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Abstract—We consider the minimum variance distor-
tionless response (MVDR) beamforming problems where
the array covariance matrix is rank deficient. The conven-
tional approach handles such rank-deficiencies via diago-
nal loading on the covariance matrix. In this setting, we
show that the array weights for optimal signal estimation
can admit a sparse representation on the array manifold.
To exploit this structure, we propose a convex regularizer
in a grid-free fashion, which requires semi-definite pro-
gramming. We then provide numerical evidence showing
that the new formulation can significantly outperform
diagonal loading when the regularization parameters are
correctly tuned.

I. INTRODUCTION

Consider the standard array observation model:

x = a(θs)s+

K∑
k=1

a(θIk)Ik + n, (1)

where s ∈ C1×T denotes T snapshots of an unknown
narrowband signal impinging on an array of sensors from
a known direction θs in the presence of K-interferers Ik
each at unknown direction of arrivals θIk ; x ∈ CM×T
denotes the array observations vector, n ∈ CM×T is
an i.i.d. Gaussian noise, and a(θ) is the array manifold
vector. We assume uniform linear arrays with half source
wavelength element separation, and hence, a(θ) can be
written as

a(θ) =


1

e−jπ cos(θ)

e−j2π cos(θ)

...
e−j(M−1)π cos(θ)

 , where j =
√
−1. (2)

Prediction of s given the array observations x is known
as the beamforming problem in array signal process-
ing [1], and also has broad applications in statistics and
machine learning. In this paper, we study the following
linear estimator ŝ = w∗Hx of the source s, where .H

denotes the Hermitian operator; the so-called steering
weights w∗ is obtained via minimization of the expected

prediction risk in terms of mean square error (MSE)

w∗ ∈ arg min
w∈CM

E {‖wHx− s‖2
2}. (3)

Unfortunately, we cannot hope to solve the optimiza-
tion problem above since we only know the source
bearing θs and not the source s.

Among beamforming techniques, the most popular
one perhaps is the minimum variance distortionless re-
sponse (MVDR), whose weights are obtained via

w∗MVDR ∈ arg min
w∈CM

E{‖wHx‖2
2} s.t. Re{wHa(θs)} = 1.

(4)
In (4), the constraint Re{wHa(θs)} = 1 ensures

that the ideal signal passes through with unity gain.
Minimizing E{‖wHx‖2

2} subject to this constraint then
suppresses all the other signals that do not resemble the
ideal signal.

Note that the MVDR objective function can be writ-
ten as wHΣw, where Σ = E{xxH} is the true array
covariance matrix. Since we do not in general know
the distribution of the noise sources in the observation
model, we simply replace the true covariance matrix with
its empirical covariance estimate Σ̂ = xxH. Then the
optimal MVDR solution is given by

ŵMVDR =
Σ̂−1a(θs)

a(θs)HΣ̂−1a(θs)
. (5)

Even in the idealistic scenarios (i.e., no calibration
error, no bearing mismatch, and no additive noise),
MVDR estimates can suffer significant performance
degradation in practice. As a stylistic example, consider
the case where empirical covariance estimate Σ̂ is rank-
deficient, which often happens in MIMO communication
applications or when we have a high signal-to-noise ratio
(i.e., n ≈ 0 in (1)). In this case, we cannot directly take
the inverse of the empirical covariance matrix since the
optimal steering weights w∗ is non-unique.

As a result, we typically use diagonal loading of
the empirical covariance matrix by substituting Σ̂ =
xxH + λdlI in (5) where I denotes the identity matrix



and λdl > 0 is the regularization parameter [2, 3].
This operation corresponds to the following Tikhonov
regularized problem

ŵdl = arg min
Re{wHa(θs)}=1

wHΣ̂w+ λdl‖w‖2
2. (6)

This paper argues that one can obtain a better pre-
diction performance (3) by exploiting a heretofore unex-
plored structure in beamforming: sparsity of the weight
vector over the array manifold. Sparsity enforcing has
been shown to be beneficial in terms of sidelobe sup-
pression of the beampattern [4]; this paper however
considers a fundamentally different formulation [5]. We
illustrate that when there is no additive noise in the
array observations, the ideal steering weights can be
represented sparsely in terms of the manifold vectors.
While it is well-known that sparsity regularization helps
in empirical risk minimization, to the best of our knowl-
edge, this has not been demonstrated in beamforming
problems.

We use this motivation to propose a new regularizer
based on the atomic norm formulation of [6]. Hence,
we dub our formulation sparse manifold beamforming
as the weights are regularized using the sparsity assump-
tion on the manifold vectors. We numerically illustrate
that atomic beamforming can significantly improve the
prediction performance by comparing diagonal loading
against the atomic norm regularization using oracle pa-
rameters λ (i.e., optimized using the true prediction risk).
For the numerical solution of the proposed formulation,
we use a semi-definite relaxation and provide a grid free
solution on the array manifold.

The article is organized as follows. In Section II we
establish that MVDR is empirical risk minimization of
the linear prediction when interferers are uncorrelated
with the source signal. The fundamentals of an atomic
beamformer and the motivation behind its use are given
in Section III and Section IV respectively. We explain the
simulation results in Section V and discuss the benefits of
our technique. The conclusions are drawn in Section VI.

II. A Risky TALE OF MVDR

Here, we provide some relevant beamforming pre-
liminaries for signal prediction for the sake of com-
pleteness. We first show that when the source signal is
uncorrelated with the interferers, the MVDR beamformer
approximately optimizes the empirical signal prediction
MSE risk. To see this, we reconsider (3) assuming that

E {sHIk} = 0 (k = 1, . . . ,K) and E {sHn} = 0:

w∗ ∈ arg min
w∈CM

E {‖wHx− s‖2
2}

∈ arg min
w∈CM

E {‖wHx‖2
2 + ‖s‖2

2 − 2Re{sHwHx}}

∈ arg min
w∈CM

E {‖wHx‖2
2}+ E {‖s‖2

2}

− 2Re E

{
sHwH

(
a(θs)s+

K∑
k=1

a(θIk)Ik + n

)}
∈ arg min
w∈CM

E {‖wHx‖2
2}− 2Re{wHa(θs)}× E {‖s‖2

2},

(7)

where the last line can be written as follows for some
constant c due to the convexity of the terms:

w∗ ∈ arg min
w∈CM

E {‖wHx‖2
2} s.t. Re{wHa(θs)} = c.

(8)
In the absence of prior information on the source

signal power, MVDR stipulates that we pass the source
signal untouched, and hence, enforces c = 1. We em-
phasize that this may not be the optimal solution to the
risk minimization problem according to our derivation
above.

III. ATOMIC BEAMFORMING

When Σ̂ is rank deficient, we typically use Tikhonov
regularization as described in (6) to obtain a unique
solution (and hence replace ∈ with equality). This is
also known to improve performance when the condition
number of the empirical covariance matrix is high. This
solution is often referred to as diagonal loading MVDR.
In this work, we instead propose a new regularization
for MVDR:

w∗A = arg min
Re{wHa(θs)}=1

wHΣ̂w+ λA‖w‖A, (9)

where ‖w‖A is the so-called atomic norm defined as

‖w‖A = inf {t > 0 |w ∈ tconv(A)}

= inf

{∑
ci|w =

∑
ai∈A

ciai, ci > 0

}
.

(10)

The atomic norm is a convex norm that allows one
to decompose a vector w into its atoms a in a set A—
possibly—with infinite cardinality. When the atoms are
not symmetric with respect to the origin, it is defined
using a convex gauge [6].

In our case, we take the complex manifold vectors (2)
as our atoms, and hence

A = {a(θ), θ ∈ [0,π]}.



We can exploit the fact that our manifold vectors a(θ)
have the same structure of spectral estimation problem
on continuous normal frequency grid [6]. Therefore,
following the formulation of the line spectral estimation
problem presented in [6], we can translate our minimiza-
tion problem (9) into

minimize
t,u,w

wHΣ̂w+
λA

2
(t+ u1)

subject to
[
T(u) w

w∗ t

]
� 0

Re{wHa(θs)} = 1,

(11)

where T is a Toeplitz operator applied on the vector
u = [u1u2 . . .uM]T , u1 being the first element of it. This
is a semidefinite programming (SDP) that can be solved
with CVX package in MATLAB [7]. The atomic MVDR
yields significantly lower prediction risk compared to the
diagonal loading approach as it will be seen in Section V.
The following section provides some insights on the
sparsity structure of the optimal weights w∗ on the array
manifold.

IV. SPARSITY OF w∗ ON THE ARRAY MANIFOLD

In this section we give a heuristic justification for the
sparsity of optimum weight vector on our atomic set
A. For concreteness, we consider the case where the
additive noise is insignificant compared to the source
and interferers so that the array covariance matrix is rank
deficient. We now revisit (7) to understand the subspace
restrictions on the solution w∗ ∈

arg min
Re{wHa(θs)}=1

E


∥∥∥∥∥wH

(
a(θs)s+

K∑
k=1

a(θIk)Ik

)∥∥∥∥∥
2

2

 .

Assuming that the source and the interferers are un-
correlated, we obtain the following optimization problem
for w∗

arg min
Re{wHa(θs)}=1

E
∥∥wHa(θs)s∥∥2

2+E

∥∥∥∥∥
K∑
k=1

wHa(θIk)Ik

∥∥∥∥∥
2

2

.

Now, we are going to replace the constraint
Re{wHa(θs)} = 1 with the constraint wHa(θs) = 1.
Note that this constraint is more stringent since it forces
the imaginary part of wHa to be exactly zero as opposed
to be free. If we can find sparse solutions here, we
can always find sparse solutions to the original problem.
Under this modification, we have the following problem

w∗ ∈ arg min
wHa(θs)=1

E

∥∥∥∥∥
K∑
k=1

wHa(θIk)Ik

∥∥∥∥∥
2

2

.

This suggests that if the modified weight vector can
satisfy the nulling equations wHa(θIk) = 0 for k =
1, ...,K, then the error is minimized. Assuming that w∗

could be written as a S-sparse linear combination of
atoms w∗ =

∑S
k=1 cka(θk), we would like to see if

the following linear system is feasible
a(θs)

H

a(θI1)
H

a(θI2)
H

...
a(θIK)

H

 [a(θ1)a(θ2) . . .a(θS)]


c1

c2

c3
...
cS

 =


1
0
0
...
0

 .

We claim that when the interferer angles θIks are
random, w∗ lies in a M − K + 1 dimensional subspace
which could be spanned by S = M − K + 1 atoms.
Therefore this set of equations can have a solution when
K + 1 6 M − K + 1, i.e., K 6 M

2 . Hence, the original
problem can have sparse solutions when the number
of interferers is small relative to the number of array
elements.

The sparsity regularization can be beneficial as it
restricts the search space to the null space of the inter-
ferences. Section V demonstrates that the performance
improvement obtained by sparsity regularization even
persists when K > M

2 . At this point, the theoretical justi-
fication for that is not clear. We believe that the sparsity
of the weight vectors on the manifold improves the ro-
bustness of beamforming when the empirical covariance
estimates are used. We leave the rigorous discussion on
this topic for future work.

V. NUMERICAL EXPERIMENTS

In this section we compare the performances of diag-
onal loading (6) and atomic beamforming (11) based on
MATLAB CVX simulations. To see the impact on the
actual signal prediction error, we tune the regularizer
parameters λ via an oracle model which is basically a
crude search for the best hyperparameter having access
to the desired source signals. To implement the oracle,
we first perform an exhaustive grid search over a limited
number of regularization parameters λ within an spec-
ified range by calculating the actual prediction risk to
narrow down the regularization parameter range. We then
use continuous optimization to obtain the regularizer
values using the fmincon function of MATLAB for
which a good initial point is provided by the grid search.

A. Experiment Setup

The number of sensors is taken as M = 8 whereas
the total number of snapshots is T = 80. For one source
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Fig. 1: Relative mean square error gain of atomic beam-
forming over diagonal loading vs. number of interferers

signal and K = 1, 2, . . . ,M − 2 interferers, the optimal
weights are calculated for diagonal loading and atomic
beamforming based on (6) and (11), respectively.

The experiments are repeated for 2500 runs each of
which included, beside different number of interferers,
different signal qualities: no noise and SNR= 20 dB
with −10, 0, 10, 20 dB signal-to-interferer ratio (SIR)
values. Note that the SIR value is defined as the total
signal to interference ratio, therefore individual power
of interferers decreases as the number of interferers
increases.
B. Evaluation Results

The results of a noiseless scenario are depicted in Fig.
1. The relative error gain is defined as

10 log10‖w∗Ax− s‖2
2 − 10 log10‖w∗dlx− s‖2

2. (12)

We can see that at low number of interferers and at
a low SIR value the sparsity constraint on the weight
vectors helps to gain several dB of improvement in
terms of MSE prediction risk. However at higher SIR,
contribution of atomic beamforming is less since the
nulling equations forcing the sparsity in atomic manifold
set becomes less and less significant. On the other hand,
Fig. 1 also demonstrates that when there is noise in
the measured signal, this effect is less visible since the
empirical matrices are not rank deficient anymore and
the atomic regularization is less effective.

Furthermore, we compare the CPU time for diago-
nal loading as well as atomic MVDR which confirms
that both methods could perform real-time, although
atomic beamformer requires slightly more computations.

It should be noted that the use of atomic norm regular-
ization for a grid-free sparse recovery is computationally
more favorable than the discretized version solved using
Lasso [8] as the complexity of the former is O(M3.5)
whereas the discretized version on a grid of G cells has a
complexity of O(G) which can be greater for a typically
large grid.

VI. CONCLUSION

In this paper, we propose a new regularization ap-
proach for beamforming to handle the rank deficient
covariance matrices. Our approach is based on enforcing
a sparse and grid-free representation of optimum weights
vector on the array manifold. To exploit this struc-
ture, we define a convex regularizer, and formulate our
beamforming approach as a semidefinite programming
problem. Numerical results illustrate that in our setting,
one can obtain substantial performance improvement
over the traditional diagonal loading approach. Although
the results are quite encouraging, many aspects of this
research are yet to be explored and investigated rigor-
ously and extensively.
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