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Abstract—This paper introduces a new dataset and compares
several methods for the recommendation of non-fiction audio-
visual material, namely lectures from the TED website. The TED
dataset contains 1,149 talks and 69,023 profiles of users, who
have made more than 100,000 ratings and 200,000 comments.
This data set, which we make public, can be used for training
and testing of generic and personalized recommendation tasks.
We define content-based, collaborative, and combined recom-
mendation methods for TED lectures and use cross-validation
to select the best parameters of keyword-based (TFIDF) and
semantic vector space-based methods (LSI, LDA, RP, and ESA).
We compare these methods on a personalized recommendation
task in two settings, a cold-start and a non-cold-start one. In
the former, semantic-based vector spaces perform better than
keyword-based ones. In the latter, where collaborative informa-
tion can be exploited, content-based methods are outperformed
by collaborative filtering ones, but the proposed combined method
shows acceptable performances, and can be used in both settings.

I. INTRODUCTION

The recommendation of multimedia content to users can
leverage either the content descriptors (content-based methods,
CB) or information from the preferences of similar users
(collaborative filtering, CF) or both (hybrid systems). While
in some domains, such as movie recommendation, content
descriptors and user ratings can be available on a large scale,
such as the Movielens data with millions of ratings (from
www.grouplens.org), in other domains these can be scarce.

In this paper, we compare recommendation techniques for
scientific lectures or courses, that is, non-fiction audiovisual
material with informative purposes, the content of which
plays a significant part in deciding what to recommend. We
compare the merits of CB and CF methods and propose a new
method for combining semantic features (Section V) based on
distances in semantic vector spaces (Section IV), with user
preferences, when they are available. Following appropriate
training to identify the best performing features (Section VI),
we show that CB recommendation using Explicit Semantic
Analysis [1] is the best performing method in a cold-start
setting, when no user preferences are known, including the
case of anonymous viewers (Section VII-A). In a non-cold-
start setting (Section VII-B), pure CF methods perform best,
but only slightly above the combined CB and CF method
with keyword-based distance, showing the importance of using
content features in both settings.

The methods are tested on a new public dataset acquired
from the TED web-based repository of lectures on social
and scientific topics (www.ted.com, see Section II). We show

how this dataset can be used for the evaluation of lecture
recommendations (Section III), given its rich content and
metadata (to be used as features) along with explicit feedback
from users (to be used as ground truth for training and testing).
Our results thus constitute the first benchmark scores on this
promising data set.

II. THE TED COLLECTION: A DATASET FOR
RECOMMENDATION EVALUATION

The TED website is the online repository of audiovisual
recordings of the popular TED lectures given by prominent
speakers. The recordings and the metadata accompanying
them are made available under a Creative Commons non-
commercial license (see www.ted.com). The website provides
extended metadata as well as user-contributed material such as
discussion threads related to the talks. The TED speakers are
scientists, writers, journalists, artists, and businesspeople from
all over the world who are generally given a maximum of 18
minutes to present their ideas. The talks are given in English
and are usually transcribed and then translated into several
other languages by volunteer users. The quality of the talks has
made TED one of the most popular online lecture repositories,
as each talk was viewed on average almost 500,000 times,
as we found based on the collected metadata – with large
variations across talks, of course. An important characteristic
of TED is that the metadata for the audiovisual content is
human-made.

A. Metadata Structure and Statistics

We crawled the TED dataset in April 2012 and consists of
two main entry types: talks and users. The talks have the fol-
lowing data fields: identifier, title, description, speaker name,
TED event at which they were given, transcript, publication
date, filming date, number of views. Each talk has a variable
number of user comments, organized in threads. In addition,
three fields were assigned by TED editorial staff: related tags,
related themes, and pointers to related talks (generally three
per talk). For 95% of the talks, a high-quality manual transcript
is available. Table I provides the main statistics of the dataset,
which includes 1,149 talks from 960 speakers.

Users have an identifier and a list of talks marked as
favorites. There are 69,023 registered users, but only 10,962 of
them (i.e. 14%) have explicitly indicated one or more favorite
talks, and we will refer to them as active users. Only the
profiles of active users can be used for testing a recommender
system, by comparing its output with known favorites (not
shown to the system). In this paper, we will only use the subset
of 2,427 users who have made 12 or more ratings each – a



Total Per Talk Per User Per Active User
Attribute Count Average Std Average Std Average Std
Talks 1,149 - - - - - -
Speakers 961 - - - - - -
Users 69,023 - - - - - -
Active Users 10,962 - - - - - -
Tags 300 5.83 2.11 - - - -
Themes 48 2.88 1.06 - - - -
Related Videos 3,002 2.62 0.74 - - - -
Transcripts 1,102 0.95 0.19 - - - -
Favorites 108,476 94.82 114.54 1.57 8.94 9.89 20.52
Comments 201,934 176.36 383.87 2.92 16.06 4.87 23.42

TABLE I. STATISTICS FOR THE TED DATASET: WE REPORT TOTAL COUNTS AND AVERAGES WITH STANDARD DEVIATIONS (‘STD’) PER TALK AND PER
USER, FOR EACH OF THE ATTRIBUTES. THE USERS THAT HAVE INDICATED AT LEAST ONE FAVORITE TALK ARE CALLED ‘ACTIVE USERS’.

balance between having enough ratings per user and enough
users in the subset. Overall, the users have expressed more
than 100,000 indications of favorite talks, and made more than
200,000 comments. We make available this dataset1 under the
same Creative Commons non-commercial license as the TED
talks.

B. Ground Truth

The explicit user preferences in a given dataset constitute
the ground truth which can be used for training and evaluat-
ing recommendation algorithms for personalized recommenda-
tions. A common form of such preferences are numeric ratings
(e.g. from 1 to 5) that are given by users to items. In the TED
dataset, the fact that a user has listed a talk among her favorite
talks will count as the explicit preference. This corresponds to
a binary numeric rating, ‘1’ for a favorite talk, and ‘0’ for a talk
not included in the list of favorites, which can mean two things:
either the talk was not seen, or it was not liked. (The data
set does not provide viewing information.) Such problems are
called one-class collaborative filtering problems [2], and are
particularly challenging due to the fundamental uncertainty of
the ‘0’ class. User comments constitute a more implicit form
of expressing preferences, which we exploited in another study
to augment rating information [3].

The three related talks (or “what to see next”) recom-
mended by TED editors for each talk can be used as ground
truth for a user-independent recommendation task, the goal of
which is to determine for each talk the “most similar” ones,
i.e. the ones most likely to be of interest to an anonymous
user who has just viewed the talk. Similarly to the long-tail
distribution of rated items in many previous datasets [4], here
most of the ratings are also condensed over a small fraction of
the most popular items: for instance, 23% of the ratings cover
the top 5% of the items.

C. Comparison with other Collections

The aforementioned properties of the TED data cannot
be easily found in other alternative lecture repositories such
as Khan Academy2, VideoLectures.NET3, YouTube EDU4, or
Dailymotion5. Khan Academy is an online learning community
that contains more than 3,200 videos on scholarly topics.

1https://www.idiap.ch/dataset/ted/
2http://www.khanacademy.org/
3http://www.videolectures.net/
4http://www.youtube.com/education/
5http://www.dailymotion.com/

It shares some properties with TED in terms of providing
transcripts and commenting capabilities, but it lacks descriptive
fields, tag annotation and explicit feedback. Similarly, Vide-
oLectures.NET, Youtube EDU or Dailymotion do not provide
transcripts in text form and do not provide all the TED meta-
data fields. The dataset provided for the VideoLectures.NET
recommender system challenge [5] includes the viewing his-
tory of the lectures as a ground truth for predicting future views
of each lecture, along with content-related features, author and
event information. However, information that is particularly
useful for recommendation tasks such as explicit user feedback
and detailed content information such as lecture transcripts is
not made available.

TED thus appears as particularly valuable since it provides
ground truth from explicit user preferences along with human-
made recommendations, which are critical for evaluating,
respectively, personalized and generic recommendation tasks.

III. DEFINITION OF RECOMMENDATION TASKS

In this section, we specify the two recommendation tasks
that can be evaluated using the TED dataset, namely the
personalized and the generic one. In this paper, we will then
focus on the first one.

A. Personalized Recommendations

Given a set of binary ratings as a ground truth, the
goal of the personalized recommendation task is to predict
whether items will be interesting or not for the users [6],
or more simply to predict the N most interesting ones (top-
N recommendation task [7]). In such a scenario of offline
prediction, the recommendation models are classically trained
on fragments of user’s histories, and evaluated by hiding some
of the preferred user items and then trying to predict them. The
performance is evaluated using classification accuracy metrics.

For the TED dataset, we suggest that for each user u
in a set U , her ratings (favorites) are randomly split into
training and test sets, namely M and T , typically 80% vs.
20%. A recommendation model is trained (possibly with cross
validation) on M , and then tested on the held-out set T by
comparing its output with the recommended items R for each
user u. The set of users U can be selected based on various
constraints, such as a minimal number of ratings available.

B. Generic Recommendations

The generic or user-independent recommendation task cor-
responds to scenarios in which the users’ history of ratings is



absent, e.g. for anonymous users. The goal of this task is to
predict the most similar items to a given one, which can also be
seen as a non-personalized top-N recommendation task. Given
a set of human-made, user-independent recommendations for
each item in a dataset (e.g. “related videos” in TED), a model
can be trained and evaluated using this information as ground
truth. The evaluation can be done by splitting the set of items
I into a training M and a testing T set.

C. Evaluation Metrics

For the top-N personalized recommendation task, error
metrics such as RMSE are not the most appropriate ones,
since a top-N recommender is not necessarily able to infer the
rating of a user u ∈ U for an item i ∈ I [7]. Instead, this task
can be evaluated more informatively by using the classification
accuracy metrics of precision, recall and f-measure (see [6]).
For instance, precision at N is given by:

P (N) =
1

|U |
∑
u∈U

|Tu ∩Ru@N |
N

(1)

where N is the bound of top recommendations, |U | is the total
number of users in U , Tu is the set of items in user’s u history
and Ru@N are the top-N recommendations of the model for
the user u. Recall is computed by dividing by the number of
items in user’s u history, |Tu|, instead of N . The harmonic
mean F (N) of P (N) and R(N) can also be computed.
Similarly, applying Eq. 1 directly to items I in a test set T ,
we obtain the accuracy metrics for generic recommendations.

IV. SEMANTIC VECTOR SPACE MODELS

Content-based recommender systems use similarities be-
tween items that rely on their content descriptors. Here, we
investigate semantic vector space models (VSM) to define such
similarities, and later in Section 4 we compare their merits for
cold-start recommendation over the TED dataset. This bench-
marking is a contribution to ongoing debates on semantic-
based recommendation approaches [8]. Semantic VSMs are
considered to be able to reduce the effect of the curse of
dimensionality, data sparseness and other problems of standard
VSMs (such as those based on TF-IDF weighting [9]). The
proximity of two vectors in the semantic space (usually com-
puted with cosine similarity) can be interpreted as a semantic
relatedness between the objects that are represented by those
vectors, which can be used to model user preferences in
recommendations tasks.

When using a VSM, each document dj is represented as
a feature vector dj = (w1, w2, ..., wij), where each position i
corresponds to a word of the vocabulary. The weights wij can
be computed using various models: Boolean values, counts,
term frequencies, inverse document frequencies, or TF-IDF
coefficients. TED talks can thus be represented by creating
vectors of words from their text attributes, which can be pre-
processed to remove stop words or to apply stemming.

There are several techniques in the literature for creating
semantic representations in VSMs. In our experiments, we
consider a baseline VSM with TF-IDF as the state-of-the-art
weighing model [10] and four representative semantic VSMs
from the three main existing categories, as follows: (1) as

dimensionality reduction methods we use Latent Semantic
Indexing (LSI) [11] and Random Projections (RP) [12]; (2) as
a topic modeling approach we use Latent Dirichlet Allocation
(LDA) [13]; and (3) as a concept space based on external
knowledge we use Explicit Semantic Analysis (ESA) [1].
These techniques have generalization capabilities, as they
project the data from the original vector space to a topic or
concept space with a reduced number of dimensions – apart
from ESA which actually augments the dimensionality to the
number of Wikipedia concepts. In terms of free parameters,
LSI, RP and LDA rely on the number of topics t (latent
factors). Moreover, LDA relies on two parameters traditionally
noted α and β for the Dirichlet prior of topic and word
distributions.

For the implementation of LSI, RP and LDA, we used
the Python Gensim library [14], while for ESA we used the
Wikipre-ESA Python implementation of the method described
in [1], over a 2005 snapshot of Wikipedia.

V. RECOMMENDATION ALGORITHMS

We benchmark on the TED data two main types of recom-
mendation methods, namely content-based and collaborative
filtering ones, focusing on item-based similarities [15]. For the
first type of methods, we pre-compute an item similarity matrix
for each of the VSMs above, noted respectively STF−IDF ,
SLSI , SRP , SLDA and SESA. Each S is an m×m matrix, m
being the number of talks, and the value of each element sij
is the cosine similarity of the vectors representing items i and
j in the given model. For the second type, we pre-compute the
item similarity matrices based on the common ratings between
pairs of items in the user-item matrix (built from the training
set) by using two common metrics, namely Pearson correlation
SPC (e.g. [16]) and cosine similarity SCOS (e.g. [7]).

A. Content-based Algorithms

We define a ranker based on content similarities, noted as
CB. Given a similarity function that outputs a score for two
items (talks), CB recommends to a user u a list of ranked items
based on the k most similar items to those already known to
be her favorites, i.e. to the training data Mu. Therefore, CB
recommends items based on their estimated relevance r̂ui:

r̂ui =
∑

j∈Dk(u;i)

sij (2)

where Dk(u; i) are the k most similar items to the ones in the
training set of the user Mu and sij is the similarity between
items i and j according to one of the five matrices S.

B. Collaborative Filtering Algorithms

Neighborhood models as in Eq. 3 are commonly used for
collaborative filtering. The prediction function r̂ui estimates
the rating of a user u for an unseen item i, based on the bias
estimate bui of u for item i, given in Eq. 4, and on a score that
is calculated from the the k most similar items to i (according
to either SPC or SCOS) which the user u has already rated,
i.e. the neighborhood Dk(u; i). The denominator guarantees
that the predicted ratings will fall in the same range of values
as the known ones.



Fig. 1. (a) Combinations of features for comparison, and (b) ranking of individual and combined features based on the decreasing average of f-measure over
all five methods. Atomic features are title (TI), description (DE), related tags (RTA), related themes (RTH), transcript (TRA), speaker (SP) and TED event (TE).

r̂ui = bui +

∑
j∈Dk(u;i) dij(ruj − buj)∑

j∈Dk(u;i) dij
(3)

The bias estimate bui is the sum of the average ratings µ
of items in the dataset, the average rating bu of a user u and
the average rating bi for a given item i. The term ruj is the
rating value of a user u for a given item j. The coefficient dij
expresses the similarity between item i and item j (see Eq. 4)
by using the similarity sij between items i and j multiplied
by a factor varying from 1 (when the number of common
raters nij is considerably larger than λ) to 0 (when nij � λ).
Typically, λ ≈ 100.

dij = sij
nij

nij + λ
; bui = µ+ bu + bi (4)

We use two representative variants of this model. First,
we use a normalized neighborhood model (as in Eq. 3) with
Pearson Correlation for vector similarity, which is noted as
CF(PC). Second, we use a non-normalized one (noted with a
preceding ‘u’ for ‘unnormalized’), removing the denominator
in Eq. 3, with a distance based on cosine similarity (noted as
‘COS’); hence this is referred to as uCF(COS). In previous
studies [7], non-normalized models were found to perform
better for the top-N recommendation task than the normalized
ones.

C. Combining Collaborative Filtering with Content Similarity

We incorporate in the neighborhood model presented above
information about content-based similarity, by replacing the
dij similarity with a content-based one in Eq. 3. This new
model allows us to exploit at the same time the semantic-
based similarities (Eq. 2) and the bias estimate, i.e. to combine
the two types of information, content and collaborative. This
is especially useful when collaborative information is sparse,
and the similarity computed using it is less reliable than the
content-based one.

We will consider only the non-normalized versions of Eq. 3
(noted again with ‘u’), and indicate the type of content-based

similarity that is used in combination to the CF neighbor-
hood model. Hence, these new models will be referred to as
uCF(TFIDF), uCF(LSI), uCF(LDA), uCF(RP) and uCF(ESA).

For comparison purposes, we consider a user-independent
recommender noted TopPopular, which always recommends
the items with the highest popularity (based on the number of
total ratings) regardless of a user’s preferences.

VI. PARAMETER AND FEATURE SELECTION

We determine the optimal parameters and features of the
content-based methods using 5-fold cross-validation over the
training set M , which includes 80% of the ratings for each of
the 2,427 TED users that have made 12 or more ratings. The
remaining ratings form the test set T used in the next section.

The CB methods use one or more lexical features (words)
extracted from the fields of each TED talk, represented
schematically in Figure 1, and several meta-parameters for
each of the semantic representations (TF-IDF, LSI, RP, LDA,
and ESA) as described in Section IV. However, exploring all
possible combinations of features is not tractable. Therefore,
we grouped individual features into four groups: title plus
description (TIDE), related tags and themes (RTT), transcript
(TRA), and speaker plus TED event (TESP). Along with all
individual features, we tested these sets, and all their combi-
nations, organized as in Fig. 1 (a).

For LSI and RP we varied the values of the parameter t
(number of topics) from 10 to 5,000 and for LDA from 10 to
200 only, for tractability reasons. Additionally, for LDA, we
varied the α and β parameters from 0 to 1, and the optimal
ones were found to be α = 1 and β = 0.002. We fix the
value of neighborhood at k = 3, which is a trade-off between
computational cost and expected prediction accuracy [17].

Figure 1 (b) displays the ranking of features and their
combinations, ordered by the average f-measure (F@5) over all
the tested methods. These results thus indicate which features
perform well over all methods. Alternatively, the optimal
features for each method are indicated in Table II.

The results show that the human-made description of talks
(DE), the title (TI), and their combinations with other features



Method Optimal Features Performance (%)
P@5 R@5 F@5

LDA (t=200) Title, desc., TED event, 1.63 1.96 1.78
speaker (TIDE.TESP)

TF-IDF Title (TI) 1.70 2.00 1.83
RP (t=5000) Description (DE) 1.83 2.25 2.01
LSI (t=3000) Title (TI) 1.86 2.27 2.04
ESA Title, description (TIDE) 2.79 3.46 3.08

TABLE II. OPTIMAL FEATURES FOR CONTENT-BASED METHODS
FOUND USING 5-FOLD C.-V. ON THE TRAINING SET. SCORES IN BOLD ARE

SIGNIFICANTLY HIGHER THAN TF-IDF ONES (T-TEST, p < 0.05).

(TIDE, TIDE.RTT, and TIDE.TESP.RTT) are the most useful
features for content-based personalized recommendations. In
addition, knowledge of the speaker (SP) is useful too (ranked
sixth). However, these metadata fields come to a cost because
they must be entered by the editors of the lecture repository.

The lowest performing features were the name of the TED
event (TE) and the related themes (keywords) assigned by
TED experts (RTH), which presumably lack specificity for
recommendation. Somewhat surprisingly, the transcript (TRA)
decreases the performance of all methods and most of the
combinations that include it are in the middle of the ranking.
One explanation is that the huge size of the transcript’s
vocabulary introduces a lot of noise.

Table II shows the optimal features and parameters for
each semantic representation used with CB, together with the
scores (precision, recall and f-measure at 5) that they enable
the recommender system to reach (5-fold cross-validation on
the development data). All the semantic-based methods except
LDA outperform significantly the TF-IDF baseline (t-statistic,
p < 0.05): 11% improvement for LSI, 7.6% for RP and up
to 64% by ESA, which reaches the best score. The good
performance of ESA shows that the external-knowledge-based
representation of the items is significantly more useful to our
task than the domain knowledge captured intrinsically by the
other methods.

VII. PERSONALIZED LECTURE RECOMMENDATION

We compare recommendation performance of CB, CF and
combined methods on the held-out test set T , considering two
different settings: (i) a cold-start setting where the collaborative
rating information for the items is not available and (ii) a non-
cold-start setting where it is. Note that when testing, we only
hide the rating information for the user currently tested.

A. Cold-start Recommendations (CB Methods Only)

The cold-start setting is characterized by sparse user rat-
ings, with many items not having been rated at all, which
makes it impossible for CF methods to recommend these items
(e.g. new TED lectures). In this situations, only content-based
methods can help making recommendations. In Figure 2, we
show the performance of our CB methods in terms of precision
and recall over the held-out set T . Most of the semantic-
based representations perform significantly better (t-statistic,
p < 0.05) than TF-IDF, with +62% for ESA, +7% for LSI
and +8% RP. LDA does not improve over TF-IDF except at
the top 1 to 4 recommendations (as also seen in Table II)
and it was also the most difficult method to tune. The scores

obtained appear to be small, however they are in line with
previous works (e.g. [2], [7]).

The improvement brought by ESA appears to be again
much greater than that of LSI and RP, allowing us to con-
clude that similarity based on concept spaces from external
knowledge captures more effectively the content similarity
(and, accordingly) the user preferences than the other semantic
spaces and the baseline TF-IDF. Semantic-based approaches
are thus more effective than keyword-based ones for cold-start
personalized recommendations.

Fig. 2. Scores of content-based methods in a cold-start setting, in terms
of precision and recall at N (1 ≤ N ≤ 30) on the held-out set T . The
ESA-based distance outperforms by far all the others.

B. Non-Cold-Start Recommendations (All Methods)

In a non-cold-start setting, where the items have been rated
by many users, the collaborative filtering (CF) information
and the bias introduced by the popularity of items can be
specifically exploited. As the CB methods do not have such
information, their performance was found to be lower than
CF methods, and will not be reported here. However, the
combinations of CB and CF proposed in Section V-C (noted
uCF(·) with · indicating the similarity method) allow content-
based similarity to take into account the bias estimate, and
their results are only slightly below pure CF methods in the
non-cold-start scenario, while being operational in cold-start
situations as well.

Fig. 3 displays the performance of two neighborhood mod-
els used for collaborative filtering: the normalized one using
Pearson Correlation (CF(PC)) and the unnormalized one using
cosine similarity (uCF(COS)). We also represent the two best
performing combined methods, unnormalized, using TFIDF
and LSI distances (uCF(TFIDF) and uCF(LSI)), as well as
the TopPopular baseline. The best performance is achieved by
the non-normalized neighborhood model with cosine similarity
(+34%), uCF(COS). The CF(PC) model is slightly below it,
but is significantly better (+15%) than TopPopular.

The combined models, uCF(TFIDF) and uCF(LSI), per-
form similarly to CF(PC) and are also significantly better (t-
statistic, p < 0.05) than TopPopular, respectively +10.5% and
+13% above it. The other content-based similarities (RP, LDA,
ESA) performed slightly below TF-IDF, but the difference is



Fig. 3. Lecture recommendation scores for two CF (CF(PC) and uCF(COS))
and two combined methods (neighborhood with TFIDF and LSI distances) in
a non-cold-start setting. Precision and recall at 1 ≤ N ≤ 30 are computed
on the held-out test set T . Collaborative filtering using cosine similarity
in a neighborhood model scores highest, but the combined model using
neighborhoods and TFIDF is not far behind.

not statistically significant. Using the bias introduced by the
item popularity thus decreases the difference in performance
between the content-based similarity models.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we introduced a new dataset, the TED
lectures, and defined lecture recommendation tasks utilizing
the available ground truth. The feature selection experiments
over 80% of the most active TED users indicated that the most
informative data fields for CB methods were the description
and the title of each lecture. Using cross-validation, CB using
Explicit Semantic Analysis was found to outperform all other
CB methods.

We then compared content-based, collaborative-filtering,
and combined recommendation methods over the test set in
two different settings: a cold-start one and a non-cold-start one.
We showed that the semantic-based methods (ESA, RP and
LSI) were able to make more relevant recommendations than
keyword-based ones (TFIDF) in a cold-start setting, making
them particularly applicable to multimedia datasets into which
new items are inserted frequently. However, the CB methods
were outperformed by CF ones in a non-cold-start setting,
although a combined method using a neighborhood model,
user/item biases and TF-IDF similarity achieved reasonable
performance compared to pure CF by utilizing only the pop-
ularity bias. This method can be used when newly-added and
older items are both present, as it does not rely entirely on
collaborative rating similarities.

We will further explore algorithms inspired from such
tasks, in particular hybrid ones, especially given that the
TED dataset has rich content information to be exploited.
We will also use semantic spaces with other learning models,
such as matrix factorization, and improve the fusion of CB
and CF information. Lastly, we will assess recommendation
performance when automatically-assigned values are available
for metadata fields, for instance through automatic speech
recognition (for TRA), speaker detection (for SP), or automatic
summarization (for DE).
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