examples and Features on Boosting

(a) Problem 1. (b) Problem 2.

(c) Problem 3. (d) Problem 4.

(e) Problem 5. (f) Problem 6.

(g) Problem 7. (h) Problem 8.

(i) Problem 9. (j) Problem 10.

(k) Problem 11. (l) Problem 12.

14

2.2. Experiments

(m) Problem 13. (n) Problem 14.

(o) Problem 15. (p) Problem 16.

(q) Problem 17. (r) Problem 18.

(s) Problem 19. (t) Problem 20.

(u) Problem 21. (v) Problem 22.

(w) Problem 23.

Figure 2.1 – A pair of positive (in green) and negative (in red) images from each of the 23 image
classification problems making up the Synthetic Visual Reasoning Test (SVRT).

15

Chapter 2. Influence of the number of Training Examples and Features on Boosting

We performed experiments using the AdaBoost algorithm using decision stumps (thresholded

feature; decision tree of depth 1) as weak learners with three groups of features of increasing

complexity. The features of group 1 just compute the number of black pixels over rectangular

areas in the image, features from group 2 are all related to the presence of edges in the image,

and the features from group 3 are related to the spectral properties of the image (Fourier and

wavelet coefficients). In the following we consider that feature group 2 includes group 1, and

similarly that group 3 includes groups 1 and 2.

We report in figure 2.2 and in table 2.1 the test error estimated on 10,000 images of classifiers

trained with different number of training examples (100, 1,000, and 10,000) and different set of

features. Even though the test error vary wildly from 0% (on problem 16) to 50% (on problem

21) depending on the problem, some trends are clear.

The performance of the AdaBoost classifier increases strictly with both the number of training

examples and the complexity of the features. The test error decreases logarithmically with the

number of training examples on all the problems, for example using all the features the mean

test errors across all problems are 49.6%, 34.0%, 23.0%, and 15.8% training respectively with

10, 100, 1,000, and 10,000 examples, as can be read in the last column of table 2.1. Considering

that a problem is ‘solved’ when its associated test error drops below 10%, no problem are

solved training with only 10 examples, 2 when training with 100 examples, 10 when training

with 1,000 examples, and 11 when training with 10,000 examples. The features used are also of

importance, as the mean test error using the basic black pixel counting features of group 1

only drops from 25.8% to 19.1% when using also the edge related features of group 2, and to

15.8% when using also the spectral features of group 3. Although the performance does not

strictly increase when using additional features (probably because of overfitting), it is very

close to be the case. Using the same criteria as previously, it is this time 2 problems which can

be solved using features from group 1, 8 when using group 2, and 11 using group 3.

The interpretation of these results is extremely difficult, as machine learning may rely on cues

which seem at first irrelevant to the actual structure of the problem. For instance, images from

problem 8 contain two closed shapes of different sizes. In positive images, the small shape is

enclosed by the larger one, while in negative images they stand next to each others. While the

rule involves reasoning about the spatial relations of the shapes, they can be approximately

separated looking only at the distribution of the black pixels, which will be more concentrated

for positive images and more spread out for negatives. Simply thresholding the variance of

the pixels leads to a 9% test error, already ‘solving’ the problem. Symmetry with respect to a

centered axis induces a more balanced repartition of the black pixels, as they can not anymore

be all located on one side of the said axis, although Fourier features also seem to be able to

help with the problem quite a bit.

All these cues provide information about the state of interest, but have a very indirect relation

to the underlying rule. In the end, a few exact geometrical properties are probably perceived

by the classification algorithm through a multitude of slightly unbalanced statistical cues.

16

2.2. Experiments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(a) Problem 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(b) Problem 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(c) Problem 3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(d) Problem 4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(e) Problem 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(f) Problem 6.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(g) Problem 7.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(h) Problem 8.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(i) Problem 9.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(j) Problem 10.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(k) Problem 11.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(l) Problem 12.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(m) Problem 13.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(n) Problem 14.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(o) Problem 15.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(p) Problem 16.

17

Chapter 2. Influence of the number of Training Examples and Features on Boosting

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(q) Problem 17.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(r) Problem 18.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(s) Problem 19.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(t) Problem 20.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(u) Problem 21.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(v) Problem 22.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4
10

2
 10

3
 10

4

c
u

m
u

la
te

d
 e

rr
o

rs

(w) Problem 23.

Figure 2.2 – The training and testing errors (in resp. orange and yellow), as well as the standard
deviations (in resp. dark blue and light blue) on each of the 23 image classification problems
making up the Synthetic Visual Reasoning Test (SVRT). There are 3 groups of 3 histograms for
each of the problem. Each group corresponds to the respective group of features, while the 3
histograms in a group corresponds to different amount of training examples (102, 103, 104).
No histogram for 101 examples as the errors are all 0 in training and 0.5 in testing.

Table 2.1 – Mean training and testing errors with their standard deviations (all in percent) on
all 23 problems of the Synthetic Visual Reasoning Test (SVRT), for the 3 feature groups and
different numbers of training examples.

Number of Group 1 Group 2 Group 3

examples Train Test Train Test Train Test

10 0 49.1±14.6 0 48.2±14.8 0 49.6±14.5

100 0 39.5±4.98 0 37.2±4.89 0 34.0±4.56

1,000 1.95±0.41 30.5±1.50 0.55±0.24 24.0±1.50 0 23.0±1.28

10,000 21.3±1.49 25.8±0.42 15.9±2.31 19.1±0.40 8.39±1.22 15.8±0.29

18

2.3. Conclusion

We also performed the same experiments using a Support Vector Machine (SVM) (Vapnik,

1995) with a Gaussian kernel, concatenating all the features together. We do not report the

results as they show the same trends that the ones of figure 2.2, and are on average weaker

(probably because the features were not weighted optimally).

The machine learning techniques we used for this study do not interpret the images as a

configuration of parts, each with its own variability, and with a complex model of their relative

positioning. That is why comparison with human subjects is embarrassing for the machine

learning classifier, as most participants could solve all problems looking at a few pairs of

examples only.

2.3 Conclusion

Both the number of training examples and the amount of features are critical to obtain good

performances. Increasing the number of features is the most direct strategy to reduce the

gap between humans and machine learning algorithms. The training time increasing at least

linearly with both, it is crucial to develop smarter training algorithms, able to train a classifier

efficiently in large scale scenarios.

19

3 Adaptive Sampling for Large Scale
Boosting

In this chapter we present our contributions to reduce the training time of Boosting algorithms.

Classical algorithms, such as AdaBoost, build a strong classifier without concern for the com-

putational cost. Some applications, in particular in computer vision, may involve millions of

training examples and very large feature spaces. In such contexts, the training time of off-the-

shelf Boosting algorithms may become prohibitive. Several methods exist to accelerate training,

typically either by sampling the features or the examples used to train the weak learners. Even

if some of these methods provide a guaranteed speed improvement, they offer no insurance of

being more efficient than any other, given the same amount of time.

Our contributions are twofold: (a) a strategy to better deal with the increasingly common case

where features come from multiple sources (e.g. color, shape, texture, etc., in the case of images)

and therefore can be partitioned into meaningful subsets; (b) new algorithms which estimate

at every Boosting iteration the optimal trade-off between the number of weak learners and

the number of training examples to look at in order to maximize the expected loss reduction.

Experiments in image classification and object recognition on four standard computer vision

datasets show that the adaptive methods we propose outperform basic sampling and state-of-

the-art bandit methods. Content presented in this chapter is based on the following publications

(Dubout and Fleuret, 2011a,b):

C. Dubout and F. Fleuret. Tasting families of features for image classification. In Interna-

tional Conference on Computer Vision, 2011.

C. Dubout and F. Fleuret. Boosting with maximum adaptive sampling. In Neural Infor-

mation Processing Systems, 2011.

21

3.1. Introduction

3.1 Introduction

Boosting is a simple and efficient machine learning algorithm which provides state-of-the-art

performance on many tasks. It consists of building a strong classifier as a linear combination

of weak learners, by adding them one after another in a greedy manner.

It has been repeatedly demonstrated that combining multiple kind of features addressing

different aspects of the signal is an extremely efficient strategy to improve performance (Opelt

et al., 2006; Gehler and Nowozin, 2009; Dubout and Fleuret, 2011a,b). As shown by our

experimental results, vanilla Boosting of stumps over multiple image features such as HOG,

LBP, color histograms, etc., usually reaches close to state-of-the-art performance. However,

such techniques entails a considerable computational cost, which increases with the number

of features considered during training.

The critical operations contributing to the computational cost of a Boosting iteration are

the computations of the features and the selection of the weak learner. Both depend on the

number of features and the number of training examples taken into account. While textbook

AdaBoost repeatedly selects each weak learner using all the features and all the training

examples for a predetermined number of rounds, one is not obligated to do so and can instead

choose to look only at a subset of both.

Since performance increases with both, one needs to balance the two to keep the computa-

tional cost under control. As Boosting progresses, the performance of the candidate weak

learners degrades, and they start to behave more and more similarly. While a small number of

training examples is initially sufficient to characterize the good ones, as the learning problems

become more and more difficult, optimal values for a fixed computational cost tend to move

towards smaller number of features and larger number of examples.

In this paper, we present three new families of algorithms to explicitly address these issues:

(1) Tasting (see § 3.4) uses a small number of features sampled prior to learning to adaptively

bias the sampling towards promising subsets at every step; (2) Maximum Adaptive Sampling

(see § 3.5.3) models the distribution of the weak learners’ performance and the noise in order

to determine the optimal trade-off between the number of weak learners and the number of

examples to look at; and (3) Laminating (see § 3.5.4) iteratively refines the learner selection

using more and more examples.

3.2 Related works

AdaBoost and similar Boosting algorithms estimate for each candidate weak learner a score

dubbed “edge”, which requires to loop through every training example and take into account

its weight, which reflects its current importance in the loss reduction. Reducing this computa-

tional cost is crucial to cope with high-dimensional feature spaces or very large training sets.

This can be achieved through two main strategies: sampling the training examples, or the

23

Chapter 3. Adaptive Sampling for Large Scale Boosting

feature space, since there is a direct relation between features and weak learners.

Sampling the training set was introduced historically to deal with weak learners which cannot

be trained with weighted examples (Freund and Schapire, 1996). This procedure consists

of sampling examples from the training set according to their Boosting weights, and of ap-

proximating a weighted average over the full set by a non-weighted average over the sampled

subset. It is related to Bootstrapping as similarly the training algorithm will sample harder

and harder examples based on the performance of the previous weak learners. See § 3.3 for

formal details. Such a procedure has been re-introduced recently for computational reasons

(Bradley and Schapire, 2007; Duffield et al., 2007; Kalal et al., 2008; Fleuret and Geman, 2008),

since the number of sampled examples controls the trade-off between statistical accuracy and

computational cost.

Sampling the feature space is the central idea behind LazyBoost (Escudero et al., 2000), and

simply consists of replacing the brute-force exhaustive search over the full feature set by an

optimization over a subset produced by sampling uniformly a predefined number of features.

The natural redundancy of most type of features makes such a procedure generally efficient.

However, if a subset of important features is too small, it may be overlooked during training.

Recently developed algorithms rely on multi-arms bandit methods to balance properly the

exploitation of features known to be informative, and the exploration of new features (Busa-

Fekete and Kegl, 2009, 2010). The idea behind those methods is to associate a bandit arm to

every feature, and to see the loss reduction as a reward. Maximizing the overall reduction is

achieved with a standard bandit strategy such as UCB (Auer et al., 2002), or Exp3.P (Auer et al.,

2003).

These techniques suffer from two important drawbacks. First they make the assumption that

the quality of a feature – the expected loss reduction of a weak learner using it – is stationary.

This goes against the underpinning of Boosting, which is that at any iteration the performance

of the weak learners is relative to the Boosting weights, which evolve over the training (Exp3.P

does not make such an assumption explicitly, but still rely exclusively on the history of past

rewards). Second, without additional knowledge about the feature space, the only structure

they can exploit is the stationarity of individual features. Hence, improvement over random

selection can only be achieved by sampling again the exact same features already seen in the

past. In our experiments, we therefore only use those methods in a context where features can

be partitioned into subsets of different types. This allows us to model the quality, and thus to

bias the sampling, at a higher level than individual features.

All those approaches exploit information about features to bias the sampling, hence making

it more efficient, and reducing the number of weak learners required to achieve the same

loss reduction. However, they do not explicitly aim at controlling the computational cost. In

particular, there is no notion of varying the number of examples used for the estimation of the

loss reduction.

24

3.3. Preliminaries

3.3 Preliminaries

We first present in this section some analytical results to approximate a standard round of

AdaBoost – or other similar Boosting algorithms – by sampling both the training examples and

the features used to build the weak learners. We then precise more formally what we mean by

subset of features or weak learners.

3.3.1 Standard Boosting

Given a binary training set

(xn , yn) ∈X × {−1, 1}, n = 1, . . . , N (3.1)

where X is the space of the “visible” signal, and a set H of weak learners of the form h : X →
{−1, 1}, the standard Boosting procedure consists of building a strong classifier

f =
T∑

t=1
αt ht (3.2)

by choosing the terms αt ∈ R and ht ∈ H in a greedy manner so as to minimize a loss (e.g.

the empirical exponential loss in the case of AdaBoost) estimated over the training examples.

At every iteration, choosing the optimal weak learner boils down to finding the one with the

largest edge ε, which is the derivative of the loss reduction w.r.t. the weak learner weight α.

The higher this value, the more the loss can be reduced locally, and thus the better the weak

learner. The edge is a linear function of the responses of the weak learner over the training

examples

ε(h) =
N∑

n=1
ω(n)ynh(xn) (3.3)

where the weights ω(n)s depend on the loss function (usually either the exponential or logistic

loss) and on the current responses of f over the xns. We consider without loss of generality that

they have been normalized such that
∑N

n=1ω(n) = 1. We can therefore consider the weights

ω(n)s as a distribution over the training examples and rewrite the edge as an expectation

ε(h) = EN∼ω(n)
[

yN h(xN)
]

(3.4)

where N ∼ω(n) stands for P(N = n) =ω(n). The idea of weighting-by-sampling (Fleuret and

Geman, 2008) consists of replacing the expectation in (3.4) with an approximation obtained

by sampling. Let N1, . . . , NS , be i.i.d. random variables distributed according to the discrete

probability density distribution defined by the ω(n)s, we define the approximated edge as

ε̂(h) = 1

S

S∑
s=1

yNs h(xNs) (3.5)

25

Chapter 3. Adaptive Sampling for Large Scale Boosting

which follows a binomial distribution centered on the true edge, with a variance decreasing

with the number of sampled examples S. It is accurately modeled by the Gaussian

ε̂(h) ≈N

(
ε(h),

(1+ε(h))(1−ε(h))

S

)
(3.6)

as the approximation holds asymptotically and the magnitude of the weak learners’ edges is

typically small, such that (1+ε(h))(1−ε(h)) ≈ 1.

3.3.2 Feature subsets

It frequently happens that the features making up the signal space X can be divided into

meaningful disjoint subsets Fk such that X =∪K
k=1Fk . This division can for example be the

result of the features coming from different sources or some natural clustering of the feature

space. In such a case it makes sense to use this information during training, as features coming

from the same subset Fk can typically be expected to be more homogeneous than features

coming from different subsets.

3.4 Tasting

We describe here our approach called Tasting (Dubout and Fleuret, 2011a) which biases the

sampling toward promising subsets of features. Tasting in its current form is limited to deal

with weak learner looking at only one feature, such as decision stumps. Extending it to deal

efficiently with weak learners looking at multiple features is outside of the scope of this work.

3.4.1 Main algorithm

The core idea of Tasting is to sample a small number R of features from every subset before

starting the training per se and, at every Boosting step, in using these few features together

with the current Boosting weights to get an estimate of the best subset(s) Fk (s) to use.

We cannot stress enough that these R features are not the ones used to build the classifier, they

are only used to figure out what is/are the best subset(s) at any time during training. As those

sampled features are independent and identically distributed samples of the feature response

vectors, we can compute the empirical mean of any functional of the said response vectors, in

particular the expected loss reduction.

At any Boosting step, Tasting require, for any feature subset, an estimate of the expectation of

the edge of the best weak learner we would obtain by sampling uniformly Q features from this

subset and picking the best weak learner using one of them,

EF1,...,FQ∼U (Fk)

[
Q

max
q=1

max
h∈HFq

ε(h)

]
(3.7)

26

3.4. Tasting

Algorithm 3.1 The Tasting 1.Q algorithm first samples uniformly R features from every subset
Fk . It uses these features at every Boosting step to find the optimal feature subset k∗ from
which to sample. After the selection of the Q features, the algorithm continues like AdaBoost.

Input: F , Q, R, T

Initialize: ∀k ∈ {1, . . . , K }, ∀r ∈ {1, . . . , R}, f k
r ← sample(U (Fk))

for t = 1, . . . , T do

∀k ∈ {1, . . . , K }, ∀r ∈ {1, . . . , R}, εk
r ← max

h∈H
f k
r

ε(h)

k∗ ← argmax
k

E

[
Q

max
q=1

εk
Rq

]
Computed using equation (3.10)

∀q ∈ {1, . . . , Q}, Fq ← sample(U (Fk∗))

ht ← argmax
h∈∪q HFq

ε(h)

. . .

end for

where Fk are the indices of the features belonging to the k-th subset and HF is the space

of weak learners looking solely at feature F . Hence maxh∈HFq
ε(h) is the best weak learner

looking solely at feature Fq , and maxQ
q=1 maxh∈HFq

ε(h) is the best weak learner looking solely

at one of the Q features F1, . . . ,FQ .

We can build an approximation of this quantity using the R features we have stored. Let

ε1, . . . ,εR be the edges of the best R weak learners built from these features. We make the

assumption without loss of generality that ε1 ≤ ε2 ≤ ·· · ≤ εR . Let R1, . . . ,RQ be independent

and identically distributed, uniform over {1, . . . ,R}. We approximate the quantity (3.7) with

E

[
Q

max
q=1

εRq

]
=

R∑
r=1

P

(
Q

max
q=1

Rq = r

)
εr (3.8)

=
R∑

r=1

[
P

(
Q

max
q=1

Rq ≤ r

)
−P

(
Q

max
q=1

Rq ≤ r −1

)]
εr (3.9)

= 1

RQ

R∑
r=1

[
r Q − (r −1)Q]

εr . (3.10)

3.4.2 Tasting variants

We propose two versions of the Tasting procedure, which differ in the number of feature

subsets they visit at every iteration. Either one for Tasting 1.Q or up to Q for Tasting Q.1.

In Tasting 1.Q (algorithm 3.1), the selection of the optimal subset k∗ from which to sample the

Q features is accomplished by estimating for every subset the expected maximum edge, which

is directly related to the expected loss reduction, if we were sampling from that subset only.

The computation is done over the R features saved before starting training, which serve as a

representation of the full set Fk .

27

Chapter 3. Adaptive Sampling for Large Scale Boosting

Algorithm 3.2 The Tasting Q.1 algorithm similarly starts by sampling uniformly R features
from every subset Fk , but it then uses them to find the optimal subset k∗

q for every one of the
Q features to sample at every Boosting step. After the selection of the Q features, the algorithm
continues like AdaBoost.

Input: F , Q, R, T

Initialize: ∀k ∈ {1, . . . , K }, ∀r ∈ {1, . . . , R}, f k
r ← sample(U (Fk))

for t = 1, . . . , T do

∀k ∈ {1, . . . , K }, ∀r ∈ {1, . . . , R}, εk
r ← max

h∈H
f k
r

ε(h)

ε∗ ← 0

for q = 1, . . . , Q do

k∗
q ← argmax

k
E
[

max
(
ε∗, εk

)]
Fq ← sample

(
U

(
Fk∗

q

))
ε∗ ← max

(
ε∗, max

h∈HFq

ε(h)

)
end for

ht ← argmax
h∈∪q HFq

ε(h)

. . .

end for

In Tasting Q.1 (see algorithm 3.2), it is not one but several feature subsets which can be

selected, as the algorithm picks the best subset k∗
q for every one of the Q features to sample,

given the best edge ε∗ achieved so far. Again the computation is done only over the R features

saved before starting training.

3.4.3 Relation with Bandit methods

The main strength of Boosting is its ability to spot and combine complementary features. If the

loss has already been reduced in a certain “functional direction”, the scores of weak learners

in the same direction will be low, and they will be rejected. For instance, the firsts learners

for a face detector may use color-based features to exploit the skin color. After a few Boosting

steps using this modality, color would be would be exhausted as a source of information, and

only examples with a non-standard face color would have large weights. Other features, for

instance edge-based, would become more informative, and be picked.

Uniform sampling of features accounts poorly for such behavior since it simply discards

the Boosting weights, and hence has no information whatsoever about the directions which

have “already been exploited” and which should be avoided. In practice, this means that the

rejection of bad feature can only be done at the level of the Boosting itself, which may end up

with a majority of useless features.

28

3.5. Maximum Adaptive Sampling and Laminating

Bandit methods (described in § 3.6.4) are slightly more adequate, as they model the perfor-

mance of every feature from previous iterations. However, this modeling takes into account

the Boosting weights very indirectly, as they make the assumption that the distributions of

loss reduction are stationary, while they are precisely not. Coming back to our face-detector

example, bandit methods would go on believing that color is informative since it was in the

previous iterations, even if the Boosting weights have specifically accumulated on faces where

color is now totally useless. While the estimate of loss reduction may asymptotically converge

to an adequate model, it is a severe weakness while the Boosting weights are still evolving.

Tasting addresses this weakness by keeping the ability to properly estimate the performance

of every feature subset, given the current Boosting weights, hence the ability to discard feature

subsets redundant with features already picked. In some sense, Tasting can be seen as Boosting

done at a the subset level.

3.5 Maximum Adaptive Sampling and Laminating

The algorithms in this section sample both the weak learners and the training examples at

every iteration in order to maximize the expectation of the loss reduction, under a strict

computational cost constraint.

3.5.1 Edge estimation

At every iteration they model the expectation of the edge of the selected weak learner. Let

ε1, . . . ,εQ stand for the true edges of Q independently sampled weak learners. Let ∆1, . . . ,∆Q

be a series of independent random variables standing for the noise in the estimation of the

edges due to the sampling of only S training examples. Finally ∀q , let ε̂q = εq +∆q be the

approximated edge. With these definitions, argmaxq ε̂q is the selected weak learner. We define

ε∗ as the true edge of the selected weak learner, that is the one with the highest approximated

edge

ε∗ = εargmaxq ε̂q . (3.11)

This quantity is random due to both the sampling of the weak learners, and the sampling of

the training examples. The quantity we want to optimize is E[ε∗], the expectation of the true

edge of the selected learner, which increases with both Q and S. A higher Q increases the

number of terms in the maximization of (3.11), while a higher S reduces the variance of the

∆s, ensuring that ε∗ is closer to maxq εq . In practice, if the variance of the ∆s is of the order of,

or higher than, the variance of the εs, the maximization is close to a random selection, and

29

Chapter 3. Adaptive Sampling for Large Scale Boosting

1
10

100
1,000

10,000

1
10

100
1,000

10,000

0

0.1

0.2

0.3

0.4

Number of examples SNumber of features Q

E
xp

ec
ta

tio
n

1
10

100
1,000

10,000

1
10

100
1,000

10,000

0

0.1

0.2

0.3

0.4

Number of examples SNumber of features Q

E
xp

ec
ta

tio
n

1 10 100 1,000 10,000
0

1

2

3

4

Number of features Q

E
xp

ec
ta

tio
n

fo
r

a
gi

ve
n

co
st

 Q
S

QS = 1,000

QS = 10,000

QS = 100,000

1 10 100 1,000 10,000
0

1

2

3

4

Number of features Q

E
xp

ec
ta

tio
n

fo
r

a
gi

ve
n

co
st

 Q
S

QS = 1,000

QS = 10,000

QS = 100,000

Expectation

QS = 1,000

QS = 10,000

QS = 100,000

Expectation

QS = 1,000

QS = 10,000

QS = 100,000

Figure 3.1 – Simulation of the expectation of ε∗ in the case where both the εq s and the ∆q s
follow Gaussian distributions. Top: εq ∼ N (0, 10−2). Bottom: εq ∼ N (0, 10−4). In both
simulations ∆q ∼N (0, 1

S). Left: expectation of ε∗ vs. the number of sampled learners Q and
the number of examples S. Right: same value as a function of Q alone, for different fixed costs
(product of Q and S). As these graphs illustrate, the optimal value for Q is greater for larger
variances of the εq s. In such a case the εq s are more spread out, and identifying the largest one
can be done despite a large noise in the estimations, hence with a limited number of training
examples.

looking at many weak learners is useless. Assuming that the ε̂q s are all different we have

E[ε∗] = E
[
εargmaxq ε̂q

]
(3.12)

=
Q∑

q=1
E

[
εq

∏
i 6=q

1{ε̂i<ε̂q }

]
(3.13)

=
Q∑

q=1
E

[
E

[
εq

∏
i 6=q

1{ε̂i<ε̂q }

∣∣∣∣∣ ε̂q

]]
(3.14)

=
Q∑

q=1
E

[
E
[
εq

∣∣ ε̂q
] ∏

i 6=q
E
[
1{ε̂i<ε̂q }

∣∣ ε̂q
]]

(3.15)

where the last equality follows from the independence of the weak learners.

3.5.2 Modeling the true edge

If the distributions of the εq s and the ∆q s are Gaussians or mixtures of Gaussians, we can

derive analytical expressions for both E[εq | ε̂q] and E
[
1{ε̂i<ε̂q }

∣∣ ε̂q
]
, and compute the value of

30

3.5. Maximum Adaptive Sampling and Laminating

E[ε∗] efficiently. In the case where weak learners can be partitioned into meaningful subsets,

it makes sense to model the distributions of the edges separately for each subset.

As an illustrative example, we consider here the case where the εq s, the ∆q s, and hence also

the ε̂q s all follow Gaussian distributions. We take εq ∼N (0,1) and ∆q ∼N (0,σ2) and obtain

E[ε∗] =Q E

[
E[ε1 | ε̂1]

∏
i 6=1

E
[
1{ε̂i<ε̂1}

∣∣ ε̂1
]]

(3.16)

=Q E

[
ε̂1

σ2 +1
Φ

(
ε̂1p
σ2 +1

)Q−1]
(3.17)

= Qp
σ2 +1

E
[
ε1Φ(ε1)Q−1] (3.18)

= 1p
σ2 +1

E

[
max

1≤q≤Q
εq

]
(3.19)

where Φ stands for the cumulative distribution function of the unit Gaussian, and σ typically

depends on S. See figure 3.1 for an illustration of the behavior of E[ε∗] for two different

variances of the εq s and a cost proportional to QS, the total number of features computed.

There is no reason to expect the distribution of the εq s to be Gaussian, contrary to the ∆q s,

as shown in (3.6), but this is not a problem as it can always be approximated by a mixture,

for which we can still derive analytical expressions, even if the εq s or the ∆q s have different

distributions for different qs.

3.5.3 M.A.S. variants

We created three algorithms modeling the distribution of the εq s with a Gaussian mixture

model, and∆q = ε̂q−εq as a Gaussian. The first one, M.A.S. naive, is described in Algorithm 3.3,

and fits the model to the edges estimated at the previous iteration.

The second one, M.A.S. 1.Q, takes into account the decomposition of the weak learners into

K subsets, associated to different kind of features. It models the distributions of the εq s

separately for each subset, estimating the distribution of each on a small number of weak

learners and examples sampled at the beginning of each Boosting iteration, chosen so as to

account for 10% of the total computational cost. From these models, it optimizes Q, S, and

the index k of the subset to sample from. Unlike M.A.S. naive, it has to draw a small number of

weak learners and examples in order to fit the model since the edges estimated at the previous

iterations came from a unique subset.

Finally M.A.S. Q.1 similarly models the distributions of the εq s, but it optimizes Q1, . . . , QK

greedily, starting from Q1 = 0, . . . ,QK = 0, and iteratively incrementing one of the Qk so as to

maximize E[ε∗]. This greedy procedure is repeated for different values of S and ultimately the

Q1, . . . , QK ,S leading to the maximum expectation are selected.

31

Chapter 3. Adaptive Sampling for Large Scale Boosting

Algorithm 3.3 The M.A.S. naive algorithm models the current edge distribution with a Gaus-
sian mixture model fitted on the edges estimated at the previous iteration. It uses this density
model to compute the pair (Q∗,S∗) maximizing the expectation of the true edge of the selected
learner E[ε∗], and then samples the corresponding number of weak learners and training
examples, before keeping the weak learner with the highest approximated edge. After the
selection of the Q features, the algorithm continues like AdaBoost.

Input: g mm,Cost

for t = 1, . . . ,T do

(Q∗,S∗) ← argmax
cost(Q,S)≤Cost

Eg mm[ε∗]

∀q ∈ {1, . . . ,Q∗}, Hq ← sample(U (H))

∀s ∈ {1, . . . ,S∗}, Ns ← sample(U ({1, . . . , N }))

∀q ∈ {1, . . . ,Q∗}, ε̂q ← 1

S∗
S∗∑

s=1
yNs Hq (xNs) # Similar to equation (3.5)

ht ← Hargmaxq ε̂q

g mm ← fit(ε̂1, . . . , ε̂Q∗)

. . .

end for

3.5.4 Laminating

The last algorithm we have developed tries to reduce the requirement for a density model

of the εq s. At every Boosting iteration it iteratively reduces the number of considered weak

learners, and increases the number of examples taken into account.

Given fixed Q and S, at every Boosting iteration, the Laminating algorithm first samples Q

weak learners and S training examples. Then, it computes the approximated edges and keeps

the Q
2 best learners. If more than one remains, it samples 2S examples, and re-iterates. The

whole process is described in Algorithm 3.4. The number of iterations is bounded by dlog2(Q)e.

We have the following results on the accuracy of this Laminating procedure (the proof is given

in Appendix A):

Lemma 1 Let q? = argmaxq εq and δ> 0. The probability for an iteration of the Laminating

algorithm to retain only weak learners with edges below or equal to εq? −δ is

P

(∣∣∣∣∣
{

q : εq ≤ εq? −δ, ε̂q ≥ max
r :εr ≥εq?−δ

ε̂r

}∣∣∣∣∣≥ Q

2

)
≤ 4exp

(
−δ

2S

2

)
.

This holds regardless of the independence of the εq s and/or the ∆q s.

Since at each iteration the number of examples S doubles the lemma implies the following

theorem (the proof is given in Appendix B):

Theorem 1 The probability for the full Laminating procedure starting with Q weak learners

32

3.5. Maximum Adaptive Sampling and Laminating

Algorithm 3.4 The Laminating algorithm starts by sampling Q weak learners and S examples
at the beginning of every Boosting iteration, and refine those by successively halving the
number of learners and doubling the number of examples until only one learner remains.
After the selection of the Q features, the algorithm continues like AdaBoost.

Input: Q,S

for t = 1, . . . ,T do

∀q ∈ {1, . . . ,Q}, Hq ← sample(U (H))

while Q > 1 do

∀s ∈ {1, . . . ,S}, Ns ← sample(U ({1, . . . , N }))

∀q ∈ {1, . . . ,Q}, ε̂q ← 1

S

S∑
s=1

yNs Hq (xNs) # Similar to equation (3.5)

sort(H1, . . . , HQ) s.t. ε̂1 ≥ ·· · ≥ ε̂Q # Order the weak learners s.t.

Q ← Q
2 # the best half comes first

S ← 2S

end while

. . .

end for

and S examples to end up with a learner with an edge below or equal to εq∗ −δ (the edge of the

optimal weak learner at the start of the procedure minus δ) is upper bounded by (the proof is

given in Appendix B)1

4

1−exp
(
−δ2S

69

) −4.

The theorem shows that as the number of samples grows, the probability to retain a bad weak

learner eventually goes down exponentially with the number of training examples, as in this

case the bound can be approximated by 4exp
(
−δ2S

69

)
. This confirms the usual relation between

the number of examples and the complexity of the space of predictors in learning theory.

In practice the difference between the maximum edge εq? and the edge of the final weak

learner selected by Laminating is typically smaller than the difference with the edge of a

learner selected by a strategy looking at a fixed number of weak learners and training examples,

as can be observed in figure 3.2.

1We thank Gilles Blanchard for suggesting an improvement of our initial result to get a bound which does not
depend on Q.

33

Chapter 3. Adaptive Sampling for Large Scale Boosting

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iterations

M
ea

n
ed

ge
 d

iff
er

en
ce

Q=3 S=60000
Q=784 S=230
Laminating

(a) QS = 180,000.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Iterations

M
ea

n
ed

ge
 d

iff
er

en
ce

Q=10 S=60000
Q=784 S=765
Laminating

(b) QS = 600,000.

Figure 3.2 – Difference between the maximum edge and the best edge found by 3 different
sampling strategies on the MNIST dataset using the original features. The algorithm used is
AdaBoost.MH using T = 100 decision stumps as weak learners, and the results were averaged
over 10 randomized runs. The first strategy samples uniformly a small number of features
Q and determines the best one using all S = 60,000 training examples. The second strategy
samples all Q = 784 features and determines the best one using a small number of training
examples S. The third strategy is Laminating, starting from all the features and a suitable
number of training examples chosen so as to have the same cost as the first two strategies.
The cost is the product of Q and S and is set to QS = 180,000 in (1) and QS = 600,000 in (b).

34

3.6. Experiments

3.6 Experiments

We demonstrate the effectiveness of our approaches on four standard image classification

and object detection datasets, using 19 kinds of features (33 on Caltech 101) divided in as

many subsets. We used the AdaBoost.MH algorithm (Schapire and Singer, 1999) with decision

stumps as weak learners to be able to use all methods in the same conditions.

3.6.1 Features

The features used in our experiments with all but the Caltech 101 dataset can be divided

into three categories. (1) Image transforms: identity, grayscale conversion, Fourier and Haar

transforms, gradient image, local binary patterns (ILBP/LBP). (2) Intensity histograms: sums

of the intensities in random image patches, grayscale and color histograms of the entire image.

(3) Gradient histograms: histograms of (oriented and non oriented) gradients, Haar-like

features.

The features from the first category typically have a large dimensionality, usually proportional

to the number of pixels in the image. Some of them do not pre-process the images (identity,

grayscale conversion, LBP, etc.) while some pre-transform them to another space, prior to

accessing any feature (typically the Fourier and Haar transforms).

Features from the second and third categories being histograms, they are usually much smaller

(containing typically of the order of a few hundreds to a few thousands coefficients), but require

some pre-processing to build the histograms.

For the Caltech 101 dataset we used the same features as (Gehler and Nowozin, 2009) in their

experiments. They used five type of features: PHOG shape descriptors, appearance (SIFT)

descriptors, region covariance, local binary patterns, and V1S+, which are normalized Gabor

filters. More details can be found in the referenced paper. Those features are computed in

a spatial pyramid, where each scale of the pyramid is considered as being part of a different

subset, leading to a total of 33 features. The number of features used in our experiments (33)

differ from (Gehler and Nowozin, 2009) as they also compute a ‘subwindow-kernel’ of SIFT

features which we did not use.

3.6.2 Datasets

The first dataset that we used is the MNIST handwritten digits database (LeCun et al., 1998b).

It is composed of 10 classes and its training and testing sets consist respectively of 60,000 and

10,000 grayscale images of resolution 28×28 pixels (see the upper left part of figure 3.3 for

some examples). The total number of features on this dataset is 16,775.

The second dataset that we used is the INRIA Person dataset (Dalal and Triggs, 2005). It

is composed of a training and a testing set respectively of 2,418 and 1,126 color images of

35

Chapter 3. Adaptive Sampling for Large Scale Boosting

Figure 3.3 – Example images from the four datasets used for the experimental validation. Top
left: first image of every digit taken from the MNIST database. Top right: images from the
INRIA Person dataset. Bottom left: random images from the Caltech 101 dataset. Bottom right:
some of the first images of the CIFAR-10 dataset.

pedestrians of dimensions 64×128 pixels cropped from real-world photographs, along with

1,219 and 453 “background” images not containing any people (see the upper right part

of figure 3.3 for some examples). We extracted 10 negative samples from each one of the

background image, following the setup of (Dalal and Triggs, 2005). The total number of

features on this dataset is 230,503.

The third dataset that we used is Caltech 101 (Fei-Fei et al., 2004) due to its wide usage and

the availability of already computed features (Gehler and Nowozin, 2009). It consists of color

images of various dimensions organized in 101 object classes (see the bottom left part of

figure 3.3 for some examples). We sampled 15 training examples and 20 distinct test examples

from every class, as advised on the dataset website. The total number of features on this

dataset is 360,630.

The fourth and last dataset that we used is CIFAR-10 (Krizhevsky, 2009). It is a labeled subset of

the 80 tiny million images dataset. It is composed of 10 classes and its training and testing sets

consist respectively of 50,000 and 10,000 color images of size 32×32 pixels (see the bottom left

part of figure 3.3 for some examples). The total number of features on this dataset is 29,879.

3.6.3 Uniform sampling baselines

A naive sampling strategy would pick the Q features uniformly in ∪kFk . However, this does

not distribute the sampling properly among the Fk s. In the extreme case, if one of the Fk

had a far greater cardinality than the others, all features would come from it. And in most

contexts, mixing features from the different Fk s in an equilibrate manner is critical to benefit

from their complementarity. We propose the four following baselines to pick a good feature at

36

3.6. Experiments

every Boosting step:

• Best subset picks Q features at random in a fixed subset, the one with the smallest final

Boosting loss.

• Uniform Naive picks Q features at random, uniformly in ∪kFq .

• Uniform 1.Q picks one of the feature subsets at random, and then samples the Q features

from that single subset.

• Uniform Q.1 picks at random, uniformly, Q subsets of features (with replacement if

Q > K), and then picks one feature uniformly in each subset.

The cost of running Best subset is K times higher than running the other three strategies since

the subset leading to the smallest final Boosting loss is not known a priori. Also, since it makes

use of one subset only we can expect its final performance to be lower than the others. It was

included for comparison only.

3.6.4 Bandit sampling baselines

The strategies of the previous section are purely random and do not exploit any kind of

information to bias their sampling. Smarter strategies to deal with the problem of exploration-

exploitation trade-off were first introduced in (Busa-Fekete and Kegl, 2009), and extended in

(Busa-Fekete and Kegl, 2010). The driving idea of these papers is to entrust a multi-armed

bandits (MAB) algorithm (respectively UCB in (Auer et al., 2002) and Exp3.P in (Auer et al.,

2003)) with the mission to sample useful features.

The multi-armed bandits problem is defined as follows: there are M gambling machines (i.e.

the “arms” of the bandits), and at every time-step t the gambler chooses an arm jt , pulls it,

and receives a reward r t
jt
∈ [0,1]. The goal of the algorithm is to minimize the weak-regret,

that is the difference between the reward obtained by the gambler and the best fixed arm,

retrospectively.

The first weakness of these algorithms in the context of accelerating Boosting, identified in

§ 3.2, is the assumption of stationarity of the loss reduction, which cannot be easily dealt with.

Even though the Exp3.P algorithm does not make such an assumption explicitly, it still ignores

the Boosting weights, and thus can only rely on the history of past rewards.

The second weakness, the application context, can be addressed in our setting by learning the

usefulness of the subsets instead of individual features.

A third weakness is that in Boosting one aims at minimizing the loss (which translates into

maximizing the sum of the rewards for the bandit algorithm), and not at minimizing the

weak-regret.

37

Chapter 3. Adaptive Sampling for Large Scale Boosting

Finally, another issue arises when trying to use those algorithms in practice. As they use some

kind of confidence intervals, the scale of the rewards matters greatly. For example, if all the

rewards obtained are very small (∀t ,r t ≤ ε¿ 1), the algorithms will not learn anything, as they

expect rewards to make full use of the range [0,1].

For this reason we set the bandit baselines’ meta-parameters to the ones leading to the lowest

loss a posteriori, as explained in § 3.6.5, and use a third multi-armed bandit algorithm in our

experiments, ε-greedy (Auer et al., 2002), which does not suffer from this problem.

Hence, we use in our experiments the three following baselines, using the same reward as in

(Busa-Fekete and Kegl, 2010):

• UCB picks Q features from the subset that maximizes r̄ j +
√

(2logn)/n j , where r̄ j is the

current average reward of subset j , n j is the number of times subset j was chosen so far,

and n is the current Boosting round.

• Epx3.P maintains a distribution of weights over the feature subsets, and at every round

picks one subset accordingly, obtains a reward, and updates the distribution. For the

precise definition of the algorithm, see (Auer et al., 2003; Busa-Fekete and Kegl, 2010).

• ε-greedy picks Q features from the subset with the highest current average reward with

probability 1−εn , or from a random subset with probability εn , where εn = cK
d 2n , and c

and d are parameters of the algorithm.

3.6.5 Results

We tested all the proposed methods of § 3.4, § 3.5.3, and § 3.5.4 against the baselines described

in § 3.6.3 and § 3.6.4 on the four benchmark datasets described above in § 3.6.2 using the

standard train/test cuts and all the features of § 3.6.1. We report the results of doing up to

10,000 Boosting rounds averaged through ten randomized runs in tables 3.1–3.8 and figures 3.4–

3.11. We used as cost for all the algorithms the number of evaluated features, that is for each

Boosting iteration QS, the number of sampled features times the number of sampled examples.

For the Laminating algorithm we multiplied this cost by the number of iterations dlog2(Q)e. We

set the maximum cost of all the algorithms to 10N , setting Q = 10 and S = N for the baselines,

as this configuration leads to the best results after 10,000 Boosting rounds.

The parameters of the baselines – namely the scale of the rewards for UCB and Exp3.P, and the

c/d 2 ratio of ε-greedy – were optimized by trying all values of the form 2n ,n = {0,1, ...,11}, and

keeping the one leading to the smallest final Boosting loss on the training set, which is unfair

to the uniform baselines as well as our methods. We set the values of the parameters of Exp3.P

to η= 0.3 and λ= 0.15 as recommended in (Busa-Fekete and Kegl, 2010).

Tasting requires only one parameter to be set, the number R of features to initially store from

each family. We used the value R = 100 in all our experiments, but we observed that setting it

38

3.7. Conclusion

to 10 only marginally affects them, increasing the test error by less than 0.02% on average, and

reducing the (logarithm of) the loss by less than 3%.

These results illustrate the efficiency of the proposed methods. Up to 1,000 Boosting rounds,

the Laminating algorithms is the clear winner on three out of the four datasets. Then come

the M.A.S. and the Tasting procedures, still performing far better than the baselines. On the

Caltech 101 dataset the situation is different. Since it contains a much smaller number of

training examples compared to the other datasets (1515 versus several tens of thousands),

there is no advantage in sampling examples. It even proves detrimental as the M.A.S. and

Laminating methods are beaten by the baselines after 1,000 iterations.

The performance of all the methods tends to get similar for 10,000 stumps, which is unusually

large. The Tasting algorithm appears to fare the best, sampling examples offering no speed

gain for such a large number of Boosting steps, except on the INRIA Person dataset. On this

dataset the Laminating algorithm still dominates, although its advantage in loss reduction

does not translate into a lower test error anymore.

3.7 Conclusion

We have improved Boosting by modeling the statistical behavior of the weak learners’ edges.

This allowed us to maximize the loss reduction under strict control of the computational cost.

Experiments demonstrate that the algorithms perform well on real-world classification tasks.

Extensions of the proposed methods could be investigated along two axes. The first one is to

merge the best two methods by adding a Tasting component to the Laminating procedure, in

order to bias the sampling towards promising feature subsets. The second is to add a bandit-

like component to the methods by adding a variance term related to the lack of samples, and

their obsolescence in the Boosting process. This would account for the degrading density

estimation when subsets have not been sampled for a while, and induce an exploratory

sampling which may be missing in the current algorithms.

39

Chapter 3. Adaptive Sampling for Large Scale Boosting

Table 3.1 – Mean Boosting loss (log10) after various number of steps on MNIST with all families
of features (standard deviations are in between parentheses). Methods with a ? require the
tuning of meta-parameters, which have been optimized by training multiple times.

T = 10 T = 100 T = 1,000 T = 10,000

Best family? -0.426 (0.018) -0.947 (0.014) -1.84 (0.008) -4.84 (0.006)

Uniform Naive -0.379 (0.010) -0.847 (0.015) -1.74 (0.010) -5.37 (0.014)

Uniform 1.Q -0.355 (0.025) -0.750 (0.015) -1.51 (0.011) -3.90 (0.020)

Uniform Q.1 -0.384 (0.021) -0.857 (0.017) -1.72 (0.006) -5.06 (0.015)

UCB? -0.398 (0.019) -0.786 (0.009) -1.64 (0.008) -5.54 (0.009)

Exp3.P? -0.363 (0.030) -0.769 (0.034) -1.66 (0.043) -5.42 (0.032)

ε-greedy? -0.371 (0.023) -0.877 (0.020) -1.78 (0.035) -5.45 (0.100)

Tasting 1.Q -0.427 (0.020) -0.963 (0.012) -1.91 (0.007) -5.90 (0.013)

Tasting Q.1 -0.437 (0.017) -0.968 (0.013) -1.91 (0.009) -5.91 (0.020)

M.A.S. Naive -0.508 (0.019) -1.008 (0.011) -1.80 (0.015) -5.06 (0.016)

M.A.S. 1.Q -0.475 (0.021) -0.978 (0.016) -1.74 (0.008) -4.15 (0.020)

M.A.S. Q.1 -0.429 (0.025) -0.981 (0.009) -1.78 (0.010) -4.51 (0.018)

Laminating -0.549 (0.009) -1.099 (0.009) -2.00 (0.005) -5.87 (0.014)

Table 3.2 – Mean test error (%) after various number of Boosting steps on MNIST with all
families of features (standard deviations are in between parentheses). Methods with a ?
require the tuning of meta-parameters, which have been optimized by training multiple times.

T = 10 T = 100 T = 1,000 T = 10,000

Best family? 36.5 (3.56) 5.77 (0.24) 1.47 (0.073) 0.916 (0.038)

Uniform Naive 45.3 (2.12) 7.80 (0.50) 1.64 (0.079) 0.931 (0.050)

Uniform 1.Q 49.4 (5.01) 10.80 (0.83) 2.18 (0.096) 1.076 (0.059)

Uniform Q.1 43.0 (3.61) 7.40 (0.49) 1.70 (0.108) 0.970 (0.048)

UCB? 41.9 (4.46) 9.67 (0.32) 1.86 (0.077) 0.940 (0.048)

Exp3.P? 47.9 (5.98) 10.27 (1.24) 1.79 (0.124) 0.923 (0.055)

ε-greedy? 45.9 (5.24) 7.04 (0.62) 1.57 (0.145) 0.882 (0.030)

Tasting 1.Q 36.0 (2.66) 5.38 (0.23) 1.41 (0.106) 0.920 (0.040)

Tasting Q.1 34.7 (2.49) 5.31 (0.27) 1.36 (0.068) 0.938 (0.036)

M.A.S. Naive 26.3 (2.07) 4.78 (0.15) 1.54 (0.074) 0.960 (0.047)

M.A.S. 1.Q 29.9 (2.90) 5.21 (0.42) 1.63 (0.082) 1.036 (0.039)

M.A.S. Q.1 35.7 (3.50) 5.21 (0.19) 1.68 (0.060) 1.013 (0.052)

Laminating 21.9 (0.85) 3.85 (0.21) 1.35 (0.077) 0.964 (0.049)

40

3.7. Conclusion

Table 3.3 – Mean Boosting loss (log10) after various number of steps on INRIA Person with
all families of features (standard deviations are in between parentheses). Methods with a ?
require the tuning of meta-parameters, which have been optimized by training multiple times.

T = 10 T = 100 T = 1,000 T = 10,000

Best family? -0.338 (0.037) -0.935 (0.039) -3.72 (0.038) -26.9 (0.091)

Uniform Naive -0.309 (0.022) -0.861 (0.054) -3.92 (0.074) -31.9 (0.305)

Uniform 1.Q -0.304 (0.031) -1.009 (0.029) -4.86 (0.131) -40.0 (0.388)

Uniform Q.1 -0.304 (0.031) -1.009 (0.029) -4.86 (0.131) -40.0 (0.388)

UCB? -0.349 (0.029) -1.081 (0.045) -5.47 (0.142) -49.3 (0.288)

Exp3.P? -0.307 (0.027) -0.915 (0.041) -4.53 (0.106) -44.7 (0.560)

ε-greedy? -0.344 (0.015) -1.113 (0.080) -5.92 (0.180) -49.3 (0.856)

Tasting 1.Q -0.398 (0.026) -1.297 (0.034) -6.54 (0.117) -55.1 (0.499)

Tasting Q.1 -0.398 (0.026) -1.297 (0.034) -6.54 (0.117) -55.1 (0.499)

M.A.S. Naive -0.459 (0.025) -1.502 (0.039) -7.23 (0.106) -60.4 (0.415)

M.A.S. 1.Q -0.413 (0.052) -1.454 (0.063) -6.87 (0.059) -55.9 (0.322)

M.A.S. Q.1 -0.413 (0.052) -1.454 (0.063) -6.87 (0.059) -55.9 (0.322)

Laminating -0.558 (0.034) -2.054 (0.052) -11.24 (0.109) -99.9 (0.205)

Table 3.4 – Mean test error (%) after various number of Boosting steps on INRIA Person with
all families of features (standard deviations are in between parentheses). Methods with a ?
require the tuning of meta-parameters, which have been optimized by training multiple times.

T = 10 T = 100 T = 1,000 T = 10,000

Best family? 12.18 (1.55) 3.29 (0.525) 1.195 (0.097) 1.004 (0.046)

Uniform Naive 13.40 (0.83) 4.87 (0.400) 1.268 (0.167) 0.532 (0.050)

Uniform 1.Q 13.96 (1.29) 3.92 (0.405) 0.691 (0.088) 0.331 (0.038)

Uniform Q.1 13.96 (1.29) 3.92 (0.405) 0.691 (0.088) 0.331 (0.038)

UCB? 12.05 (1.24) 3.17 (0.242) 0.613 (0.046) 0.304 (0.040)

Exp3.P? 13.61 (1.61) 4.09 (0.470) 0.794 (0.086) 0.324 (0.037)

ε-greedy? 12.88 (0.75) 2.89 (0.475) 0.537 (0.073) 0.343 (0.038)

Tasting 1.Q 11.24 (0.98) 2.33 (0.175) 0.566 (0.035) 0.320 (0.033)

Tasting Q.1 11.24 (0.98) 2.33 (0.175) 0.566 (0.035) 0.320 (0.033)

M.A.S. Naive 8.80 (0.82) 1.66 (0.118) 0.438 (0.056) 0.269 (0.034)

M.A.S. 1.Q 10.12 (1.26) 1.82 (0.227) 0.497 (0.053) 0.276 (0.027)

M.A.S. Q.1 10.12 (1.26) 1.82 (0.227) 0.497 (0.053) 0.276 (0.027)

Laminating 6.85 (0.73) 1.12 (0.087) 0.389 (0.044) 0.301 (0.026)

41

Chapter 3. Adaptive Sampling for Large Scale Boosting

Table 3.5 – Mean Boosting loss (log10) after various number of steps on Caltech 101 with all
families of features (standard deviations are in between parentheses). Methods with a ?
require the tuning of meta-parameters, which have been optimized by training multiple times.

T = 10 T = 100 T = 1,000 T = 10,000

Best family? -0.798 (0.003) -1.44 (0.010) -7.17 (0.042) -65.5 (0.41)

Uniform Naive -0.791 (0.005) -1.40 (0.008) -6.81 (0.036) -61.8 (0.39)

Uniform 1.Q -0.786 (0.010) -1.36 (0.011) -5.84 (0.065) -49.6 (0.45)

Uniform Q.1 -0.809 (0.003) -1.44 (0.008) -6.74 (0.052) -59.2 (0.51)

UCB? -0.814 (0.002) -1.40 (0.007) -6.46 (0.061) -61.6 (0.54)

Exp3.P? -0.786 (0.012) -1.34 (0.017) -5.89 (0.072) -54.4 (0.60)

ε-greedy? -0.810 (0.005) -1.42 (0.014) -7.26 (0.068) -67.1 (0.54)

Tasting 1.Q -0.823 (0.004) -1.50 (0.009) -7.47 (0.057) -68.1 (0.44)

Tasting Q.1 -0.822 (0.004) -1.50 (0.007) -7.46 (0.024) -68.1 (0.35)

M.A.S. Naive -0.803 (0.005) -1.43 (0.009) -6.70 (0.046) -59.1 (0.51)

M.A.S. 1.Q -0.779 (0.002) -1.01 (0.006) -2.04 (0.033) -29.5 (0.42)

M.A.S. Q.1 -0.796 (0.003) -1.21 (0.008) -5.01 (0.123) -42.7 (0.65)

Laminating -0.813 (0.004) -1.43 (0.011) -6.33 (0.091) -54.4 (0.55)

Table 3.6 – Mean test error (%) after various number of Boosting steps on Caltech 101 with
all families of features (standard deviations are in between parentheses). Methods with a ?
require the tuning of meta-parameters, which have been optimized by training multiple times.

T = 10 T = 100 T = 1,000 T = 10,000

Best family? 95.2 (0.87) 79.4 (1.36) 56.7 (1.05) 41.9 (0.60)

Uniform Naive 95.8 (0.41) 80.3 (1.27) 55.6 (0.83) 38.8 (0.85)

Uniform 1.Q 95.9 (0.78) 79.0 (0.97) 54.2 (0.75) 40.8 (0.93)

Uniform Q.1 94.2 (0.53) 76.5 (1.28) 51.8 (0.94) 37.6 (1.06)

UCB? 94.2 (0.90) 78.6 (0.70) 52.6 (1.21) 37.0 (1.11)

Exp3.P? 95.8 (0.87) 80.3 (0.82) 54.7 (0.75) 40.6 (0.94)

ε-greedy? 94.8 (0.48) 76.7 (1.07) 50.6 (0.65) 37.4 (0.96)

Tasting 1.Q 93.8 (0.90) 74.2 (0.71) 50.7 (1.22) 35.3 (0.83)

Tasting Q.1 93.9 (0.82) 74.5 (1.34) 50.5 (0.52) 35.5 (0.99)

M.A.S. Naive 94.3 (0.65) 76.2 (1.26) 51.8 (1.20) 37.9 (1.06)

M.A.S. 1.Q 96.4 (0.73) 90.5 (0.78) 85.9 (0.75) 53.6 (1.03)

M.A.S. Q.1 95.2 (0.93) 85.7 (0.24) 58.8 (0.61) 44.5 (0.98)

Laminating 94.3 (0.63) 77.0 (1.10) 53.0 (0.76) 38.4 (1.05)

42

3.7. Conclusion

Table 3.7 – Mean Boosting loss (log10) after various number of steps on CIFAR 10 with all
families of features (standard deviations are in between parentheses). Methods with a ?
require the tuning of meta-parameters, which have been optimized by training multiple times.

T = 10 T = 100 T = 1,000 T = 10,000

Best family? -0.268 (0.005) -0.331 (0.002) -0.434 (0.001) -0.666 (0.000)

Uniform Naive -0.262 (0.005) -0.337 (0.003) -0.478 (0.001) -0.928 (0.001)

Uniform 1.Q -0.255 (0.006) -0.331 (0.004) -0.467 (0.003) -0.843 (0.001)

Uniform Q.1 -0.266 (0.004) -0.344 (0.002) -0.486 (0.001) -0.911 (0.001)

UCB? -0.271 (0.004) -0.336 (0.002) -0.486 (0.002) -0.899 (0.001)

Exp3.P? -0.256 (0.007) -0.329 (0.003) -0.475 (0.002) -0.860 (0.008)

ε-greedy? -0.261 (0.005) -0.349 (0.003) -0.490 (0.003) -0.884 (0.009)

Tasting 1.Q -0.276 (0.002) -0.360 (0.002) -0.501 (0.001) -0.946 (0.002)

Tasting Q.1 -0.277 (0.003) -0.362 (0.002) -0.503 (0.001) -0.950 (0.001)

M.A.S. Naive -0.278 (0.004) -0.354 (0.003) -0.489 (0.001) -0.912 (0.001)

M.A.S. 1.Q -0.280 (0.003) -0.350 (0.003) -0.447 (0.002) -0.632 (0.002)

M.A.S. Q.1 -0.279 (0.002) -0.351 (0.002) -0.446 (0.002) -0.619 (0.001)

Laminating -0.290 (0.002) -0.373 (0.001) -0.498 (0.001) -0.880 (0.001)

Table 3.8 – Mean test error (%) after various number of Boosting steps on CIFAR 10 with all
families of features (standard deviations are in between parentheses). Methods with a ?
require the tuning of meta-parameters, which have been optimized by training multiple times.

T = 10 T = 100 T = 1,000 T = 10,000

Best family? 73.6 (1.47) 57.4 (0.52) 44.8 (0.22) 40.2 (0.20)

Uniform Naive 74.9 (1.09) 55.9 (0.70) 38.9 (0.46) 32.2 (0.35)

Uniform 1.Q 76.6 (1.45) 57.5 (1.00) 39.9 (0.46) 31.3 (0.30)

Uniform Q.1 74.3 (1.62) 53.8 (0.23) 37.6 (0.42) 30.9 (0.27)

UCB? 73.3 (1.18) 56.2 (0.48) 37.7 (0.52) 30.6 (0.36)

Exp3.P? 77.2 (2.67) 58.0 (0.70) 38.9 (0.56) 30.3 (0.32)

ε-greedy? 75.8 (1.89) 53.4 (0.67) 37.1 (0.49) 30.0 (0.34)

Tasting 1.Q 72.6 (1.02) 50.9 (0.49) 36.2 (0.29) 31.7 (0.24)

Tasting Q.1 71.8 (1.00) 50.9 (0.70) 36.3 (0.44) 31.5 (0.20)

M.A.S. Naive 71.9 (1.08) 52.5 (0.38) 37.5 (0.23) 31.0 (0.31)

M.A.S. 1.Q 70.7 (1.42) 53.3 (0.84) 40.5 (0.44) 33.8 (0.34)

M.A.S. Q.1 71.4 (0.80) 52.7 (0.46) 40.4 (0.47) 34.1 (0.24)

Laminating 67.8 (0.92) 49.1 (0.41) 36.8 (0.20) 31.5 (0.32)

43

Chapter 3. Adaptive Sampling for Large Scale Boosting

10
-1

10
0

10
1

10
2

10
3

10
4

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
o

o
st

in
g

 l
o

ss

Iterations

Best subset
Uniform naive

Uniform 1.Q
Uniform Q.1

AdaBoost.UCB
AdaBoost.Exp3P

ε-greedy
Tasting 1.Q
Tasting Q.1

M.A.S. naive
M.A.S. 1.Q
M.A.S. Q.1
Laminating

Figure 3.4 – Mean Boosting loss on the MNIST dataset.

44

3.7. Conclusion

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
es

t
er

ro
r

Iterations

Best subset
Uniform naive

Uniform 1.Q
Uniform Q.1

AdaBoost.UCB
AdaBoost.Exp3P

ε-greedy
Tasting 1.Q
Tasting Q.1

M.A.S. naive
M.A.S. 1.Q
M.A.S. Q.1
Laminating

Figure 3.5 – Mean test error on the MNIST dataset.

45

Chapter 3. Adaptive Sampling for Large Scale Boosting

10
-90

10
-80

10
-70

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
o

o
st

in
g

 l
o

ss

Iterations

Best subset
Uniform naive

Uniform 1.Q
Uniform Q.1

AdaBoost.UCB
AdaBoost.Exp3P

ε-greedy
Tasting 1.Q
Tasting Q.1

M.A.S. naive
M.A.S. 1.Q
M.A.S. Q.1
Laminating

Figure 3.6 – Mean Boosting loss on the INRIA Person dataset.

46

3.7. Conclusion

 0

 0.005

 0.01

 0.015

 0.02

 0.025

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
es

t
er

ro
r

Iterations

Best subset
Uniform naive

Uniform 1.Q
Uniform Q.1

AdaBoost.UCB
AdaBoost.Exp3P

ε-greedy
Tasting 1.Q
Tasting Q.1

M.A.S. naive
M.A.S. 1.Q
M.A.S. Q.1
Laminating

Figure 3.7 – Mean test error on the INRIA Person dataset.

47

Chapter 3. Adaptive Sampling for Large Scale Boosting

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
o

o
st

in
g

 l
o

ss

Iterations

Best subset
Uniform naive

Uniform 1.Q
Uniform Q.1

AdaBoost.UCB
AdaBoost.Exp3P

ε-greedy
Tasting 1.Q
Tasting Q.1

M.A.S. naive
M.A.S. 1.Q
M.A.S. Q.1
Laminating

Figure 3.8 – Mean Boosting loss on the Caltech 101 dataset.

48

3.7. Conclusion

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
es

t
er

ro
r

Iterations

Best subset
Uniform naive

Uniform 1.Q
Uniform Q.1

AdaBoost.UCB
AdaBoost.Exp3P

ε-greedy
Tasting 1.Q
Tasting Q.1

M.A.S. naive
M.A.S. 1.Q
M.A.S. Q.1
Laminating

Figure 3.9 – Mean test error on the Caltech 101 dataset.

49

Chapter 3. Adaptive Sampling for Large Scale Boosting

6·10
3

7·10
3

8·10
3

9·10
3

1·10
4

2·10
4

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
o

o
st

in
g

 l
o

ss

Iterations

Best subset
Uniform naive

Uniform 1.Q
Uniform Q.1

AdaBoost.UCB
AdaBoost.Exp3P

ε-greedy
Tasting 1.Q
Tasting Q.1

M.A.S. naive
M.A.S. 1.Q
M.A.S. Q.1
Laminating

Figure 3.10 – Mean Boosting loss on the CIFAR-10 dataset.

50

3.7. Conclusion

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
es

t
er

ro
r

Iterations

Best subset
Uniform naive

Uniform 1.Q
Uniform Q.1

AdaBoost.UCB
AdaBoost.Exp3P

ε-greedy
Tasting 1.Q
Tasting Q.1

M.A.S. naive
M.A.S. 1.Q
M.A.S. Q.1
Laminating

Figure 3.11 – Mean test error on the CIFAR-10 dataset.

51

Object Detection in High Dimensional
Feature Space

Part II

53

4 Accelerated Evaluation of Linear Ob-
ject Detectors

In this chapter we present our contributions to speed up the evaluation of a broad range of linear

object detectors. The main bottleneck of many of those systems is the computational cost of the

convolutions between the features extracted from the image to process, and the linear filters. The

intuition underpinning our strategy is to replace convolutions by point-wise multiplications in

the Fourier domain, to reuse forward transforms across images and filters, and to exploit the

linearity property of the Fourier transform to reduce the number of inverse transforms. This

linearity property allows us to switch the order of summations and inverse Fourier transforms

(which are expensive to compute as they are in Θ(N log N) and require to shuffle a lot of data

around), reducing the number of inverse transforms drastically. Additional advantages of using

the Fourier transform to compute convolutions besides computational efficiency are its better

numerical accuracy and its cost remaining constant with respect to the filter size. Content

presented in this chapter is based on the following publication (Dubout and Fleuret, 2012a):

C. Dubout and F. Fleuret. Exact Acceleration of Linear Object Detectors. In Computer

Vision – ECCV 2012, volume 7574 of Lecture Notes in Computer Science, pages 301–311.

Springer Berlin Heidelberg, 2012.

55

4.1. Introduction

4.1 Introduction

A common technique for object detection is to apply a binary classifier at every possible

position and scale of an image in a sliding-window fashion. However, searching the entire

search space, even with a simple detector can be slow, especially if a large number of image

features are used.

To that end, linear classifiers have gained a huge popularity in the last few years. Their simplic-

ity allows for very large scale training and relatively fast testing, as they can be implemented in

terms of convolutions. They can also reach state-of-the-art performance provided one use

discriminant enough features. Indeed, such systems have ranked atop of the popular Pascal

VOC detection challenge from 2006 to 2011 (Everingham et al., 2006, 2007, 2008, 2009, 2010,

2011). Deformable Part Models (DPMs) (Felzenszwalb and Huttenlocher, 2005; Felzenszwalb

et al., 2010b) (introduced formally in § 6.3) are the latest incarnations of such systems, and the

winners of many past challenges.

The algorithm we propose leverages the classical use of the Fourier transform to accelerate the

multiple evaluations of a linear predictor in a multi-scale sliding-window detection scheme.

Despite relying on a classic result of signal processing, the practical implementation of this

strategy is not straightforward and requires a careful organization of the computation. It can

be summarized in three main ideas: (a) we exploit the linearity of the Fourier transform to

avoid having one such transform per image feature (see § 4.3.2), (b) we control the memory

usage required to store the transforms of the filters by building patchworks combining the

multiple scales of an image (see § 4.4.1), and finally (c) we optimize the use of the processor

cache by computing the Fourier domain point-wise multiplications in small fragments (see

§ 4.4.2).

4.2 Related works

Popular methods to search a large space of candidate object locations include cascades of

simple classifiers (Viola and Jones, 2001), salient regions (Perko and Leonardis, 2007), Hough

transform based detection methods (Maji and Malik, 2009), or branch-and-bound (Lampert

et al., 2008). Regarding Deformable Part Models (DPMs) specifically, a selection of the most

relevant works aiming at making them faster include (Felzenszwalb et al., 2010a), which sees

the parts as classifiers in a cascade, and splits the detection process into two passes. The

first pass evaluates the detector on a low-dimensional feature space (reduced from 32 HOG

features to 5 using PCA), and the second pass with all the features. Expressing the part filters as

a sparse linear combination of a dictionary, (Pirsiavash and Ramanan, 2012) can obtain large

speedups when detecting multiple objects simultaneously, since in this case the dictionary

typically can be made much smaller than the total number of filters while not sacrificing too

much accuracy, as many objects share visually similar parts, e.g. wheels, limbs, corners, etc.

Finally (Kokkinos, 2011) applies the dual-tree branch and bound algorithm (Lampert et al.,

57

Chapter 4. Accelerated Evaluation of Linear Object Detectors

Histogram
of gradient
orientation

orientation

m
a
g
n
it
u
d
e

Figure 4.1 – Representation of the computation of the Histogram of Oriented Gradients (HOG)
features (Dalal and Triggs, 2005). It is common to repeat the process with multiple resized
version of the input image in order to detect object of different sizes with the same detector.

2009) to more efficiently optimize the objective function of (Felzenszwalb et al., 2010a), and

rapidly approximates the inner products between filters and HOG features by quantizing the

HOG cells onto a codebook and replacing their inner products with lookups of precomputed

scores in (Kokkinos, 2012).

All these methods have in common that they are approximate, with no guaranteed speedup in

the worst case. Cascades in particular are also notoriously hard to tune in order to obtain good

performance without sacrificing too much accuracy, often requiring a dedicated validation

set (Zhang and Viola, 2007; Viola and Jones, 2001). The approach we pursue here is akin to

(Cecotti and Graeser, 2008), taking advantage of properties of the Fourier transform to speed

up linear object detectors using multiple features while remaining exact.

Besides accelerating the evaluation of the detector at each possible location, other works have

already dealt with the problem of the efficient computation of the feature pyramid and, in

the case of DPMs, of the optimal assignment of the parts’ locations. The fast construction of

the complete image pyramid and associated features computation at each scale has been ad-

dressed by (Dollar et al., 2010). Their idea is to compute such features only once per octave and

interpolate the scales in-between, making the whole process typically an order of magnitude

faster with only a minor loss in detection accuracy. (Felzenszwalb and Huttenlocher, 2004)

provides linear time algorithms for solving maximization problems involving an arbitrary

sampled function and a spatial quadratic cost. By using deformation costs of this form, the

optimal assignment of the parts’ locations can be efficiently computed.

4.3 Linear object detectors and Fourier transform

Many linear object detectors – such as the HOG detector of Dalal and Triggs (Dalal and

Triggs, 2005); the Deformable Part Model (DPM) of Felzenszwalb et al. (Felzenszwalb and

Huttenlocher, 2005; Felzenszwalb et al., 2010b); or the Convolutional Neural Network (CNN)

of LeCun et al. (LeCun et al., 1998a) – extract features densely from the image of interest (as

well as the outputs of the previous layers in the case of CNNs) before evaluating the model.

58

4.3. Linear object detectors and Fourier transform

=

Figure 4.2 – Alternative view of the HOG features, organized in planes containing distinct
features instead of a grid. The filters trained by the detector are similar in composition.

In order to make the detector scale invariant, these features are often extracted from every

scale of a standard image pyramid, produced via repeated smoothing and subsampling of the

input image. One can imagine these features as being arranged on a coarse grid with several

features extracted from each grid cell. For example, the Histogram of Oriented Gradients

(HOG) features (Dalal and Triggs, 2005) which we use in all our experiments correspond to the

bins of an histogram of the gradient orientations of the pixels within the cell, as represented

in figure 4.1. They use cells of size typically 8×8 pixels (Dalal and Triggs, 2005; Felzenszwalb

and Huttenlocher, 2005), with a few dozen distinct features per cell (36 in (Dalal and Triggs,

2005); 32 in (Felzenszwalb et al., 2010b, 2011) which we use as a baseline). An alternative

description of the arrangement of the features is to view them as organized in planes as

depicted in figure 4.2. These planes are analogous to the RGB channels of standard color

images, but instead of colors they each contain a distinct feature from each cell of the grid. The

filters trained by the detector are similar in composition, containing the exact same number

of feature planes.

4.3.1 Evaluation of a linear detector as a convolution

Let K stands for the number of features, xk ∈RM×N for the kth feature plane extracted from

a particular image, and wk ∈ RP×Q for the kth feature plane of a particular filter. The scores

z ∈R(M−P+1)×(N−Q+1) of a filter evaluated on an image are given by the following formula:

z(i , j) =∑
k

∑
p

∑
q

xk (i +p −1, j +q −1)wk (p, q) (4.1)

that is the sum across feature planes of the Frobenius inner products of the features extracted

from the sub-window of size P ×Q anchored at position (i , j) and the filter. Computing the

scores of a filter at all possible locations can thus be done by summing across features the

59

Chapter 4. Accelerated Evaluation of Linear Object Detectors

Per filter

Per image Per image x filter
...

...

HOG

HOG

HOG
x32

x32x3 (rgb)

...

x32

+
Per−feature

score
Detection

score*

Filter

Image Image

Figure 4.3 – Standard convolution process, convolving and summing all image and filter
planes.

results of the convolutions of the image and the (reversed) filter, i.e.

z =∑
k

xk ∗ w̄k (4.2)

where w̄ is the reversed filter (w̄k (i , j) = wk (P − i +1, Q − j +1)).

The computational cost of a standard convolution between an image of size M ×N and a filter

of size P ×Q is in Θ(MNPQ). More precisely the number of floating point operations is

Cstd = 2(M −P +1)(N −P +1)PQ (4.3)

corresponding to one multiplication and one addition for each score and each filter coefficient.

Ultimately one needs to convolve L filters and sum them across K feature planes (see figure 4.3),

bringing the total number of operations per image to

Cstd/image = KLCstd. (4.4)

4.3.2 Leveraging the Fourier transform

It is well known that convolving in the original signal space is equivalent to point-wise multi-

plying in the Fourier domain. Convolutions done by first computing the Fourier transforms of

the input signals, multiplying them in Fourier domain, before taking the inverse transform of

the result can also be more efficient if the filter size is large enough. Indeed, the computational

cost of a convolution done with the help of the Fourier Transform is Θ(MN logMN).

If we define

CFFT ≈ 2.5MN log2 MN (4.5)

Cmul = 4MN (4.6)

the costs of one Fourier transform (the approximation of CFFT comes from (Frigo and Johnson,

60

4.3. Linear object detectors and Fourier transform

Per image

Per filter

Per image x filter

...

...

HOG

HOG

FT

FT

...

...

HOG

HOG

HOG

x3 (rgb) x32 x32

x32
x32

score

Detection

...

Per−feature
score

FT

score

Detection
+

x32

x

Filter Filter

Image ImageImage

Figure 4.4 – Fast Fourier convolution process taking advantage of the fact that the inverse
Fourier transform that produces the final detection score needs to be done only once per
image / filter pair, and not once per feature, since the sum across planes can be done in the
Fourier domain.

2005)) and of the point-wise multiplications respectively (one complex multiplication and one

complex addition, halved because of the symmetry of the transform of a real signal), the total

cost is

CFourier = 3CFFT +Cmul (4.7)

per product for the three (two forward and one inverse) transforms using a Fast Fourier

Transform (FFT) algorithm (Frigo and Johnson, 2005). Note that the filters’ forward Fourier

transforms can be done off-line, and thus should not be counted in the overall detection time,

and that an image’s forward Fourier transform has to be done only once, independently of the

number of filters. Moreover, in the case of learning methods based on bootstrapping examples,

the images’ forward Fourier transforms can also be done offline for training.

Taking all this into account, and using the linearity property of the Fourier transform, one can

drastically reduce the cost per image from KLCFourier. Since the Fourier transform is linear, it

does not matter if the sum across planes is done before or after the inverse transforms. If done

before, only one inverse transform per filter will be needed even if there are multiple planes.

Together with the fact that the forward transforms need to be done only once per filter or per

image (see figure 4.4), the total cost per image is

CFourier/image = KCFFT︸ ︷︷ ︸
forward FFTs

+ KLCmul︸ ︷︷ ︸
multiplications

+ LCFFT︸ ︷︷ ︸
inverse FFTs

(4.8)

enabling large computational gains if K +L ¿ KL and/or P,Q À 1.

Plugging in typical numbers (M , N = 64, P,Q = 6, K = 32, L = 54 as in (Felzenszwalb et al.,

2011)), doing the convolutions with Fourier results in a theoretical speedup factor of 11

compared to the standard convolution process. Taking into account the fact that the features

are frequently padded with zeroes on all sides to allow the filters to partially go out of the image,

and that the Fourier transform needs only half of the amount of padding since it computes

circular convolutions, this speedup can even be greater (14 in the case where the padding is

61

Chapter 4. Accelerated Evaluation of Linear Object Detectors

(b)(a) (c)

Figure 4.5 – The computation of the point-wise multiplications between the Fourier transform
of an image and that of a filter requires to pad them to the same size before computing
the transforms. Given that images have to be parsed at multiple scales, the naive strategy
is either to store for each filter the transforms corresponding to a variety of sizes (a), or to
store only one version of the filter’s transform and to pad the multiple scales of each image
(b). Both of these strategies are unsatisfactory either in term of memory consumption (a)
or computational cost (b). We propose instead a patchwork approach (c), which consists
of creating patchwork images composed of the multiple scales of the image, and has the
advantages of both alternatives.

equal to the filter size). This cost is independent of the filter size P ×Q, resulting in even larger

gains for larger filters. The FFT also has excellent numerical properties (Schatzman, 1996),

as demonstrated by our experiments. There is no precision loss for small filter sizes, and an

increase in precision for larger ones. Finally, one can also reduce by half the cost of computing

the Fourier transforms of the filters if they are symmetric (Felzenszwalb et al., 2010b), or come

by symmetric pairs (Felzenszwalb et al., 2011).

4.4 Implementation strategies

Implementing the convolutions with the help of the Fourier transform is straightforward, but

involves two difficulties: memory over-consumption and lack of memory bandwidth. These

two problems can be remedied using methods presented in the following subsections.

4.4.1 Patchworks of pyramid scales

The computational cost analysis of § 4.3.2 was done under the assumption that the Fourier

transforms of the filters were already precomputed. But the computation of the point-wise

multiplications between the Fourier transforms of an image and that of a filter requires to

first pad them to the same size. Images can be of various sizes and aspect-ratio, especially

since they are parsed at multiple scales, and precomputing filters at all possible sizes as in

62

4.4. Implementation strategies

Table 4.1 – Asymptotic memory footprint and computational cost for the three approaches
described in § 4.4.1, to process one image of size M ×N with L filters, at scales 1, ρ, ρ2, . . .
The factor 1

1−ρ2 = ∑+∞
k=0ρ

2k accounts for the multiple scales of the image pyramid, while
log M N

1−ρ2 ≈− log M N
logρ2 for ρ ≈ 1 is the number of scales to visit. Taking the same typical values as

in § 4.3.2 for M , N = 64, L = 54, and ρ = 0.9 gives 1
1−ρ2 ≈ 5.3 and log M N

1−ρ2 ≈ 44. Our patchwork
method (c) combines the advantages of both methods (a) and (b).

Approach Memory (image + filters) Computational cost

(a) 1
1−ρ2 MN + 1

1−ρ2 LMN ≈ 1.2 ·106 1
1−ρ2 LMN ≈ 1.2 ·106

(b) − logMN
1−ρ2 MN + LMN ≈ 3.8 ·105 − logMN

1−ρ2 LMN ≈ 8.7 ·106

(c) 1
1−ρ2 MN + LMN ≈ 2.4 ·105 1

1−ρ2 LMN ≈ 1.2 ·106

figure 4.5(a) might be unrealistic in term of memory consumption. Another approach could

be to precompute the transforms of the images and the filters padded only to the largest image

size, as shown in figure 4.5(b). This would require as little memory as possible for the filters,

but would result in an additional computational burden to compute the transforms of the

images, and more importantly to perform the point-wise multiplications.

However, a simpler and more efficient approach exists, combining the advantages of both

alternatives. By grouping images together in patchworks of the size of the largest image, one

needs to compute the transforms of the filters only at that size, while the amount of padding

needed is much less than required by the second approach. We observed it experimentally to

be less than 20%, vs. 87% for the second approach. The performance thus stays competitive

with the first approach while retaining the memory footprint of the second (see table 4.1 for

an asymptotical analysis). The grouping of the images does not need to be optimal, and fast

heuristics exist, such as the bottom-left bin-packing heuristic (Chazelle, 1983).

4.4.2 Taking advantage of the cache

A naive implementation of the main computation, that is the point-wise multiplications

between the patchworks’ Fourier transforms and the filters’ Fourier transforms would simply

loop over all patchworks and all filters. This would require to reload both from memory for

each pairwise product as they are likely too large to all fit in the CPU cache, a small but very

fast memory integrated to the CPU to reduce the access time and increase the bandwidth of

frequently used data from the main memory.

We observed in practice that such an implementation is indeed limited by the speed and

bandwidth of the main memory. However, reorganizing the computation allows to remove

this bottleneck. Let R be the total number of patchworks to process, L the number of filters, K

the number of features, M ×N the size of the patchworks’ F transforms, u(F) the time it takes

to point-wise multiply together two planes of F coefficients, and v(F) the time it takes to read

63

Chapter 4. Accelerated Evaluation of Linear Object Detectors

...

...

...

...

Fragments to read

Fragments to write

...

HOG

...

...

...

...

L

R

K=32

Filter

HOG HOG

Filter Filter

HOG

HOG

HOG

Patchwork

Patchwork

Patchwork

Figure 4.6 – To compute the point-wise products between each of the Fourier transforms
of the R patchworks, and each of the transforms of the L filters, the naive procedure loops
through every pair. This strategy unfortunately requires multiple CPU cache violations, since
the transforms are likely to be too large to all fit in cache, resulting in a slow computation of
each one of the LR products. We propose instead to decompose the transforms into fragments
(here shown as red rectangles), and to have an outer loop through them. With such a strategy,
by loading a total of L+R fragments in the CPU cache, we end up computing LR point-wise
products between fragments.

(resp. write) F coefficients from (resp. into) the memory to (resp. from) the CPU cache.

A naive strategy going through every patchwork / filter pair results in a total processing time of

Tnaive = KLR2v(MN)︸ ︷︷ ︸
reading

+ KLRu(MN)︸ ︷︷ ︸
multiplications

+ LR v(MN)︸ ︷︷ ︸
writing

. (4.9)

This is mainly due to the bad use of the cache, which is constantly reloaded with new data

from the main memory.

We can improve this strategy by decomposing transforms into fragments of size F , and by

adding an outer loop through these MN
F fragments (see figure 4.6 and algorithm 4.1). The

64

4.4. Implementation strategies

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 10 100 1000 10000

T
im

e
 (

s)

Fragment size (log)

Figure 4.7 – Average time taken by the point-wise multiplications (in seconds) for different
fragment sizes (number of coefficients) for one image of the Pascal VOC 2007 challenge.

cache usage will be K (R +1)F , and the time to process all patchwork / filter pairs will become

Tfast =
MN

F︸︷︷︸
number of fragments

(
K (L+R)v(F)︸ ︷︷ ︸

reading

+ KLRu(F)︸ ︷︷ ︸
multiplications

+ LR v(F)︸ ︷︷ ︸
writing

)
(4.10)

= K (L+R)v(MN)︸ ︷︷ ︸
reading

+ KLRu(MN)︸ ︷︷ ︸
multiplications

+ LR v(MN)︸ ︷︷ ︸
writing

. (4.11)

By making F small, we could reduce the cache usage arbitrarily. However, CPUs are able

to load from the main memory in bursts, which makes values smaller than that burst size

sub-optimal (see figure 4.7). The speed ratio between the naive and the fast methods is

Tnaive

Tfast
=

(2+ 1
K)+ u(MN)

v(MN)

(L+R
LR + 1

K)+ u(MN)
v(MN)

≈ 2
v(MN)

u(MN)
+1. (4.12)

In practice, the cache can hold at least one patchwork of size MN and the actual speedup we

observe is around 5.7. Decomposing the transforms into fragments also scales better across

multiple CPU cores, as they can focus on distinct parts of the transforms, instead of all loading

the same patchwork or filter.

65

Chapter 4. Accelerated Evaluation of Linear Object Detectors

Algorithm 4.1 Fast Fourier convolution process taking as input the pyramid levels already
packed into R patchworks and the precomputed L filters already reversed, padded to the
patchwork size, and Fourier transformed.

Input: patchworks xr
k , transformed filters ŵl

k
for r ← 1, . . . , R do # Iterate over the patchworks

for k ← 1, . . . , K do # Iterate over the features
x̂r

k ← FFT
(
xr

k

)
end for

end for
for i ← 1, . . . , MN do # Iterate over the fragments

for r ← 1, . . . , R do # Iterate over the patchworks
for l ← 1, . . . , L do # Iterate over the filters

ẑl
r (i) ←

K∑
k=1

x̂r
k (i) · ŵl

k (i) # Sum across features

end for
end for

end for
Output: zl

r ← FFT−1
(
ẑl

r

)
Return the scores

4.5 Experiments

To evaluate our approach for linear object detector acceleration we compared it to the publicly

available system from (Felzenszwalb et al., 2011). We used the models already present in the

system, trained on the Pascal VOC 2007 challenge (Everingham et al., 2007) dataset, which

achieve close to state-of-the-art detection results. Note that (Felzenszwalb et al., 2011) provides

several implementations of the convolutions, ranging from the most basic to the most heavily

optimized.

The evaluation was done over all 20 classes of the challenge by looking at the detection

time speedup with respect to the fastest baseline convolution implementation on the same

machine. The baseline is written in assembly and makes use of both CPU SIMD instructions

and multi-threading. As our method is exact, the average precision should stay the same up to

numerical precision issues. The results are given in table 4.2 for verification purposes. The

small discrepancy compared to the results of (Felzenszwalb et al., 2011) might be explained by

the fact that we did not use the provided code to resize the images when building the feature

pyramids.

We used the FFTW (version 3.3) library (Frigo and Johnson, 2005) to compute the FFTs, and

the Eigen (version 3.0) library (Guennebaud et al., 2010) for the remaining linear algebra. Both

libraries are very fast as they make use of the CPU SIMD instruction sets. Our experiments

timed in the same conditions on the same 2.2 GHz Intel Core i7 Quad machine show that our

approach achieves a significant speedup, being more than seven times faster (see table 4.3).

We compare only the time taken by the convolutions in order to be fair to the baseline, some

66

4.6. Conclusion

Table 4.2 – Pascal VOC 2007 challenge results.

aero bike bird boat bottle bus car cat chair cow table

V4 (%) 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3

Ours (%) 29.4 58.9 10.0 13.4 25.3 50.6 57.6 18.9 22.6 24.9 24.4

dog horse mbike person plant sheep sofa train tv mean

V4 (%) 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3

Ours (%) 11.5 56.7 47.3 42.4 13.0 19.2 34.8 46.3 40.4 32.4

of its other components being written in Matlab, while our implementation is written fully in

C++. The average time taken by the baseline implementation to convolve a feature pyramid (10

scales per octave) with all the filters of a particular class (54 filters, most of them of size 6×6)

was 413 ms. The average time taken by our implementation was 56 ms, including the forward

FFTs of the images. For comparison, the time taken in our implementation to compute the

HOG features (including loading and resizing the image) was on average 64 ms, while the time

taken by the distance transforms was 42 ms, the time taken by the remaining components of

the system being negligible.

We also tested the numerical precision of both approaches. The maximum absolute difference

that we observed between the baseline and a more precise implementation (using double

precision) was 9.5×10−7, while for our approach it was 4.8×10−7. The mean absolute difference

were respectively 2.4×10−8 and 1.8×10−8.

While the speed and numerical precision of the baseline degrade proportionally with the filter

size, they remain constant with our approach, enabling the use of larger filters for free. For

example if one were to use filters of size 8×8 instead of 6×6 as in many of the current models,

the advantage of our method over the baseline would increase by a factor 8×8
6×6 ≈ 1.8.

4.6 Conclusion

The idea motivating our work is that the Fourier transform is linear, enabling one to do the

addition of the convolutions across feature planes in Fourier space, and be left in the end

with only one inverse Fourier transform to do. To take advantage of this, we proposed two

additional implementation strategies, ensuring maximum efficiency without requiring huge

memory space and/or bandwidth, and thus making the whole approach practical.

The method increases the speed of many state-of-the-art object detectors severalfold with

no loss in accuracy when using small filters, and becomes even faster and more accurate

with larger ones. That such an approach is possible is not entirely trivial (the reference imple-

mentation of (Felzenszwalb et al., 2011) contains five different ways to do the convolutions,

67

Chapter 4. Accelerated Evaluation of Linear Object Detectors

Table 4.3 – Pascal VOC 2007 challenge convolution time and speedup.

aero bike bird boat bottle bus car cat chair cow table

V4 (ms) 409 437 403 414 366 439 352 432 417 429 450

Ours (ms) 55 56 53 56 57 56 54 56 56 57 57

Speedup (x) 7.4 7.8 7.6 7.4 6.4 7.9 6.5 7.7 7.5 7.5 8.0

dog horse mbike person plant sheep sofa train tv mean

V4 (ms) 445 439 429 379 358 351 425 458 433 413

Ours (ms) 57 59 57 54 54 55 57 58 55 56

Speedup (x) 7.8 7.5 7.6 7.0 6.6 6.4 7.4 7.9 7.9 7.4

all at least an order of magnitude slower); nevertheless, the analysis we developed is readily

applicable to many other systems, such as Convolutional Neural Networks.

68

5 Accelerated Training of Linear Object
Detectors

In this chapter we present our contributions to speed up the training of a broad range of linear

object detectors. Our approach consists of reformulating the computation of the gradients as

a convolution, and to use the same strategies as in the previous chapter to accelerate it. We

obtain a speedup factor proportional to the filter size without relying on the sparsity induced by

a specific loss, nor on a stochastic sub-sampling of the training examples. Content presented in

this chapter is based on the following publication (Dubout and Fleuret, 2013a):

C. Dubout and F. Fleuret. Accelerated Training of Linear Object Detectors. In CVPR 2013

Workshop on Structured Prediction, 2013.

69

5.1. Introduction and related Works

5.1 Introduction and related Works

Linear object detectors are typically used in a sliding-window fashion, predicting a score

related to the presence or absence of an object for each possible position and scale in the scene

to process. These scores are computed by taking the inner product between the corresponding

image sub-windows and the classifier weights. It is straightforward to see that the entire

score matrix can be computed by taking the convolution of the image with the (reversed)

linear filter corresponding to the learned classifier weights. Sophisticated methods such as

Deformable Part Models (DPMs) (Felzenszwalb and Huttenlocher, 2005; Felzenszwalb et al.,

2010b) combine multiple such detectors, either in mixtures, and/or in multi-part models.

Given a loss which has the form of a sum over all locations and scales of a per-sample loss, we

can similarly reformulate the value of its gradient as a convolution. As we show in § 5.2, it is

the convolution of the map of point-wise derivatives of the loss – that is, at each point, how

the loss changes when the response of the predictor changes there – with the map of feature

responses.

By leveraging this form, the computation of the gradient can be sped up by using Fourier

transforms, exploiting the redundancy between overlapping samples, as revealed by the

analysis of § 5.3. In practice, as demonstrated in § 5.4, such organization of the computation

removes the increase of the cost with the size of the filters, which are always smaller than the

scene to process.

A large amount of literature deals with the problem of efficiently training linear classifiers,

such as linear SVMs, by exploiting the particular nature of the associated loss function, novel

convex optimization algorithms, or clever implementation strategies (Platt, 1999; Joachims,

2006; Shalev-Shwartz et al., 2007; Fan et al., 2008; Hsieh et al., 2008). We follow an orthog-

onal approach extending the one of the previous chapter and look for algorithmic gains in

the specific case where the training examples are overlapping sub-windows extracted from

training images. As most computer vision learning problems involve very large training sets, a

consensus in the vision community is to use online or stochastic gradient descent algorithms

(Bottou and LeCun, 2003; Felzenszwalb et al., 2010b; Wijnhoven and de With, 2010).

5.2 Evaluation of the gradient of a linear detector as a convolution

As in the previous chapter, we handle the parsing at multiple scales by considering that we

process patchworks, each composed of multiple scales of one of the original images of the

training set. In the rest of the article, an image can refer to either one of the original images of

the training set, or one of these constructed patchworks.

71

Chapter 5. Accelerated Training of Linear Object Detectors

...

Point−wise derivative
+

FFT

...

...

...

...

L

...

R

...

...

...

...

L

...

R

K

R

K

K

Gradient computation

Classifier evaluation

FFT
−1

ActivationActivationActivation

Activation

Activation Activation Activation

ActivationActivation

Training

Weights

Training

Weights

Training

Weights

Gradient Gradient Gradient

Gradient Gradient Gradient

Gradient Gradient Gradient

HOG

FilterFilter

HOG

Filter

HOG

HOG

HOG

HOG

HOG

HOG

HOG

Image

Image

Image

Image

Image

Image

Figure 5.1 – Computation of the gradient of the loss with respect to the model weights, in the
case of R images, K features, and L linear filters. The top figure depicts the computation of
the previous chapter, and consists of the series of point-wise products between the Fourier
transforms of the filters, and the Fourier transforms of the images, followed by the inverse
Fourier transforms. This produces the maps of point-wise evaluations of the detector in
each image. The bottom figure depicts the computation of the gradient. It first computes
the point-wise derivatives of the loss to obtain the point-wise training weights, and then the
Fourier transforms of the obtained maps. Then, for each feature and each filter, the Fourier
transform of the gradient of the loss is obtained by summing the point-wise products of the R
training weight maps with the R image maps for that feature.

72

5.3. Computational cost of the gradient computation

In the case of a single linear predictor for object detection and a single image, the loss function

minimized during the training of the detector typically has a data-driven term of the form

L(w) =∑
i

∑
j

l
(
y(i , j)z(i , j)

)
(5.1)

where y ∈ {−1, 1}(M−P+1)×(N−Q+1) are the labels of the sub-images corresponding one-to-one

to the sub-images of the scores z and l is the loss per sample. This expression extends naturally

to multiple filters and multiple images by adding sums over them.

From this, we derive for each feature plane k of the filter w

∇Lk (p, q) = ∂L(wk)

∂wk (p, q)
(5.2)

=∑
i

∑
j

∂l
(
y(i , j)z(i , j)

)
∂wk (p, q)

(5.3)

=∑
i

∑
j

y(i , j) l ′
(
y(i , j)z(i , j)

) ∂z(i , j)

∂wk (p, q)
(5.4)

=∑
i

∑
j

(
y · l ′

(
y ·z

))
(i , j) xk (i +p −1, j +q −1) (5.5)

=
(
y · l ′

(
y ·z

)∗xk

)
(p, q) (5.6)

hence our main result

∇Lk = y · l ′
(
y ·z

)∗xk (5.7)

where the operator · stands for the point-wise multiplication of two matrices and l ′ for both

the loss derivative and its point-wise evaluation. This point-wise derivative can be interpreted

as the signed sample weights, since it quantifies the importance of the sample at that location

of the image in the change of the filter weights.

5.3 Computational cost of the gradient computation

We analyze the asymptotic costs of the gradient of the loss, which together with the compu-

tation of the scores of § 4.3.2 usually constitute most of the computational effort. These two

computational steps are depicted on figure 5.1.

The cost of computing the gradient of the loss over one image for the standard method

using (5.4) is in Θ(KLMNPQ), same as the cost required to compute the scores in § 4.3.1.

Leveraging the Fourier transform to compute it as a convolution, as highlighted in (5.7), it can

be reduced by realizing that the transform of the point-wise derivatives of the left-hand side of

the convolution operator, i.e. y · l ′
(
y ·z

)
, does not depend on k and therefore can be shared

across features. The cost to compute the point-wise derivatives themselves is negligible, as it

73

Chapter 5. Accelerated Training of Linear Object Detectors

Algorithm 5.1 Our Fourier-based stochastic gradient descent algorithm, inspired from the Pe-
gasos algorithm (Shalev-Shwartz et al., 2007), taking a whole scene as mini-batch. It minimizes
a loss of the form L(w) = λ

2 ||w||2 + 1
RMN

∑
r
∑

i , j l (yr (i , j) fr (i , j)).

Input: λ,T
ŵ1 ← 0 # Initialize the filter to zero
for t ← 1, . . . , T do

r ← r and(1, . . . , R) # Pick a scene at random
x̂r ← FFT(xr) # Transform the scene
f̂ ← ŵt · x̂r # Convolve it with the current filter
f ← FFT−1(f̂) # Get back the scores
ŷ ← FFT(yr l ′(yr · f)) # Transform the derivatives
ηt ← 1

λt # Current learning rate
ŵt+1 ← (1−ηtλ)ŵt + ηt

MN

(
x̂r · ŷ

)
Update the filter with the gradient

end for
Output: w ← FFT−1(ŵT+1) # Return the filter

is in Θ(LMN). Assuming that the images were already transformed (already required in order

to compute the scores), the cost to compute the gradient leveraging the FFT is

Θ(LMN log(MN))︸ ︷︷ ︸
Forward FFTs of the derivatives

+ Θ(KLMN)︸ ︷︷ ︸
Multiplications

(5.8)

where the left term is the cost to transform the point-wise derivatives of each filter, and the

right term is the cost of the convolutions. Since during training the filters are usually updated

by adding them together with the gradients (scaled), one can typically keep them exclusively

in Fourier space, removing the cost of transforming the filters back and forth. If it proves

impossible, an additional Θ(KLMN log(MN)) term is required, reducing the gain compared to

the standard process from Θ(PQ) to Θ
(

PQ
log(MN)

)
, but still keeping the total cost independent of

the filter size.

As in the previous chapter, one can use the linearity of the Fourier transform to reduce the

number of inverse transforms by summing this time across images in the frequency space.

In that case, even if one has to transform back and forth the filters, the cost to compute the

gradient over R images is R times that of (5.8) plus the optional transforms of the filters,

in Θ(KLMN log(MN)), which for both K and R large enough (of order log(MN) or more), is

Θ(RKLMN), again a gain by a factor Θ(PQ) compared to the standard process.

5.4 Experiments

To evaluate our approach to speed up the training of linear object detection systems, we

trained a mixture of 6 filters, similar to the roots of the DPM of (Felzenszwalb et al., 2010b).

Even though we only trained root filters, nothing prevents us from training full-fledged DPMs,

74

5.4. Experiments

their loss consisting of a sum over part filters, which can be computed using our method, and

a deformation penalty term, which can be handled separately at negligible cost.

We used the same modified Histogram of Oriented Gradients (HOG) features (Dalal and Triggs,

2005; Felzenszwalb et al., 2010b), the same initialization of the filters’ positions, sizes, and

left/right pose assignments as in (Felzenszwalb et al., 2011), and trained them on the PASCAL

VOC 2007 challenge dataset (Everingham et al., 2007).

5.4.1 Implementation details

Typical computer vision datasets contain thousands of images, and thus potentially millions

of (mostly negative) training examples, i.e. one per image sub-window at multiple scales. As

recommended in (Felzenszwalb et al., 2010b; Bottou and LeCun, 2003) in such situations, we

chose to train our classifier using a variant of the stochastic gradient descent algorithm. It is

derived from the Pegasos algorithm (Shalev-Shwartz et al., 2007), using the Fourier transform

to compute the convolutions, and without the projection step as it made no difference in our

experiments. Since our method is efficient only at processing entire scenes, we took all the

examples of a scene as a mini-batch at each stochastic gradient descent iteration. Algorithm

5.1 details the sketch of the algorithm.

We made some modifications to this algorithm in our experiments to adapt it to train a mixture

model, and to improve its convergence speed as well as the quality of its final solution.

First as in (Felzenszwalb et al., 2011) we modified it to minimize the loss

L(w) = λ

2
max

c
||wc ||2+ J

N

∑
r, y r (i , j)>0

∣∣∣1− zr
y r (i , j),β(i , j)

∣∣∣++ 1

N

∑
r,y r (i , j)=−1

∣∣∣1+max
c

zr
c,β(i , j)

∣∣∣+ (5.9)

where wc is the filter of mixture component c , y r (i , j) is the index of the mixture associated to

the sub-window anchored at i , j in image r or −1 if it corresponds to a negative examples, J is

a scale factor re-weighting the importance of the positive examples, N is the total number of

examples taking J into account, λ= 1
CN is the regularization constant, and |·|+ = max(0, ·). zr

c,β
is similar to the z of (4.1), except that it is computed for image r , mixture component filter wc ,

and a bias term β, i.e.

zr
c,β(i , j) =∑

k

∑
p

∑
q

xr
k (i +p −1, j +q −1)wc

k (p, q)+β. (5.10)

We pick the optimal bias β at the beginning of each stochastic gradient descent iteration

in order to minimize the loss, i.e. βt = argminβL(wt), as recommended in (Shalev-Shwartz

et al., 2007) when dealing with large mini-batches. Since the bias β is identical among all

mixture components, it does not influence their relative scores at test time, but we observed

that it is of tremendous importance as removing it significantly reduces both the speed of

the convergence of the algorithm and the quality of the final solution. At every iteration we

75

Chapter 5. Accelerated Training of Linear Object Detectors

Figure 5.2 – Root filters for a bicycle model of normal size ((Felzenszwalb et al., 2010b)) learned
on the PASCAL VOC 2007 dataset.

Figure 5.3 – Root filters for a bicycle model of double the normal size ((Felzenszwalb et al.,
2010b)) learned on the PASCAL VOC 2007 dataset.

take all the negatives of a whole scene as a mini-batch, and add all the positive examples of

the dataset to it. Considering all the positives at every iteration has a very small impact on

the training time, the number of positives being usually very small even compared to the

number of negatives of an unique scene, but improves drastically the convergence speed of

the algorithm. The parameters we used were tuned on the provided validation set and were

kept fixed in all experiments. They are λ= 0.01, J = 5000, and T = 5000.

5.4.2 Results

An example of a trained model is represented in figure 5.2. We also trained models twice

as large as the size recommended in (Felzenszwalb et al., 2010b) for the root filters, and we

show the same model, this time of twice the size in figure 5.3. The performances of those

mixture models on all 20 classes of the PASCAL VOC challenge are displayed in table 5.1. We

do not hope to compete with (Felzenszwalb et al., 2011), which trains more complex models

including deformable parts, but only want to prove that our results are relevant with respect

to the current state-of-the-art.

76

5.4. Experiments

Table 5.1 – Average precision scores of the base system of VOC release 4 (Felzenszwalb et al.,
2011), as well as our trained mixture on the PASCAL VOC 2007 challenge. As we trained only
root filters, and not full part-based deformable models, we do not hope to compete with the
V4 baseline. These results are provided only to demonstrate the relevance of our approach
with respect to the state-of-the-art.

aero bike bird boat bottle bus car cat chair cow table

V4 normal filters (%) 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3

Ours normal filters (%) 18.2 40.8 4.2 11.1 15.0 24.7 34.0 4.7 11.5 27.9 10.7

Ours large filters (%) 18.4 47.3 2.5 13.1 16.9 29.1 41.2 10.3 12.5 26.7 11.2

dog horse mbike person plant sheep sofa train tv mean

V4 normal filters (%) 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3

Ours normal filters (%) 5.2 27.7 34.2 18.5 10.8 18.5 12.9 27.1 20.6 18.9

Ours large filters (%) 5.7 37.4 32.6 22.5 11.4 19.3 18.4 24.8 22.9 21.2

Table 5.2 – Average time to compute the gradient of the loss for one stochastic gradient descent
iteration. The standard sparse method relies on the sparsity of the samples weights induced by
the hinge loss, and computes the gradient by visiting only the samples with non-zero weight.
The acceleration it provides is strongly data-dependent.

1 scene per batch 10 scenes per batch

Normal filters Large filters Normal filters Large filters

Standard (ms) 41.3 70.9 390 699

Ours (ms) 7.2 7.4 33.1 33.1

Standard sparse (ms) 1.1 1.3 6.6 8.1

We implemented two versions of the gradient computation procedure, one using the standard

method and one using the FFT, as detailed in § 5.2. Both versions make use of the CPU SIMD

instruction sets as well as multi-threading. We timed their executions in the same conditions

on the same 2.2 GHz Intel Core i7 Quad machine, and provide the results in table 5.2. We also

tried to use larger mini-batches, processing 10 scenes together, which improves the advantage

of our method over the generic one even more. Even though exploiting the sparsity of the loss

was by far the fastest method in our experiment, this is due to the use of the hinge loss, and is

strongly parameter (λ) and data dependent. The advantage of our method, as concluded from

our analysis in § 5.3, is that it is faster without leveraging sparsity, and always take the same

time, independently of the data, the loss, or the filter size. The time taken by the rest of the

algorithm, mostly spent convolving the current scene with the filters is also independent of

the size of the filters, and below 20ms per iteration. The algorithm typically converges to an

acceptable solution in less than one epoch, which corresponds to 2 to 3 minutes.

77

Chapter 5. Accelerated Training of Linear Object Detectors

5.5 Conclusion

We have presented a novel method to speed up the training of object detectors based on

a linear classifier. Existing implementations of such methods relies on sparsity and sub-

sampling of the training examples. Our approach by contrast, is based on a formulation of

the gradient computation as a convolution, which allows to leverage the Fourier transform,

and make the overall computation independent of the filters’ size. Experimental validation

demonstrates that the gain in speed compared to a generic approach can be more than one

order of magnitude.

This new technique provides a generic framework for extension of object detection methods, as

it relieves all the constraints inherent to sparse and approximate methods. It can in particular

be used with any loss, without the need for it to be sparse inducing, and does not require the

tuning of any meta-parameter related to sub-sampling or approximate speed-up strategies.

78

6 Extensions to the original Deformable
Part Model

In this chapter we present our contributions and the results of some of our experiments to

improve the detection accuracy of a particular linear object detector, namely the Deformable

Part Model (DPM) of Felzenszwalb et al. We investigated several approaches, described in the

following sections. After a formal introduction of the standard DPM in § 6.3, we describe

the results of our experiments with additional features in § 6.4, our extension to increase the

deformability of the model by allowing parts to individually change scale efficiently in § 6.5,

and a new model looking jointly at part appearances so as to enforce their consistency in § 6.6.

Content presented in this chapter is partly based on the following publication (Dubout and

Fleuret, 2013b):

C. Dubout and F. Fleuret. Deformable Part Models with Individual Part Scaling. In British

Machine Vision Conference, 2013.

79

6.1. Introduction

6.1 Introduction

The Deformable Part Model (DPM) of (Felzenszwalb et al., 2010b) and its many variants, some

of which are presented in § 6.2, are considered one of the current state-of-the-art object

detection methods. Indeed they are the winners of many past Pascal VOC detection challenges

(Everingham et al., 2007, 2008, 2009, 2010, 2011), and are the current top-performer on many

other detection tasks, e.g. pedestrian detection (Felzenszwalb et al., 2010b), bird recognition

(Welinder et al., 2010), face detection and feature localization (Zhu and Ramanan, 2012), or

articulated pose recognition (Yang and Ramanan, 2011). DPMs are evaluated at a number of

positions and scales in an image, predicting each time a discriminative score related to the

presence or absence of the object to detect. These scores are computed by taking the sum

of the inner products between the model’s filters and the corresponding sub-windows of the

image, placing each filter at an optimal image location. The strength of DPMs resides in their

ability to represent an exponential number of templates by letting the part filters float around

their reference locations (see figure 6.1 for an illustration), and in finding the optimal part

configuration at every possible root position efficiently using a generalized distance transform

(Felzenszwalb and Huttenlocher, 2004).

The bulk of their computational cost comes from the numerous convolutions they need to

do between every feature pyramid levels and every part filters, each followed by a distance

transform. Both can be computed in time linear with the area of the pyramid levels, as we saw

in § 4.3.2 and take roughly the same amount of time, as we saw in § 4.5.

6.2 Related works

Many recent works build upon the original DPM of Felzenszwalb et al. and try to improve its

detection performance. For example, (Zhang et al., 2011) augments the HOG features usually

used with Local Binary Pattern (LBP) ones, in order to be sensitive to not only edges but

also textures, which results in a 10% gain in average relative accuracy. Trying to simplify the

original star-based part model, (Zhu et al., 2010) represents objects by a mixture of hierarchical

tree models organized on a 2D grid, where the nodes represent object parts, and solves the

non-convex optimization problem using the Concave-Convex Computational Procedure

(CCCP) (Yuille and Rangarajan, 2002). Arguing that the most important component of DPMs

is the mixture one, (Divvala et al., 2012) proposes to improve their initialization by switching

from aspect-ratio to appearance clustering, and reports that a mixture of monolithic models

clustered by appearance can compete with DPMs.

Another line of work (Pepik et al., 2012b,a) aims at bridging the gap between 2D image positions

and 3D real-world ones by learning 3D part deformation models. This is accomplished by

learning a mixture model where each mixture component deals explicitly with a particular

viewpoint, each trained using both real and 3D synthesized images. Even though it enables

the model to map 2D part locations to 3D ones, the authors did not attempt to move the parts

81

Chapter 6. Extensions to the original Deformable Part Model

(a) Detection. (b) Detection.

(c) Part filters. (d) Part filters.

Figure 6.1 – Images (a), (b) show two examples of detections on the Pascal VOC challenge
2007 (Everingham et al., 2007) test set. Images (c), (d) represent the corresponding part filters,
which are the same in both images but positioned differently so as to better match the object.

across scales, thus making their work completely orthogonal to the one we present in § 6.5.

6.3 Standard Deformable Part Models

Standard DPMs comprise a root and several parts, all detected independently by a linear filter,

and organized in a hierarchical structure specifying the cost of placing the center of a part at

different locations relative to the root (see figure 6.2). In the rest of this chapter we restrict

ourselves without loss of generality to star structures, for ease of notation. We also ignore the

additional complexity introduced by the mixture over the models, usually used to deal with

severe changes of appearance, since it is orthogonal to the methods presented here.

82

6.3. Standard Deformable Part Models

(a) Coarse root filter.

(b) Higher resolution part filters. (c) Spatial model.

Figure 6.2 – A DPM is defined by a coarse root filter (a), several higher resolution part filters
(b) and a spatial model for the location of each part relative to the root (c). The filters specify
weights for HOG features. Their visualization show the positive weights at different orienta-
tions. The visualization of the spatial models reflects the “cost” of placing the center of a part
at different locations relative to the root.

Let H be a feature pyramid and p = (x, y, z) specify a 2D position (x, y) in the zth level of the

pyramid. Let φ(p) denote the vector obtained by concatenating the feature vectors in the

sub-window of H centered at p, of dimensions always clear from the context (the dimensions

of the filter it is multiplied with), and φd (p) be the deformation features.

A model for an object with n parts is composed of a root filter w0 and n pairs (wi ,di), where

wi is the filter of the i th part and di is a vector specifying the deformation cost of the part

placement.

An object hypothesis p0, p1, . . . , pn specifies the location of the center of each filter in a feature

pyramid, where the parts are constrained to move in the same level as the root1. The score

of a hypothesis is then given by the score of each filter at its respective location, minus a

deformation cost that depends on the location of each part with respect to the root position

S(p0, . . . , pn) = wT
0 φ(p0)+

n∑
i=1

wT
i φ(pi)−dT

i φd (pi −p0). (6.1)

1Or at a scale which is an integral multiple of the root scale, e.g. twice the root resolution in (Felzenszwalb et al.,
2010b), since in this case the root positions are a subset of the part ones. In any case this scale is predetermined.

83

Chapter 6. Extensions to the original Deformable Part Model

The deformation features are typically

φd (p) = (1, x, y, x2, y2) (6.2)

in which case it is possible to find the optimal location of each part p?i (p0) as a function of

the root position p0 efficiently (i.e. in time linear with the total number of locations), using a

generalized distance transform (Felzenszwalb and Huttenlocher, 2004)

p?i (p0) = argmax
p∈Z2×{z0}

wT
i φ(p)−dT

i φd (p−p0) (6.3)

provided that the part locations are integral and limited to a single scale. The score of a root

position setting all the parts at their optimal locations is then

S(p0) = wT
0 φ(p0)+

n∑
i=1

wT
i φ

(
p?i (p0)

)−dT
i φd

(
p?i (p0)−p0

)
. (6.4)

6.4 Additional features

We ran experiments using new features in addition to the Histogram of Oriented Gradients

(HOG) features (Dalal and Triggs, 2005), modified as in (Felzenszwalb et al., 2010b): histograms

of uniform Local Binary Patterns (uLBP), a widely used texture descriptor, and our own color

histograms. They are both similar to HOG in the sense that they are local histograms computed

over the pixels of each cell of a dense grid, but instead of being histograms of the gradient

orientation weighted by the gradient magnitude, they are respectively histograms of the LBP

binary code or the hue weighted by the saturation.

6.4.1 Histograms of uniform Local Binary Patterns

Local Binary Pattern (LBP) is a simple yet efficient texture descriptor which labels the pixels

of an image by thresholding the 3×3 neighborhood of each pixel with the center value and

194 19 227

206 83 92

85 1 38

1 0 1

1 1

1 0 0

Threshold

Label:
10110011

Figure 6.3 – Local Binary Pattern operator using a 3×3 neighborhood.

84

6.4. Additional features

(a) Unique pattern in bin 0. (b) All the patterns in bin 1.

(c) All the patterns in bin 2. (d) All the patterns in bin 3.

(e) All the patterns in bin 4. (f) All the patterns in bin 5.

(g) All the patterns in bin 6. (h) All the patterns in bin 7.

(i) Unique pattern in bin 8. (j) Some of the patterns in bin 9.

Figure 6.4 – A representation of all the uniform Local Binary Patterns with 0 to 8 bits set (a) to
(i), as well as a few of the non uniform patterns (j).

considering the result as a binary number (Ojala et al., 1996) (see figure 6.3). The histogram of

these 28 = 256 different labels can then be used as a texture descriptor. In order to reduce the

number of labels, we use a circular invariant version of uniform patterns. A local binary pattern

is called uniform if it contains at most two bitwise transitions from 0 to 1 or vice versa when

the bit pattern is traversed circularly around the center. For example, the patterns 00000000

(0 transitions), 00111000 (2 transitions) and 11110011 (2 transitions) are uniform whereas

the patterns 11010001 (4 transitions) and 01010010 (6 transitions) are not. Our histograms

contain ten bins: nine bins for the nine possible numbers of bits (0 to 8) set to 1 if the pattern

is uniform and one additional bin for all the non uniform patterns (see figure 6.4). There is no

notion of magnitude of a pattern, therefore all pixels contribute equally to the local histogram

of their corresponding grid cell.

6.4.2 Color histograms

In order to describe the color of a local image patch, we constructed a histogram of the hue

weighted by the saturation of the pixels in the Hue, Saturation, and Value (HSV) cylindrical-

coordinate representation of the RGB color model. The conversion from RGB to HSV coordi-

85

Chapter 6. Extensions to the original Deformable Part Model

(a) Raw pixels. (b) Color histograms.

Figure 6.5 – Representation of the color histograms on a sample image.

nate system is governed by the following equations

M = max(R, G , B) (6.5)

m = min(R, G , B) (6.6)

H =

G−B
M−m mod 6, if M = R
B−R

M−m +2, if M =G
R−G

M−m +4, if M = B

(6.7)

S = M −m

M
(6.8)

V = M (6.9)

where we use the convention 0
0 = 0.

In order for our features to be invariant to linear change of pixel intensities, we do not use the

value component V but only the hue H and saturation S. Our features are six bins histograms

arranged in the same fashion as HOG on a dense grid, the six bins corresponding to the six

integral hues H = {0, 1, . . . 5}, which correspond respectively to the red, yellow, green, cyan,

blue, and magenta colors. The vote cast by each pixel is proportional to its saturation S, and

there is no normalization step as in HOG since the features are already intensity invariant (see

figure 6.5).

6.4.3 Experiments

To evaluate the gain in performance provided by the additional features, we re-trained the

models of (Felzenszwalb et al., 2011) on all 20 classes of the Pascal VOC 2007 challenge

86

6.5. Independent part scaling

Table 6.1 – Pascal VOC 2007 challenge Average Precision (area under the Precision/Recall
curve) comparison for the models of (Felzenszwalb et al., 2011) re-trained using only HOG
features or a combination of HOG, uLBP, and color.

aero bike bird boat bottle bus car cat chair cow table

HOG (AP) 27.1 59.0 3.7 10.8 25.6 51.1 56.3 14.4 20.6 23.4 20.2

All feat. (AP) 28.8 61.0 4.6 15.7 25.7 49.5 54.7 18.1 20.5 23.6 24.4

Rel. gain (%) 6.5 3.4 23.9 45.2 0.6 -3.0 -2.8 25.6 -0.7 0.9 21.0

dog horse mbike person plant sheep sofa train tv mean

HOG (AP) 3.3 57.9 50.3 40.3 9.3 16.5 33.9 45.2 39.9 30.4

All feat. (AP) 6.2 60.5 51.7 42.5 16.1 22.0 33.0 47.0 44.6 32.5

Rel. gain (%) 89.7 4.4 2.7 5.6 73.0 33.3 -2.8 4.1 11.9 17.1

(Everingham et al., 2007) for the same number of iterations using either only the original HOG

features or the combination of all three kinds of features.

The performances of the models in both scenarios are displayed in table 6.1. The average

precision of the models making use of the additional features improves for 16 of the 20 classes,

increasing on average by more than 17%.

6.5 Independent part scaling

Standard DPMs restrict the parts to move at a fixed predetermined scale relative to that of the

root of the models (typically at twice the resolution), a limitation imposed by the 2D distance

transform efficiently finding the optimal locations of the parts as explained in § 6.5.2. Our

extension removes this limitation without increasing the number of convolutions or distance

transforms, by sacrificing the guarantee of the optimality of the part placements. Its cost

was empirically found to be similar to that of a second distance transform, and it is easy to

integrate into existing detection systems, the models staying the same except for the additional

3D components to the deformation cost vectors. Allowing parts to move in 3D increases the

expressivity of the models, allowing them to compensate for a wider class of deformations

(see 6.6), and might approximate an increase in the scanning resolution. As the number of

parameters remains (nearly) constant, overfitting is not a problem.

We introduce our 3D model in § 6.5.1, and our approximation to the generalized distance

transform in § 6.5.2. In § 6.5.3 we present results showing an average relative accuracy

improvement of 15% compared to standard models, and show that our approximation does not

lead to any significant loss of performance by comparing against an exact baseline searching

for the optimal part locations exhaustively.

87

Chapter 6. Extensions to the original Deformable Part Model

(a) Detection. (b) Part filters.

Figure 6.6 – (a) one of the detections of figure 6.1 this time using a 3D model; (b) the corre-
sponding part filters. Note how the part change scale to better match the object.

6.5.1 Extension to 3D

In our algorithm, we allow the parts to move freely across scales, and extend the deformation

features of (6.2) to include the z component of the disparity between root and parts positions

φ̄d (p) = (1, x, y, z, x2, y2, z2). (6.10)

An illustration of the consequences of allowing parts to move across scales is available in

figure 6.7. Ideally, one would like to now find the optimal location of each part in this way

p̄?i = argmax
p∈Z3

wT
i φ(p)−dT

i φ̄d
(
p−p0(zi)

)
(6.11)

where p0(zi) = (
λzi−z0 x0, λzi−z0 y0, z0

)
are the coordinates of the root position in the i -th part’s

level zi , λ being the scaling factor between two successive levels of the feature pyramid. The x

and y coordinates of the root position need to be rescaled since they are defined in a different

level than the part’s coordinates, each level z of the feature pyramid storing features extracted

from the image scaled by a factor λz . We compare the root and part locations in the part’s level,

but the particular level at which they are compared does not matter, since each deformation

cost di can be scaled accordingly during training.

6.5.2 Approximation to the generalized distance transform

Unfortunately, p0(zi) is likely to be non-integral, and the generalized distance transform thus

cannot be used directly anymore. Another issue is that since pyramid levels are of varying sizes,

one cannot extend the distance transform to work across levels in the same way as it works

88

6.5. Independent part scaling

Figure 6.7 – In the middle level of this illustration of a feature pyramid and drawn in solid red is
the outline of a root. In the levels above and below and drawn in dashed red are the outlines of
the same root scaled to correspond to the same rectangle in the image. In black is the outline
of a part deforming across scales. The size of the part is always the size of its filter, here 2×2
HOG cells, which means that it becomes bigger relative to the root in the top level and smaller
in the bottom one.

across 2D locations. In order to cope with the first issue, we approximate the root position at

the scale of the i -th part by the closest integer one

p̃0(zi) = argmin
p∈Z2×{zi }

∣∣∣∣p−p0(zi)
∣∣∣∣ . (6.12)

Using this approximate root position, we can now again use the generalized distance transform

in order to find the optimal part location for the approximate root position

p̃?i (p0) = argmax
p∈Z3

wT
i φ(p)−dT

i φ̄d
(
p− p̃0(zi)

)
. (6.13)

We expect this location to coincide most of the time with the optimal one for the real root

position, the difference between the real and the approximate one being at most 0.5 along

the x and y axes. However, the optimal score returned by the transform will generally not

match the score of any real root and part configuration, and might even be higher than the

true optimal one, so we recompute it in constant time using this time the real root position

89

Chapter 6. Extensions to the original Deformable Part Model

(a) In standard models.

p0(zi)

p̃0(zi)

(b) With our 3D model.

Figure 6.8 – Lattices of part locations (in black) in a particular pyramid level. The red circles
indicate root positions. In (a) the part and root positions are at the same scale, as is always the
case with standard models. In (b) there is a mismatch between the scales of the two, and we
show how we approximate a root position p0(zi) by rounding it to the closest integral position
p̃0(zi) when looking for its optimal part placement.

p0(zi) in order to obtain a lower bound on the true optimal score

S̃(p0) = wT
0 φ(p0)+

n∑
i=1

wT
i φ

(
p̃?i (p0)

)−dT
i φ̄d

(
p̃?i (p0)−p0(zi)

)
. (6.14)

The second issue was that the generalized distance transform cannot be extended to work

across pyramid levels. Since we can generally expect the number of scales in which parts will

deform to be small (much smaller than the number of possible 2D locations at each scale),

we brute-force search the optimal level zi of each part, and for each level use an efficient

2D distance transform. Brute-force searching the optimal level also enables the use of costs

other than the quadratic one of (6.10), as long as they remain separable in all dimensions.

The results of the transform of (6.13) can be reused for each root level with common part

levels, such that by precomputing them for every part level in advance, the total number of

transforms is reduced from being quadratic to linear in the total number of pyramid levels.

6.5.3 Experiments

To evaluate our approach to increase the expressivity of DPMs by allowing parts to also move

across scales, we trained a mixture of 6 models on all 20 classes of the Pascal VOC 2007

challenge (Everingham et al., 2007). We compare both against standard 2D models as well as

“exact” 3D ones, searching exhaustively for the optimal part placement instead of using our

approximation of § 6.5.2.

Our DPM implementation is publicly available (Dubout and Fleuret, 2012b) and uses the

same modified Histogram of Oriented Gradients (HOG) features (Dalal and Triggs, 2005) and

90

6.5. Independent part scaling

Table 6.2 – Pascal VOC 2007 challenge Average Precision (area under the Precision/Recall
curve) comparison for the models of (Felzenszwalb et al., 2011) as well as our 2D and 3D
models. What we call relative gain is the improvement of 3D models over 2D ones.

aero bike bird boat bottle bus car cat chair cow table

voc-release4 (AP) 28.9 60.2 1.7 8.3 20.6 53.5 51.3 6.9 18.7 20.1 13.8

2D DPM (AP) 29.3 58.3 3.6 10.2 23.6 55.6 52.8 9.8 19.1 21.8 22.2

3D DPM (AP) 32.0 60.1 5.1 11.2 27.8 57.3 51.0 19.6 20.5 25.1 23.5

Rel. gain (%) 9.1 3.2 41.2 10.1 17.6 2.9 -3.5 99.7 7.5 15.1 5.7

dog horse mbike person plant sheep sofa train tv mean

voc-release4 (AP) 3.3 54.5 47.6 38.8 5.8 14.3 28.1 37.3 39.0 27.6

2D (AP) 4.3 58.4 46.6 38.6 8.2 17.4 27.7 42.0 41.6 29.6

3D (AP) 5.3 60.5 47.0 39.0 10.2 22.1 30.6 42.6 43.1 31.7

Rel. gain (%) 23.7 3.5 0.9 1.0 24.5 26.6 10.4 1.5 3.7 15.2

the same initialization of the parts locations, sizes, deformation cost, and left/right pose

assignments as in (Felzenszwalb et al., 2010b, 2011),. It similarly initializes the parts at twice

the resolution of the root (one octave below), and we configured it to always compute 5 scales

per octave in the feature pyramid. The only additional parameter relative to the initialization

of the 3D models that we needed to specify was the initial deformation cost of the parts,

corresponding to the z-coordinate of each vector di . We set their linear components to 0

and their quadratic one to 0.01, such that the initial dispersion of parts across scales was

approximately centered and of standard deviation 1 level.

While brute-force searching the optimal scale of each part, during both training and testing,

we restricted the search to a 7 levels window (±3 levels) centered on the level one octave below

the root, which corresponds to zi ∈ [z0 −5−3, . . . , z0 −5+3], meaning that we allowed parts to

grow or shrink at most by a factor of 2
3
5 ≈ 1.5 compared to their reference size. This setting

proved sufficient for parts to fully exploit their additional freedom along the z-axis given

our initialization of the deformation cost. Since there is some randomness involved in the

initialization of the models, we always initialized the seed of the random number generator to

the same value while training 2D and 3D models.

To demonstrate the performance of our implementation, we also evaluated the models in-

cluded in (Felzenszwalb et al., 2011), which achieve close to state-of-the-art detection results,

using the same evaluation parameters as our models. These evaluation parameters might not

be optimal for those models, and we therefore include their results as a reference point only.

91

Chapter 6. Extensions to the original Deformable Part Model

Table 6.3 – Pascal VOC 2007 challenge AP comparison on the first 100 images of each class for
the exact as well as our approximation to the generalized distance transform method of § 6.5.2
using our 3D models.

aero bike bird boat bottle bus car cat chair cow table

Brute-force (AP) 50.1 69.0 18.0 20.9 38.8 72.7 59.1 33.0 28.8 46.5 47.3

Approx. DT (AP) 49.9 69.2 17.9 21.5 38.5 72.7 59.1 32.4 28.7 46.3 47.3

dog horse mbike person plant sheep sofa train tv mean

Brute-force (AP) 18.7 77.2 60.3 32.9 23.9 37.6 44.3 56.0 64.3 45.0

Approx. DT (AP) 18.4 77.2 60.3 33.0 24.6 37.2 44.3 56.0 64.2 44.9

6.5.4 Results

The performances of all 3 kinds of models on the Pascal VOC 2007 challenge are displayed

in table 6.2. The scoring function of the Pascal VOC development kit computes the average

precision score for each model by sampling the Precision/Recall curve in eleven points of

recall 0.0, 0.1, 0.2, . . . , 1.0. In order to increase its precision, which is particularly important for

difficult classes obtaining less than 10% AP, we modified it to take into account all points of the

PR curve. This modification explains why the scores we obtain on some difficult classes are

lower than usually reported, and why some authors obtain scores above 9% AP while correctly

detecting only one object on the whole dataset (since the first point is sampled with recall 0.0,

as long as the first detection is correct the AP is guaranteed to be at least 1
11).

The average precision of our 3D models improves over the 2D ones for 19 of the 20 classes,

increasing on average by more than 15%. The average time taken by our implementation to

detect objects in an image using one of the 2D models was 77 ms. Out of those 77 ms, we

measured that 22 were spent computing distance transforms. When using a 3D model, the

average total time increased to 99 ms, corresponding to a doubling of the transform time.

Apart from increasing the expressivity of the models, allowing parts to move across scales

might also improve performance by simulating a scan of the image at a higher resolution.

This may happen because HOG grids in neighboring pyramid levels have always the same

step size (typically 8 pixels), but slightly different dimensions. This difference intertwines

their positions on the image as in figure 6.8 b), and may make the whole process similar to

searching for objects on several slightly misaligned HOG grids. Another explanation is that our

model allows the root to go lower in the feature pyramid, as it is not forced to be one octave

above the parts anymore, visiting a somewhat higher number of negative examples.

A comparison of our approximate method versus the “exact” one which brute-force searches

the optimal location of each part is shown in table 6.3. We evaluated both methods only on the

first 100 images of each class because of the prohibitive time taken by the exhaustive search.

92

6.6. Joint appearance constraints

These results demonstrate the accuracy of the approximation.

6.6 Joint appearance constraints

A shortcoming of standard DPMs is that they completely ignore joint aspects of appearance,

marginalizing it completely over the parts. We believe that making sure that the appearance of

a candidate part agrees with the appearance of the root would be useful to weed out invalid

part placements, and thus reduce the score of false positives.

We therefore propose to extend the standard part score of equation (6.1) in § 6.3 with a term

looking jointly at the appearance of the part and the root together in the following manner

S†(p0, . . . , pn) = wT
0 φ(p0)+

n∑
i=1

wT
i φ(pi)−dT

i φd (pi −p0)− ∣∣∣∣A′
iφ(p0)−A′′

i φ(pi)
∣∣∣∣2 (6.15)

= wT
0 φ(p0)+

n∑
i=1

wT
i φ(pi)−dT

i φd (pi −p0)−
∣∣∣∣∣
∣∣∣∣∣Ai

(
φ(p0)

−φ(pi)

)∣∣∣∣∣
∣∣∣∣∣
2

(6.16)

where Ai =
(
A′

i A′′
i

)
. This formulation has a number of advantages over other joint ones:

First it is simple to understand. The projections matrices A′
i and A′′

i project respectively the

root and part i into a low-dimensional subspace into which it is meaningful to measure

similarity using the Euclidean distance. Vectors in that subspace can be interpreted as a soft

mixture assignment where the mixture components are the rows of Ai .

Second, it is computationally much more manageable than jointly looking at all the features

together, as it still decomposes into a sum over parts, and as the projections (the rows of

A′
i and A′′

i) are simple linear filters similar to the wi s, and thus can be accelerated by the

method of § 4.3.2. We do expect that ignoring part – part relations will lead to a loss in

discriminative power, but we expect it to be mild since the root appearance already contains

the part appearance, albeit at a lower resolution.

Third since distances are non-negative the original scores S(p0) always upper bound their

joint variant S†(p0), allowing one to use them in a cascade or a branch-and-bound algorithm.

A drawback inherent to any method looking jointly at part appearances is that the efficient

distance transform of (Felzenszwalb and Huttenlocher, 2004) can no longer be applied, and

one as to fall back to exhaustive search. Fortunately we observed empirically that one does

not need to look into a large region of the space for the optimal location of each part (the

maximum over pi in (6.4) and (6.15)) but can restrict himself into a small region centered on

the reference anchor point.

We propose two variants of the above formulation, differing in their divergence from the

original DPM formulation and their computational complexity.

93

Chapter 6. Extensions to the original Deformable Part Model

6.6.1 Post-scoring (DPM†)

The first variant is to use the extended score of (6.15) but to keep the original part configuration

of S(p0) (6.4)

S†(p0) = S†(p0, p?1 (p0), . . . , p?n (p0)). (6.17)

It has the advantage of being simple and efficient, and is trivial to cascade since it can be done

as a post-processing step.

6.6.2 Joint-scoring (DPM‡)

The second variant optimizes the parts’ optimal locations using the new score of (6.15)

S‡(p0) = argmax
p1, ...,pn

S†(p0, p1, . . . , pn). (6.18)

It is more powerful than the first variant, as it looks jointly at the root and part appearances

when looking for the optimal part placement, but is also much more expensive since a distance

transform cannot be used anymore.

6.6.3 Learning

A drawback of the previous formulation is that the hypothesis scores are no longer fully linear

in their parameters, leading to a more complex learning problem (non-convex), sensitive to

the initialization of the Ai s.

We apply the method of discriminant embedding of (Hua et al., 2007) to initialize the projec-

tions, which was originally proposed to discriminate between matching and non-matching

image patches in order to train a compact local image descriptor. We modified its objective

function to take pairs of root – part appearance vectors instead of pairs of image patches as

follows

J (ai) =

∑
j ,y j=−1

(
aᵀi

(
φ(p0, j)

−φ(pi , j)

))2

∑
j ,y j=+1

(
aᵀi

(
φ(p0, j)

−φ(pi , j)

))2 (6.19)

where ai stands for an arbitrary row of Ai , y j is the label and pi,j is the location of part i for

example j . The solution of this equation is the largest eigenvector of the system

Na =λPa (6.20)

where N and P are the covariance matrices respectively of the negative and positive examples.

94

6.7. Conclusion

Since we want to learn more than one projection we keep the k eigenvectors corresponding to

the k largest eigenvalues.

6.6.4 Experiments

We kept all the original parameters of the model (all the filters wi and deformation cost di)

fixed and attempted to learn only the Ai s on the Pascal VOC challenge 2007 (Everingham et al.,

2007). We were unable to significantly increase the detection accuracy over the original model,

probably because of overfitting. As the performance of the original model is already close to

perfect on the training set, and since the number of positive examples (a few hundreds) is

small, it is hard to learn meaningful projections. We leave as future work the task of learning

the projections either on a larger dataset or with a better regularization strategy than the

Euclidean norm that we employed.

6.7 Conclusion

We proposed three extensions to the original Deformable Part Model of (Felzenszwalb et al.,

2010b) all taking advantages of the acceleration strategies described in the previous two

chapters. The first one, the addition of LBP and color features, increases on average the

detection accuracy of the models by 17%, the models remaining exactly the same. The second

one, allowing parts to independently change scale, increases on average the detection accuracy

of the models by 15% for a moderate augmentation of the total computational cost, the

number of convolutions and distance transforms remaining constant. Despite relying on

an approximation to the generalized distance transform, it obtains scores virtually equal to

an exact brute-force search. Even though we were unable to empirically demonstrate the

advantage of our third extension, modeling the appearance of the parts jointly with the one of

the root, we are confident about the potential of our approach, as real-world object parts are

rarely independent. We believe its non-performance to be due to our inability to train it on

the Pascal dataset.

95

7 Summary and Future Directions

This chapter summarizes the main results and contributions presented in this thesis, and

sketches possible future directions of research.

7.1 Discussion

In this thesis we studied the problem of learning and detecting objects in high dimensional

feature space. In the first part, we showed that integrating information about the division of

the feature space into homogeneous subsets can reduce the training time significantly. In

particular, the Tasting algorithm of § 3.4 is extremely straight-forward and avoids the need for

setting multiple parameters, such as the trade-off between exploration and exploitation. In

practice, the only parameter to set is the number of features R sampled initially to estimate

the expected loss reduction during training. Tasting relies on the ability to estimate the loss

reduction given any weighting of the training samples. We have chosen to use an empirical

model, that is to store actual responses over samples, instead of fitting an analytical density

model. It may be possible to choose the later strategy, and summarize the information

provided by feature responses for instance with a Gaussian model. However, it is not clear how

such a model could lead to a proper estimate of the distribution of the loss reduction when

the Boosting weights are strongly unbalanced.

We also improved Boosting by modeling the statistical behavior of the weak learners’ edges,

explicitly with the Maximum Adaptive Sampling (M.A.S.) algorithm and implicitly with the

Laminating algorithm. This allowed us to maximize the loss reduction of each weak learner

under strict control of the computational cost. Both algorithms are (nearly) parameter-less

and perform well on real-world pattern recognition tasks, especially for a small number of

iterations, as detailed in § 3.6.5.

In the second part, we showed that it is possible to accelerate without approximation the

speed of a large class of linear object detectors, and proposed several enhancements to one of

them: the Deformable Part Model (DPM) of Felzenszwalb et al. The idea motivating our work

97

Chapter 7. Summary and Future Directions

is that the Fourier transform is linear, enabling one to do the addition of the convolutions

across the K feature planes in the frequency domain, and be left in the end with only one

inverse Fourier transform to do, instead of K . To take advantage of this, we proposed several

additional implementation strategies, ensuring maximum efficiency without requiring huge

memory space and/or bandwidth, and thus making the whole approach practical. We have

also presented a novel method to speed up the training of object detectors based on a linear

classifier. Existing implementations of such methods rely on sparsity and sub-sampling of

the training examples. Our approach by contrast, is based on a formulation of the gradient

computation as a convolution, which allows to leverage the Fourier transform, and makes the

overall computation independent of the filters’ size. Experimental validation demonstrates

that the gain in speed compared to a generic approach can be more than one order of magni-

tude. That such approaches are possible is not entirely trivial (the reference implementation

of Felzenszwalb et al. (2011) contains five different ways to do the convolutions, all at least

an order of magnitude slower); nevertheless, the analysis we developed is readily applicable

to many other systems. Finally our extensions to the original DPM make full use of our ac-

celeration strategies and increase on average the detection accuracy by 15% for a moderate

augmentation of the total computational cost.

7.2 Future Directions

Extensions of the methods proposed in the first part could be investigated along three axes. The

first one is to merge the best two methods by adding a Tasting component to the Laminating

procedure, in order to bias the sampling towards promising feature subsets. The second is

to add a bandit-like component to the methods by adding a variance term related to the

lack of samples, and their obsolescence in the Boosting process. This would account for the

degrading density estimation when subsets have not been sampled for a while, and induce an

exploratory sampling which may be missing in the current algorithms. The third would be to

take memory into account, by caching and reusing examples and/or features across multiple

Boosting iterations. There is an obvious trade-off between reusing data to save time, and

keeping an unbiased estimate of the complete training set, which is not taken into account by

current methods.

Regarding the second part, two potential avenues of research come to mind. The first one

is to improve the training of our DPM with joint appearance constraints, either by using

more training examples or by improving on the initialization and the regularization of the

projections. The second is to adapt our accelerated learning framework for linear object

detector to Convolutional Neural Networks (CNN), which are usually trained using stochastic

gradient descent and whose gradient can be rewritten as a sequence of convolutions.

98

A Proof of Lemma 1

Since

max
r :εr ≥εq?−δ

ε̂r ≥ ε̂q? (A.1)

Defining Bq = 1{∆q−∆q?≥δ}, we have

P

(∣∣∣∣∣
{

q : εq ≤ εq? −δ, ε̂q ≥ max
r :εr ≥εq?−δ

ε̂r

}∣∣∣∣∣ ≥ Q

2

)

≤P

(∣∣{q : εq ≤ εq? −δ, ε̂q ≥ ε̂q?
}∣∣ ≥ Q

2

)
(A.2)

≤P

(∣∣{q : εq ≤ εq? −δ,∆q −∆q? ≥ δ
}∣∣≥ Q

2

)
(A.3)

≤P

 ∑
q,εq≤εq?−δ

Bq ≥ Q

2

 (A.4)

≤P

(∑
q

Bq ≥ Q

2

)
(A.5)

≤P

(2
∑

q Bq

Q
≥ 1

)
(A.6)

≤2E
[∑

q Bq
]

Q
(A.7)

≤2E
[
Bq

]
(A.8)

≤2E
[

1{(∆q≥ δ
2)∪(∆q?≤− δ

2)}

]
(A.9)

≤4exp

(
−δ

2S

2

)
. (A.10)

�

99

Appendix A. Proof of Lemma 1

Equation (A.1) is true since q? is among the {r : εr ≥ εq? −δ} and δ is positive. Equations

(A.2) to (A.6) are true since we relax conditions on the event. Equation (A.7) is true since

P(X ≥ 1) ≤ E(X) for X ≥ 0. Equations (A.8) and (A.9) are true analytically, and equation (A.10)

follows from Hœffding’s inequality.

100

B Proof of Theorem 1

Defining δk = 1

C
δ

√
k

2k−1
where C =

dlog2(Q)e∑
k=1

√
k

2k−1
is a normalization constant such that the

δk ’s sum to the original δ, i.e.
dlog2(Q)e∑

k=1
δk = δ.

We apply Lemma 1 with constant δk for each of the k Laminating iterations, 1 ≤ k ≤ dlog2(Q)e.

Since each iteration samples twice as many training examples as the previous one, and the

δk ’s sum to the original δ, the probability to end up with a weak learner with an edge below or

equal to εq∗ −δ is upper bounded by

4
dlog2(Q)e∑

k=1
exp

(
−δ

2
k S 2k−1

2

)

≤4
∞∑

k=1
exp

(
−δ

2Sk

2C 2

)
(B.1)

≤4

 1

1−exp
(
− δ2S

2C 2

) −1

 (B.2)

≤4

 1

1−exp
(
−δ2S

69

) −1

 (B.3)

�

Equation (B.1) is true analytically, equation (B.2) follows from the formula for geometric series,

and equation (B.3) is true due to the fact that the constant C is upper bounded by
p

2 times

the polylogarithm Li− 1
2

(
1p
2

)
=

∞∑
k=1

√
k

2k
≈ 4.15.

101

Bibliography

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.

Machine Learning, 47(2):235–256, 2002.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit

problem. SIAM Journal on Scientific Computing, 32(1):48–77, 2003.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the

SMO algorithm. In International Conference on Machine Learning, 2004.

L. Bottou and Y. LeCun. Large scale online learning. In Neural Information Processing Systems,

2003.

J. Bradley and R. Schapire. Filterboost: Regression and classification on large datasets. In

Neural Information Processing Systems, 2007.

R. Busa-Fekete and B. Kegl. Accelerating AdaBoost using UCB. JMLR W&CP, 2009.

R. Busa-Fekete and B. Kegl. Fast Boosting using adversarial bandits. In ICML, 2010.

H. Cecotti and A. Graeser. Convolutional neural network with embedded fourier transform for

eeg classification. In International Conference on Pattern Recognition, pages 1–4, 2008.

B. Chazelle. The bottom-left bin-packing heuristic: An efficient implementation. In IEEE

Transactions on Computers, pages 697–707, 1983.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Conference on

Computer Vision and Pattern Recognition, pages 886–893, 2005. URL http://pascal.inrialpes.

fr/data/human/.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: a large-scale hierarchical

image database. In Conference on Computer Vision and Pattern Recognition, 2009.

S. Divvala, A. Efros, and M. Hebert. How important are "deformable parts" in the deformable

parts model? In European Conference on Computer Vision, pages 31–40, 2012.

P. Dollar, S. Belongie, and P. Perona. The Fastest Pedestrian Detector in the West. In British

Machine Vision Conference, 2010. URL http://bmvc10.dcs.aber.ac.uk/proc/conference/

paper68/index.html.

103

http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://bmvc10.dcs.aber.ac.uk/proc/conference/paper68/index.html
http://bmvc10.dcs.aber.ac.uk/proc/conference/paper68/index.html

Bibliography

C. Dubout and F. Fleuret. Tasting families of features for image classification. In International

Conference on Computer Vision, 2011a.

C. Dubout and F. Fleuret. Boosting with maximum adaptive sampling. In Neural Information

Processing Systems, 2011b.

C. Dubout and F. Fleuret. Exact acceleration of linear object detectors. In Computer Vision

– ECCV 2012, volume 7574 of Lecture Notes in Computer Science, pages 301–311. Springer

Berlin Heidelberg, 2012a. URL http://dx.doi.org/10.1007/978-3-642-33712-3_22.

C. Dubout and F. Fleuret. Exact acceleration of linear object detectors, 2012b. URL http://www.

idiap.ch/scientific-research/resources/exact-acceleration-of-linear-object-detectors.

C. Dubout and F. Fleuret. Accelerated training of linear object detectors. In CVPR 2013

Workshop on Structured Prediction, 2013a. URL cvpr13ws.is.tue.mpg.de.

C. Dubout and F. Fleuret. Deformable part models with individual part scaling. In British

Machine Vision Conference, 2013b.

N. Duffield, C. Lund, and M. Thorup. Priority sampling for estimation of arbitrary subset sums.

J. ACM, 54, December 2007.

G. Escudero, L. Màrquez, and G. Rigau. Boosting applied to word sense disambiguation.

Machine Learning: ECML 2000, pages 129–141, 2000.

M. Everingham, A. Zisserman, C. K. I. Williams, and L. Van Gool. The PASCAL Visual Object

Classes Challenge 2006 (VOC2006) Results, 2006. URL http://www.pascal-network.org/

challenges/VOC/voc2006/results.pdf.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual

Object Classes Challenge 2007 (VOC2007) Results, 2007. URL http://www.pascal-network.

org/challenges/VOC/voc2007/workshop/index.html.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual

Object Classes Challenge 2008 (VOC2008) Results, 2008. URL http://www.pascal-network.

org/challenges/VOC/voc2008/workshop/index.html.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual

Object Classes Challenge 2009 (VOC2009) Results, 2009. URL http://www.pascal-network.

org/challenges/VOC/voc2009/workshop/index.html.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual

Object Classes Challenge 2010 (VOC2010) Results, 2010. URL http://www.pascal-network.

org/challenges/VOC/voc2010/workshop/index.html.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual

Object Classes Challenge 2011 (VOC2011) Results, 2011. URL http://www.pascal-network.

org/challenges/VOC/voc2011/workshop/index.html.

104

http://dx.doi.org/10.1007/978-3-642-33712-3_22
http://www.idiap.ch/scientific-research/resources/exact-acceleration-of-linear-object-detectors
http://www.idiap.ch/scientific-research/resources/exact-acceleration-of-linear-object-detectors
cvpr13ws.is.tue.mpg.de
http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf
http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html

Bibliography

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. Liblinear: A library for large linear classification.

Journal of Machine Learning Research, 9:1871–1874, 6 2008.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training

examples: an incremental bayesian approach tested on 101 object categories. In CVPR,

Workshop on Generative-Model Based Vision, 2004. URL http://www.vision.caltech.edu/

Image_Datasets/Caltech101/.

P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions. Technical

report, Cornell Computing and Information Science, 2004.

P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. In Interna-

tional Journal of Computer Vision, 2005.

P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object detection with deformable

part models. In Conference on Computer Vision and Pattern Recognition, pages 2241–2248,

2010a.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object Detection with Discrimi-

natively Trained Part-Based Models. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(9):1627–1645, 2010b.

P. Felzenszwalb, R. Girshick, and D. McAllester. Discriminatively trained deformable part

models, release 4, 2011. URL http://cs.brown.edu/~pff/latent-release4/.

F. Fleuret and D. Geman. Stationary features and cat detection. Journal of Machine Learning

Research, 9:2549–2578, 2008.

F. Fleuret, T. Li, C. Dubout, E. K. Wampler, S. Yantis, and D. Geman. Comparing machines and

humans on a visual categorization test. Proceedings of the National Academy of Sciences,

2011.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In International

Conference on Machine Learning, pages 148–156. Morgan Kaufmann, 1996.

J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of

Boosting. Annal of Statistics, 28:337–407, 2000.

M. Frigo and S. Johnson. The design and implementation of FFTW3. In Proceedings of the

IEEE, volume 93 (2), pages 216–231, 2005.

P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In

International Conference on Computer Vision, 2009.

G. Guennebaud, B. Jacob, et al. Eigen v3, 2010. URL http://eigen.tuxfamily.org.

C. Hsieh, K. Chang, C. Lin, S. Keerthi, and S. Sundararajan. A dual coordinate descent method

for large-scale linear svm. In International Conference on Machine Learning, pages 408–415,

2008.

105

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://cs.brown.edu/~pff/latent-release4/
http://eigen.tuxfamily.org

Bibliography

G. Hua, M. Brown, and S. A. J. Winder. Discriminant embedding for local image descriptors.

In International Conference on Computer Vision, pages 1–8, 2007.

T. Joachims. Training linear svms in linear time. In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 217–226, 2006.

Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted sampling for large-scale Boosting. British

machine vision conference, 2008.

I. Kokkinos. Rapid deformable object detection using dual tree branch and bound. In Advances

in Neural Information Processing Systems, 2011.

I. Kokkinos. Bounding part scores for rapid detection with deformable part models, 2012.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Com-

puter Science University of Toronto, 2009. URL http://www.cs.toronto.edu/~kriz/cifar.html.

C. Lampert, M. Blaschko, and T. Hofmann. Beyond sliding windows: Object localization by

efficient subwindow search. In Conference on Computer Vision and Pattern Recognition,

pages 1–8, 2008.

C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwindow search: A branch and

bound framework for object localization. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, volume 31, pages 2129–2142, 2009.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel

matrix with semidefinite programming. Journal of Machine Learning Research, 5, 2004.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998a.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. In Proceedings of the IEEE, volume 86(11), pages 2278–2324, 1998b. http:

//yann.lecun.com/exdb/mnist/.

S. Maji and J. Malik. Object detection using a max-margin hough transform. In Conference on

Computer Vision and Pattern Recognition, pages 1038–1045, 2009.

M. E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. In International

Conference on Computer Vision, pages 1447––1454, 2006.

T. Ojala, M. Pietikainen, and D. Harwood. A comparative study of texture measures with

classification based on feature distributions. In Pattern Recognition 19, volume 3, pages

51–59, 1996.

A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic object recognition with Boosting. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28:416–431, 2006.

106

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Bibliography

B. Pepik, P. Gehler, M. Stark, and B. Schiele. 3D2PM - 3D deformable part models. In European

Conference on Computer Vision, 2012a.

B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3d geometry to deformable part models.

In Conference on Computer Vision and Pattern Recognition, 2012b.

R. Perko and A. Leonardis. Context driven focus of attention for object detection. In Attention

in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint (WAPCV

2007), volume 4840, chapter 14, pages 216–233. Springer LNAI, 2007. URL http://vicos.fri.

uni-lj.si/data/publications/perko07context_driven.pdf.

H. Pirsiavash and D. Ramanan. Steerable part models. In Conference on Computer Vision and

Pattern Recognition, 2012.

J. Platt. Advances in kernel methods. In Fast training of support vector machines using

sequential minimal optimization, pages 185–208, 1999.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.

Machine learning, 37(3):297–336, 1999.

R. E. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee. Boosting the margin: a new explanation

for the effectiveness of voting methods. Annals of Statistics, 26(5):1651–1686, 1998.

J. Schatzman. Accuracy of the discrete fourier transform and the fast fourier transform. SIAM

Journal on Scientific Computing, 17(5):1150–1166, 1996.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for

svm. In International Conference on Machine Learning, pages 807–814, 2007.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

P. Viola and M. Jones. Robust real-time object detection. In International Journal of Computer

Vision, 2001.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD

Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

R. Wijnhoven and P. de With. Fast training of object detection using stochastic gradient descent.

In International Conference on Pattern Recognition, pages 424–427, 2010.

Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts. In

Conference on Computer Vision and Pattern Recognition, 2011.

A. Yuille and A. Rangarajan. The concave-convex procedure (cccp. In Neural Information

Processing Systems, 2002.

C. Zhang and P. Viola. Multiple-instance pruning for learning efficient cascade detectors. In

Neural Information Processing Systems, 2007.

107

http://vicos.fri.uni-lj.si/data/publications/perko07context_driven.pdf
http://vicos.fri.uni-lj.si/data/publications/perko07context_driven.pdf

Bibliography

J. Zhang, K. Huang, Y. Yu, and T. Tan. Boosted local structured hog-lbp for object localization.

In Conference on Computer Vision and Pattern Recognition, pages 1393–1400, 2011.

L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for object

detection. In Conference on Computer Vision and Pattern Recognition, pages 1062–1069,

2010.

X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the

wild. In Conference on Computer Vision and Pattern Recognition, pages 2879–2886, 2012.

108

Charles Dubout

Rue de Crissier 12 Cellphone: (+41) 79 697 96 89
1020 Renens Date of Birth: September 8, 1985
Switzerland Citizenships: Swiss, French
cdubout@gmail.com www.idiap.ch/~cdubout

Contact
Information

Swiss Federal Institute of Technology (EPFL), Lausanne, SwitzerlandCurrent
Position

Ph.D., Computer Science Fall 2009 to Winter 2013
• Working at the Idiap Research Institute with Dr. François Fleuret
• Thesis title is “Object Classification and Detection in High Dimensional

Feature Space”, involves both Machine Learning and Computer Vision
• Graduated with a GPA of 5.8 on a scale of 6.0

Swiss Federal Institute of Technology (EPFL), Lausanne, SwitzerlandEducation

M.S., Computer Science Fall 2006 to Summer 2008
• Graduated with a GPA of 5.6 on a scale of 6.0

B.S., Computer Science Fall 2003 to Summer 2006
• Graduated with a GPA of 5.3 on a scale of 6.0

Qualcomm Corporate R&D, San Diego, United StatesProfessional
Experience

Interim Engineering Intern Summer 2013
• Mobile vision

NEC Corporation, Tokyo, Japan

System Engineer Winter 2008 to Summer 2009
• Continuation of my M.S. Thesis

M.S. Thesis Spring and Summer 2008
• Face pictures enhancement based on CG rendering approaches

AgieCharmilles, Meyrin, Switzerland

Computer Technician Summer 2006 and 2007
• Development of a standalone maintenance tool

109

Technical
Skills

Machine Learning and Computer Vision
• Discriminative Machine Learning (SVM, Boosting, and Neural Nets), De-

formable Part Models, Feature Detection and Description, Multiple View
Geometry

Programming
• C/C++ (expert), Matlab (advanced), x86 assembly, Java, Perl, Python, UNIX

shell

Application design
• Author of the Fast Fourier Linear Detector software (the fastest public im-

plementation of Deformable Part Models), as well as an MSER detector, a
SIFT descriptor, implementations of the L-BFGS and the FFT algorithms,
etc., all implemented in C++ and distributed online under the GNU GPL

Selected
Publications

2013
• Adaptive Sampling for Large Scale Boosting, Charles Dubout and François

Fleuret, in Journal of Machine Learning Research (JMLR)
• Deformable Part Models with Individual Part Scaling, Charles Dubout

and François Fleuret, in British Machine Vision Conference (BMVC)
Acceptance rate: 30%
• Accelerated Training of Linear Object Detectors, Charles Dubout and

Fran-çois Fleuret, in IEEE Conference on Computer Vision and Pattern
Recognition, Structured Prediction workshop (CVPR workshop)

2012
• Exact Acceleration of Linear Object Detectors, Charles Dubout and Fran-

çois Fleuret, in Proceedings of the European Conference on Computer Vi-
sion (ECCV)
Oral presentation, acceptance rate: 2.8%
• Co-inventor of the US patent application US13/624375: Object detection

method, object detector and object detection computer program

2011
• Boosting with Maximum Adaptive Sampling, Charles Dubout and François

Fleuret, in Proceedings of the Neural Information Processing Systems Con-
ference (NIPS)
Acceptance rate: 22%, Idiap Best Student Paper Award
• Comparing machines and humans on a visual categorization test, François

Fleuret, Ting Li, Charles Dubout, Emma K. Wampler, Steven Yantis and
Donal Geman, in Proceedings of the National Academy of Sciences (PNAS)
• Tasting Families of Features for Image Classification, Charles Dubout

and François Fleuret, in International Conference on Computer Vision (ICCV)
Acceptance rate: 24%

Languages • French: native speaker
• English: fluent (TOEFL iBT score of 105/120)
• Japanese: intermediate (level 2.5 of the JLPT)

110

	Acknowledgements
	Abstract (English/Français/Deutsch)
	List of figures
	List of algorithms
	List of tables
	Introduction
	Learning in High Dimensional Feature Space: Advantages and Challenges
	Organization and Contribution of this Thesis
	Notation

	Part I: Boosting in High Dimensional Feature Space
	Influence of the number of Training Examples and Features on Boosting
	Introduction and related works
	AdaBoost

	Experiments
	Conclusion

	Adaptive Sampling for Large Scale Boosting
	Introduction
	Related works
	Preliminaries
	Standard Boosting
	Feature subsets

	Tasting
	Main algorithm
	Tasting variants
	Relation with Bandit methods

	Maximum Adaptive Sampling and Laminating
	Edge estimation
	Modeling the true edge
	M.A.S. variants
	Laminating

	Experiments
	Features
	Datasets
	Uniform sampling baselines
	Bandit sampling baselines
	Results

	Conclusion

	Part II: Object Detection in High Dimensional Feature Space
	Accelerated Evaluation of Linear Object Detectors
	Introduction
	Related works
	Linear object detectors and Fourier transform
	Evaluation of a linear detector as a convolution
	Leveraging the Fourier transform

	Implementation strategies
	Patchworks of pyramid scales
	Taking advantage of the cache

	Experiments
	Conclusion

	Accelerated Training of Linear Object Detectors
	Introduction and related Works
	Evaluation of the gradient of a linear detector as a convolution
	Computational cost of the gradient computation
	Experiments
	Implementation details
	Results

	Conclusion

	Extensions to the original Deformable Part Model
	Introduction
	Related works
	Standard Deformable Part Models
	Additional features
	Histograms of uniform Local Binary Patterns
	Color histograms
	Experiments

	Independent part scaling
	Extension to 3D
	Approximation to the generalized distance transform
	Experiments
	Results

	Joint appearance constraints
	Post-scoring (DPM)
	Joint-scoring (DPM)
	Learning
	Experiments

	Conclusion

	Summary and Future Directions
	Discussion
	Future Directions

	Proof of Lemma 1
	Proof of Theorem 1
	Bibliography
	Curriculum Vitae

