Modeling Dominance Effects on Nonverbal Behaviors Using Granger Causality

Kyriaki Kalimeri
University of Trento, CIMEC
kalimeri@fbk.eu

Bruno Lepri
Bruno Kessler Foundation
MIT Media Lab
lepri@fbk.eu

Oya Aran
Idiap Research Institute
oaran@idiap.ch

Dinesh Babu Jayagopi
Idiap Research Institute
djaya@idiap.ch

Daniel Gatica-Perez
Idiap Research Institute
Ecole Polytechnique Federal de Lausanne (EPFL)
gatica@idiap.ch

Fabio Pianesi
Bruno Kessler Foundation
pianesi@fbk.eu

ABSTRACT
In this paper we modeled the effects that dominant people induce on the nonverbal behavior (speech energy and body motion) of the other meeting participants using Granger causality technique. Our initial hypothesis that more dominant people have generalized higher influence has not been validated. However, from the correlational analysis some interesting patterns emerged: contradicting our initial hypothesis dominant individuals are not accounting for the majority of the causal flow in a social interaction. Moreover, they seem to have more intense causal effects as their causal density was significantly higher. Finally dominant individuals tend to respond to the causal effects more often with complementarity than with mimicry.

Categories and Subject Descriptors
H.4 [Information Systems]: Miscellaneous ; D.2.8 [Software Engineering]: Metrics—performance measures

General Terms Algorithms,Theory

Keywords
Social and Group Interaction, Multimodal Fusion and Integration

1. INTRODUCTION
One of the basic mechanisms of social interaction and one of the fundamental dimensions for analyzing the group dynamics and the formation of a group social structure is dominance [6]. In social psychology, dominance is usually seen in two ways: (i) as a personality characteristic (a trait) [13] or (ii) a sign of a person’s hierarchical position within a group [13]. Several social psychology studies have shown that individuals higher in trait dominance tend to attain more influence in face-to-face interactions [3, 17]. In the last years dominance aroused much interest in the domain of social interaction from sensor data [1]. Different researchers have dealt with the automatic detection of the most dominant person and/or of the least dominant person in small group interactions (e.g. meetings) using nonverbal acoustic and visual cues [10, 11]. Some studies in social psychology [19] confirm that people can respond to dominant behaviors with either mimicry or complementarity behaviors, where the former amounts to a reproduction of the behavior of the dominant person and the latter to an opposite behavior. Recently, some works have started to deal with the automatic detection of mimicry. In [18] the way in which visual and vocal behaviors displayed by two interlocutors can be used to detect and identify visual and vocal mimicry was investigated. On the visual side, they detected the existence of a correlation between the motion intensities of two interacting persons. They were also able to detect similar correlations between vocal features (pitch, energy, and speech rate), showing that people change their vocal style while interacting with others and that the change is in the direction of mimicry. However, according to Chartrand and Bargh [5], mere correlational approaches are not enough to conclude that person X is mimicking (or complementing) person Y; rather, they can only inform whether X and Y are displaying similar or contrasting behavioural patterns. In order to conclude for the presence of true mimicry/complementarity, a causal relationship must be proven in which the display of a particular behaviour and then person Y mimics (or complements) that behaviour.

In this work, our goal is to automatically model the causal effects that people displaying dominant nonverbal behaviors have on the nonverbal behaviors of the other participants. In order to investigate these effects, we apply Granger causality, an approach that detects and estimates the direction of causal influence in time series analysis. To exemplify this approach, in this work we focus on people’s nonverbal activity, both vocal and kinesic, detected by means of acoustic and visual cues and the way that affects the nonverbal behavior of other group members. Granger causality [9] is a promising...
approach to this end: widely used in neuroscience to infer
the existence of causal relationships among neural circuits, it
has originated in econometrics [9] to detect and model causal
relationships among temporal series. To our knowledge, it
has been seldom applied to the automatic analysis of human
behavior [14, 12] and to social behavior, in particular.

2. THE DOME CORPUS

In our work we exploited a multimodal corpus, DOME,
which includes small group conversations with dominance
annotations [2]. It contains five minute non overlapping
slices selected from a subset of meetings of the popular Aug-
mended Multi-party Interaction (AMI) corpus. The DOME
corpus has been presented in [2] and used in previous stud-
ies for the modeling of dominance based on automatically
extracted audio-visual nonverbal cues [13, 6]. Each meeting
has four participants. Meetings in the AMI corpus were car-
rried out in a multi-sensor meeting room which contained a
table for four participants, a slide screen and a white board.
The audio was recorded via several microphones: two cir-
cular microphone arrays on the ceiling and on the table,
headset and lapel microphones. The video was recorded via
seven cameras (see Figure 1 for sample screen shots).

Figure 1: Screen shots from the corpus from the
available close-up cameras.

The entire DOME corpus consists of two subsets of meet-
ings, corresponding to 10 hours of meeting data. Following
the “thin slice” approach, every meeting has been divided
in five-minute non-overlapping meeting segments. The first
subset, M1, which is used in this study, contains 58 five-
middle meeting segments. The segments were selected from
11 scenario meetings in AMI corpus.

Each meeting segment is annotated by three annotators,
who used their own judgments on dominance to rank the
meeting participants. No prior definition of dominance is
given to the annotators. Each annotator ranked each meet-
ing participant from 1 to 4, with 1 representing the most
dominant person, and 4 representing the least dominant per-
son in the meeting. The annotations have been analyzed to
assess the agreement between the annotators for the most
and least dominant participants. A detailed analysis of the
corpus and the annotations can be found in [2].

3. AUDIO-VISUAL CUES EXTRACTION

A solid body of work in social psychology and social com-
puting has documented the role that nonverbal communica-
tive cues play in the expression and perception of dominant
behavior [13, 6]. We focus on peoples’ nonverbal activity
detected by means of acoustic and visual cues and the way
that affect the nonverbal behavior of other group members.
To this end, we extracted two features: speaking energy and
body motion activity.

3.1 Acoustic Cues

The speaking energy was extracted from the four close-
talk microphones attached to each of the meeting partici-
pants, one per person. In particular, we computed a speaker
energy value for each participant using a sliding window at
each time step as described in [21]. The value of speaking
energy was extracted using the root mean square amplitude
of the audio signal over a sliding time window for each audio
track. A window of 40 ms was used with a 10 ms time shift.

3.2 Visual Cues

To estimate the nonverbal kinesic behavior of the partic-
ipants, we have used compressed domain processing [20] in
order to extract the motion from the skin colored regions.
The motion vectors and residual coding bit rate features are
extracted from compressed domain videos. A motion vec-
tor of a source block in frame \(t \) indicates which predictor
block from frame \(t - 1 \) is to be used. The extracted motion
vectors are further filtered and for each motion vector a con
fidence measure is computed by using DCT coefficients
that measure the amount of local texture and only the vec-
tors with high confidence are kept. In order to capture finer
motion, such as moving lips, etc., we use the residual coding
bitrate. After motion compensation, the DCT coefficients of
the residual signal, which is the difference between the block
to be encoded and its prediction from the reference frame,
are quantized and entropy coded. The residual coding bi-
trate is the number of bits used to encode this transformed
residual signal. In combination with the motion vector mag-
nitude, the residual coding bitrate provides complementary
evidence for visual activity. The skin-colored blocks in the
compressed domain are detected using a Gaussian mixture
model to identify head and hand regions of participants, and
motion features are computed only on these blocks. We fur-
ther normalized the motion vector magnitudes and residual
coding bitrate, with respect to the average participant and
overall activity in the meeting [11]. The final feature rep-
resenting the amount of motion is computed as the average
of normalized motion vector magnitude and residual coding
bit rate, and indicates the compressed domain activity levels
for the participant for each time frame, with 25 fps frame
rate.

4. MODELING DOMINANCE EFFECTS

To understand the direction of the influence flow in social
interactions, it is of fundamental importance to distinguish
the driver from the recipient. One of the most prominent
methods to estimate the direction of the causal influence in
time series analysis is the Granger Causality (GC) [9]. This
method is based on asymmetric prediction accuracies of one
time series on the future of another. In detail, let two time
series \(X_1 \) and \(X_2 \),

\[
X_1(t) = \sum_{j=1}^{p} A_{11,j} X_1(t-j) + \sum_{j=1}^{p} A_{21,j} X_2(t-j) + \epsilon_1(t) \quad (1)
\]

\[
X_2(t) = \sum_{j=1}^{p} A_{21,j} X_1(t-j) + \sum_{j=1}^{p} A_{22,j} X_2(t-j) + \epsilon_2(t) \quad (2)
\]

where \(A \) is the matrix containing the coefficients of
the model and \(\epsilon_1, \epsilon_2 \) are the residuals of \(X_1 \) and
\(X_2 \) respectively. A time series \(X_1 \), is said to Granger-cause \(X_2 \) if the inclu-
sion of past observations of \(X_1 \) reduces the prediction error
of \(X_2 \) in a linear regression model of \(X_2 \) and \(X_1 \), as com-
pared to a model including only the previous observations
of \(X_2 \). An important aspect of GC is its generalizability to
the multivariate case in which the GC of \(X_1 \) on \(X_2 \) is tested in
the context of multiple additional variables (in our scenario
the other two meeting participants \(W \) and \(Z \)). In this case,
\(X_1 \) is said to Granger-cause \(X_2 \) if knowing \(X_1 \) reduces the

\[
X_1(t) = \sum_{j=1}^{p} A_{11,j} X_1(t-j) + \sum_{j=1}^{p} A_{21,j} X_2(t-j) + \epsilon_1(t) \quad (1)
\]

\[
X_2(t) = \sum_{j=1}^{p} A_{21,j} X_1(t-j) + \sum_{j=1}^{p} A_{22,j} X_2(t-j) + \epsilon_2(t) \quad (2)
\]
variance in X_2’s prediction error when all the other variables are also included in the model [8].

In our case we defined two systems, one in which the time series X_1, X_2, X_3, X_4 of the system X refer to the body movement of each of our subjects and a second one in which the time series refer to their speaking activity as described above. To remove every linear trend from the data, all series have been de-trended and their temporal mean has been removed as an initial preprocessing step. We estimated the best order of the multivariate autoregressive model (MVAR) using the Bayesian Information Criterion (BIC) [15]. The estimated model was further checked both (i) to control whether it accounted for a sufficient amount of variance in the data and (ii) using the Durbin-Watson [7] test to validate whether its residuals are serially uncorrelated. Then, once the set of significant lagged values for X_2 is found, the regression is augmented with lagged levels of X_1. Having estimated the G-causality magnitudes, their statistical significance was evaluated via an F-test on the null hypothesis that the coefficients A_{ij} are zero. If the coefficients in the corresponding A_{ij} were jointly significantly different from zero, then the causal interaction was considered to be statistically significant. To correct the tests from multiple comparisons, the Bonferroni correction [4] approach was chosen thresholded at $\frac{P}{n(n-1)}$, with $P=0.01$.

Let our group of participants be a small causal network of four interacting nodes. In causal networks, the nodes represent variables and the directed edges represent causal interactions. A measure of the causal interactivity of a system is the causal density [16], which is defined as the mean of all pairwise G-causalities between system elements, conditioned on the system’s statistically significant interactions.

$$cd(X) \equiv \frac{1}{n(n-1)} \sum_{i \neq j} P_{X_i \rightarrow X_j | X_{\setminus \{i,j\}}}$$

where $X_{\setminus \{ij\}}$ is the network from which the variables X_i and X_j are omitted. For each of our nodes (i.e. each subject), we estimate the unit causal density $cd_u(i)$ which is the summed causal interactions involving a node i normalized by the number of nodes. Furthermore, to identify nodes with distinctive causal effects on the network dynamics, we estimated the causal flow of a subject X_1. The causal flow is defined as the difference between the in-degree and the out-degree of a given node. Therefore, a subject with a high positive causal flow exerts a strong causal influence on the meeting and it can be called causal source. On the other side, a subject with a highly negative causal flow can be called a causal sink. From the GC relationships in the causal network, we are only able to determine if the speech/body activity of subject X_1 has a causal effect on the speech/body activity of subject X_2; however, we are not able to discriminate between mimicry and complementarity effects.

5. RESULTS

Initially, we focus our attention on the relationships between influence, behavior and the dominance scores. Our expectation was that more dominant people have generalized higher influence, measured in terms of higher density, positive and higher flow and higher out-flow. For both modalities we computed the Spearman rank-correlation between the causal flow and the dominance scores obtained by the 3 annotators. The four participants were ranked according to their score for the different measurements on a slice by slice time basis. In Figure 2, both the distributions for the bodily activity (blue bars), the speaking activity (red bars) and the combination of the normalized causal effect of the two modalities (green bars) are showing proof of the tendency of the most dominant people to adapt to the nonverbal behavioral manifestation of the other participants. This evidence is against our initial hypothesis as we expected the less dominant participants to manifest this kind of behavior.

![Figure 2: Histogram of the causal flow distribution. From left to right: In blue the bodily activity, in red the speaking activity and in green the joint contribution correlations](image)

Similarly, for both modalities we computed the Spearman rank correlation between the causal density and the dominance scores obtained by the 3 annotators. Again, all ranks are computed on a slice by time slice basis. In Figure 3, the pattern of the causal density has interestingly changed, showing an increase of the positive correlations for both modalities.

![Figure 3: Histogram of the causal density distribution. From left to right: In blue the bodily activity, in red the speaking activity and in green the joint contribution correlations](image)

In both Figure 2 and Figure 3 the peak of the distributions is zero because of the fact that we have considered only the measurements that were statistically significant considering all the others to be zero. As emerges from the correlations between the causality flow and the dominance annotation ranking the most dominant people are not usually the ones that account for the highest quantity of causal flow, in contrast with our initial hypothesis. In order to assess the phenomena of mimicry and complementarity, we investigated the correlation between the time series of the subjects for which we found some significant causal effect. For example, once determined that subject X_1 Granger-causes X_2, we checked if the histogram of the correlation between the
time series X_1 and the time series X_2 is positive, revealing mimicry effects, or is negative, showing complementarity ones. The patterns that emerged showed a tendency of the most dominant individuals to reply with complementarity as in most of the cases the correlation was negative. Out of 51 cases we classified 20 mimicry responses and 31 complementarity ones.

6. CONCLUSIONS

In this paper we have employed Granger Causality in the analysis of the effect of dominant behavior has on the nonverbal behavior of the others in a social interaction and we further characterized them according to the type of the manifestation in mimicry and complementarity patterns. The patterns emerged from the correlational analysis are interesting, contradicting our initial hypothesis that dominant individuals are not accounting for the majority of the causal flow in social interactions, confirming the findings of [12] obtained from the analysis of accelerometer data on a dataset of brainstorming and problem solving tasks. Moreover, dominant individuals seem to have more intense causal effects as their causal density was significantly higher while they tend to respond to the causal effects more often with complementarity than with mimicry. The importance of this study lies in the novelty of the proposed model that takes into consideration the causal effects dominant subjects’ nonverbal behavior has on the behavior of the other parties of a social interaction, rendering it a promising approach to the assessment of more complex behaviors like mimicry and complementarity. However, further analysis needs to be carried out in order to confirm the validity of these findings.

7. ACKNOWLEDGEMENTS

Idiap thanks the support of the Swiss NSF through the NCCR IM2 and the SOBE project. Bruno Lepri’s research was funded by the Marie Curie-COFUND-7th Framework PERSI project. Oya Aran’s research was funded by the Swiss National Science Foundation Ambizione project SOBE (PZ00P2_136811).

8. REFERENCES