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ABSTRACT

This paper studies the problem of multiple speaker localization
via speech separation based on model-based sparse recovery. We
compare and contrast computational sparse optimization methods
incorporating harmonicity and block structures as well as autore-
gressive dependencies underlying spectrographic representation of
speech signals. The results demonstrate the effectiveness of block
sparse Bayesian learning framework incorporating autoregressive
correlations to achieve a highly accurate localization performance.
Furthermore, significant improvement is achieved using ad-hoc mi-
crophones for data acquisition set-up compared to the compact mi-
crophone array.

Index Terms— Structured sparsity, Reverberant speech local-
ization, Autoregressive modeling, Ad-hoc microphone array

1. INTRODUCTION

Speech localization in the clutter of voice and acoustic multipath
is an active area of research on microphone arrays for hands-free
speech communication. The accurate knowledge of the speaker lo-
cation is essential for an effective beampattern steering and interfer-
ence suppression [1, 2]. We briefly review the main approaches to
address this problem.

High Resolution Spectral Estimation: These approaches are
based on analysis of the received signals’ covariance matrix and im-
pose a stationarity assumption for accurate estimation [3]. Important
techniques applied for speech localization include minimum vari-
ance spectral estimation as well as eigen-analysis methods such as
multiple signal classification (MUSIC). The underlying hypotheses
are not quite realistic in reverberant speech localization and alterna-
tive strategies have been usually considered [4, 5].

Time Difference Of Arrival (TDOA) Estimation: Another ap-
proach is based on TDOA estimation of the sources with respect
to a pair of sensors. The generalized cross correlation (GCC) is
the most common technique for TDOA estimation where the idea
is basically to map the peak location of the cross-correlation func-
tion of the signal of two microphones to an angular spectrum. A
weighting scheme is usually employed to increase the robustness
of this approach to noise and multi-path effects. Maximum like-
lihood estimation of the weights has been considered as an opti-
mal approach in the presence of uncorrelated noise, while the phase
transform (PHAT) has been shown to be effective to overcome re-
verberation ambiguities [6, 7]. In addition to the GCC-PHAT, iden-
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tification of the speaker-microphone acoustic channel has been in-
corporated for TDOA estimation and reverberant speech localiza-
tion [8, 9]. However, despite of being practical and robust, TDOA-
based techniques do not offer a high update rate. Alternative strate-
gies have thus been sought for multiple-target tracking and adaptive
beam-steering [10, 11].

Beamformer Steered Response Power (SRP): In this approach,
the space is scanned by steering a microphone array beam-pattern
and finding the direction associated to the maximum power. Delay-
and-sum, minimum variance beamformers, and generalized side-
lobe canceler have been the most effective methods for speaker lo-
calization [12]. The SRP-based approaches have a higher effective
update rate compared to TDOA-based methods, and are applicable in
multi-party scenarios using phase-transform weighting scheme [13].

In this paper, we adopt our speech separation framework us-
ing sparse component analysis [14] and conduct the evaluations in
terms of speech localization [15]. We analyze the reverberant mix-
tures of speech signals in spectro-temporal domain. The planar area
of the room is discretized into a dense grid such that the speakers
are located at particular cells exclusively. A spatio-spectral sparse
representation is obtained by concatenating the spectral components
attributed to the sources located on the grid. The compressive acous-
tic measurements associated to the microphone array recordings are
characterized using Image model of multipath propagation. The
spatio-spectral sparse representation is estimated from the compres-
sive array measurements using sparse optimization methods where
the supports of high energy components indicate the source loca-
tions. The computational approaches to model-based sparse recov-
ery of spectrographic speech are compared and contrasted consider-
ing block, harmonic as well as autoregressive dependencies.

The rest of the paper is organized as follows: Section 2 explains
the premises underlying model-based sparse component analysis of
reverberant recordings, and sets up the formulation of reverberant
speech source localization. The structured sparsity models underly-
ing speech components are elaborated in Section 3 followed by the
computational approaches to model-based sparse recovery in Sec-
tions 4. Section 5 presents the details of the experiments. Conclu-
sions are drawn in Section 6. The notations used in this paper are as
follows
� g ∈ {1, . . . ,G}: number of a cell on a grids.
� n ∈ {1, . . . ,N}: number of source; N� G.
� m ∈ {1, . . . ,M}: number of microphones;M < N.
� f ∈ {1, . . . , F}: number of spectral coefficients.
� {S, S}: spectral representation of single/all source signals.
� {X,X}: spectral representation of single/all micro. signals.
� Φ: microphone array manifold matrix.



2. SPARSE COMPONENT ANALYSIS OF REVERBERANT
SPEECH MIXTURES

2.1. Spatio-Spectral Sparse Representation

The scenario that we consider is consisted of N speakers distributed
in a planar area spatially discretized into a grid of G cells. We as-
sume to have a sufficiently dense grid so that each speaker is sup-
posed to be located at the center of a cell, and N � G. The signals
corresponding to each cell are concatenated to form a spatial repre-
sentation of sources. Hence, the energy of the signals on the grid
define a spatial spectrum with a sparse support denoting the loca-
tion of the sources. We consider the spectro-temporal representa-
tion of speech signals and entangle the spatial representation of the
sources with the spectral representation of the speech signal to form
the complex vector S = [ST1 ...STG]

T ∈ CGF×1 where .T corresponds
to the transpose operator. Each Sg ∈ CF×1 denotes the spectral rep-
resentation of the gth source (located at cell number g) in Fourier
domain. We express the signal ensemble at microphone array as a
single vector X = [XT1 ...XTM]T where each Xm ∈ CF×1 denotes the
spectral representation of recorded signal at microphone numberm.
The sparse vector S generates the underdetermined (M < G) micro-
phone mixture observations as X = ΦS where Φ is the microphone
array measurement matrix consisted of the acoustic projections as-
sociated to the acquisition of the spatio-spectral sources.

2.2. Acoustic Measurement Characterization

To characterize the acoustic measurements, the room is modeled as
a rectangular enclosure consisting of finite impedance walls. The
point source-to-microphone impulse responses are calculated using
Image Model technique [16] where a reverberant signal is repre-
sented as superposition of the signals attributed to the source im-
ages with respect to the reflective surfaces. Taking into account the
physics of multipath propagation, the projections associated with the
source located on the cell g where νg represents the position of the
center of the cell and captured by microphone m located at position
µm are characterized by the media Green’s function through

ξfνg→µm : X(f) =

R∑
r=1

ιr

‖µm − νrg‖α
exp(−

√
−1
‖µm − νrg‖ f

c
)S(f),

(1)
where ιr is the reflection ratio associated to the rth image source lo-
cated at νrg. The attenuation constant α depends on the nature of the
propagation and is considered in our model to equal 1 which corre-
sponds to the spherical propagation. This formulation assumes that
if s1(l) = s(l) and s2(l) = s(l− ρ), then S2(f) ≈ exp(−jfρ)S1(f).

Given the source-sensor projection defined in (1), we con-
struct matrix Ξνg→µm for the measurement of the F consecu-
tive frequencies as Ξνg→µm = diag (ξ1

νg→µm . . . ξFνg→µm)
Hence, the projections associated to the acquisition of the
source signals located on the grid by microphone m is φm =
[Ξν1→µm ...Ξνg→µm ...ΞνG→µm ] and the measurement matrix of
M-channel microphone array is characterized asΦ = [φ1 . . .φM]T .
To fully identify this model, the location of the source images as well
as the associated reflected ratios have been estimated and incorpo-
rated for sparse recovery of the reverberant speech signals S [17, 15].
We cast the underdetermined reverberant speech localization prob-
lem as sparse approximation where we exploit the underlying struc-
ture of the sparse coefficients for efficient recovery using fewer num-
ber of measurements [18, 14, 15]. The source locations are deter-
mined from the support of the high energy components of S corre-
sponding to the cells on the grid.

2.3. Computational Approaches to Sparse Recovery
Defining a set M as the union of all vectors with a particular sup-
port structure, estimation of the sparse coefficient vector Ŝ from the
microphone recordings X can be expressed as

Ŝ = argmin
S∈M

‖S‖0 s.t. X =ΦS (2)

where the counting function ‖.‖0 : RG → N returns the number of
non-zero components in its argument.

The major classes of computational techniques for solving
sparse approximation problem are Greedy pursuit, Convex optimiza-
tion and Sparse Bayesian learning [19].

Greedy pursuit: The nonzero components of S are estimated in
an iterative procedure by modifying one or several coefficients cho-
sen to yield a substantial improvement in quality of the estimated
signal. The present work considers an extension of the iterative hard
thresholding [20, 21] to incorporate sparsity structures underlying
spectrographic speech.

Convex optimization: The counting function in (2) is replaced
with a sparsity inducing convex norm that exploits the structure un-
derlying S. Therefore, a convex objective is obtained which can be
solved using convex optimization. The present work considers ex-
tension of basis pursuit algorithm which relies on L1 recovery [22].

Sparse Bayesian learning: A prior distribution is associated to
S with sparsity inducing hyperparameters and a maximum a posteri-
ori estimation is derived. The present work considers the Bayesian
framework proposed in [23, 24].

3. STRUCTURED SPARSITY MODELS

We consider three types of structures underlying the spectral co-
efficients: harmonicity, block structure as well as AR dependency.
These structures are supported by the evidences from the studies on
computational auditory scene analysis [25, 15].

Harmonic structure captures the dependency among the fre-
quencies which are harmonic of a fundamental frequency as partic-
ularly exhibited in the voiced parts of speech. Imposing a harmonic
structure in recovering vector S requires that at any cell of the grid,
the K high energy components can be expressed as harmonics of a
fundamental frequency f0 defined through

FH , {kf0|1 < k < K}, (3)

Block structure indicates that the adjacent frequencies collabo-
rate on a common (spatial) sparsity profile. Imposing this structure
in recovering vector S requires that neighboring discrete frequencies
correspond to one cell on the grid. Hence, the signal of individual
sources is recovered in blocks of size B with the structure defined as

FB , {[f1, ..., fB], . . . , [fF−B+1, ..., fF]} (4)

AR dependency is an additional inter-dependency exhibited due
to the correlation among the block entries corresponding to each
source, which we model using an auto regressive (AR) process of
order R characterized by the following model

FAR , [1,βg(1),βg(2), . . . ,βg(R)] (5)

where βg ∈ (−1, 1) denotes the AR coefficients. The sources Sg are
mutually independent, but each source satisfies an AR model as

Sg(b) = FAR [u(b),Sg(b− 1), . . . , Sg(b−R)]T (6)

where u(b) denotes the input sequence. From (6) we can see that the
covariance matrix Bg of each source is a Toeplitz matrix identified
by the AR coefficients.
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Fig. 1: Incorporating AR dependencies in basis pursuit sparse recovery.

4. STRUCTURED SPARSE RECOVERY

We consider different model-based sparse recovery algorithms to re-
cover the sparse vector incorporating the structures defined above.
In particular, we employ Iterative hard thresholding IHT [26], L1L2

convex optimization [22] as well as Block Sparse Bayesian Learning
framework, BSBL [24].

IHT: Iterative hard thresholding (IHT) offers a simple yet effec-
tive approach to estimate the sparse vectors. It seeks an N-sparse ap-
proximation Ŝ matching the observation X by minimizing the resid-
ual error. We use the algorithm proposed in [21] which is an ac-
celerated scheme for hard thresholding methods with the following
recursion Ŝ0 = 0, Ri = X−ΦŜi

Ŝi+1 = MF.
(
Ŝi + κΦTRi

) (7)

where the step-size κ is the Lipschitz gradient constant to guaran-
tee the fastest convergence speed. To incorporate for the underlying
structure of the sparse coefficients, the model approximation opera-
tor MF. is defined as reweighting and thresholding the energy of the
components of Ŝ with either FB or FH structures.

L1L2: Another fundamental approach to sparse approximation
replaces the combinatorial counting function in the mathematical
formulation stated in (2) with the L1 norm, resulting in a convex
optimization problem that admits a tractable algorithm referred to
as basis pursuit [22]. We use a group version of basis pursuit algo-
rithm with the number of group components nF. determined by each
structure. The optimization problem to recover the block sparse co-
efficients Ŝ is formulated as follows:

Ŝ = argmin
S

{‖S‖L1 ,L2 s.t. X =ΦS}, ‖S‖L1 ,L2 =

G∑
g=1

√√√√nF.∑
b=1

(Sg(b))2

(8)
To incorporate the AR dependencies of the block coefficients of

S, X = Φ̃S is solved by (8) where Φ̃ constitutes of Ξ̃νg→µm where
the diagonal elements are multiplied by FAR. Fig. 1 demonstrates
an example of an AR signal of order 4 recovered using the proposed
procedure. More details are discussed in Section 5.2.

BSBL: The correlation among the coefficients modeled as AR
dependencies is incorporated by [24] in the framework of SBL [23].
The sources Sg are assumed to be Gaussian and mutually indepen-
dent. The AR dependency model indicates that the linear com-
bination of the univariate Gaussian holds a Gaussian distribution.
More precisely, the joint distribution of Sg = [S1

g, ..., SBg ] is a mul-
tivariate Gaussian, expressed by p(Sg;γg,βg) ∼ N(0,γgBg),
where γg is a non-negative hyper-parameter controlling the block-
sparsity of S and Bg ∈ RB×B is a positive definite matrix that
captures the correlation structure of Sg as defined in (6). Un-
der the assumption that blocks are mutually uncorrelated, the prior
for S is given by p(S;γg,Bg,∀g) ∼ N(0,Σ0), where Σ0 is
diag([γ1 B1 . . .γGBG]). Assuming the Gaussian likelihood for the
block sparse model as p(X|S;σ2) ∼ N(ΦS,σ2I) and applying the

Bayes rule, we obtain the posterior density of S, which is also Gaus-
sian, p(S|X;σ2, {γg,Bg}Gg=1) = N(µs,Σs) with the covariance ma-
trix Σs = (Σ−1

0 + 1
σ2Φ

TS)−1X. Having all the hyper-parameters σ2,
γg, Bg, the MAP estimate of S is given by the mean defined as [24]

Ŝ , µs = Σ0Φ
T (σ2I+ΦΣ0Φ

T )−1X, (9)

Clearly, the block sparsity of Ŝ is controlled by γg in Σ0. During
the estimation procedure, γg = 0 indicates that the associated block
in Ŝ is zeros and no source is located on the corresponding cell. The
framework proposed in [27], derives the EM-based learning rule to
learn the hyperparameters. We will see in Section 5.2 that the AR-
dependency matrix can be estimated offline for the specific task of
speech localization.

5. EXPERIMENTAL STUDY

The experiments are conducted to quantify the performance of dif-
ferent structured sparse recovery algorithms on different microphone
array geometric settings in terms of speech localization accuracy.

5.1. Acoustic and Analysis Setup

The overlapping speech was synthesized by mixing speech utter-
ances taken from the Wall Street Journal (WSJ) corpus [28]. The
WSJ corpus is a 20000-word corpus consisting of read Wall Street
Journal sentences. The sentences are read by a range of speakers (34
in total) with varying accents. All the files are normalized prior to
mixing. The microphone array recording set-up is consisted of four
channels microphones. The planar area of the room with dimen-
sion 3m×3m×3m is divided into cells with 50 cm spacing. The data
collection setup is depicted in Fig. 2. The scenarios include ran-
dom and compact topologies of microphone array in clean as well
as reverberant and noisy conditions. Room impulse responses are
generated with the Image model technique [16] using intra-sample
interpolation, up to 15th order reflections and omni-directional mi-
crophones for a room reverberation time equal to 200 ms. The num-
ber of source is known in our experiments. The speech signals of
length one second are recorded at 16 kHz sampling frequency and
the spectro-temporal representation for source separation is obtained
by windowing the signal in 250 ms frames using Hann function with
50% overlapping.

Interference 2 
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Interference 3 
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1m 0.86m 

0.44m 

Fig. 2: Overhead view of the room set-up for uniform (black dots) and ran-
dom microphone array (red dots)

5.2. Speech Localization Performance

The probabilistic performance bounds of multi-speaker localization
are obtained by averaging the results over an exhaustive and exclu-
sive set of configurations. The results are evaluated over all con-
figurations consisted of N ∈ {5 − 10} sources. The probabilis-
tic evaluations are necessary to form a realistic expectation of our
sparse recovery framework as the deterministic performance bounds
are derived for the worst case scenario which is not likely to oc-
cur [29, 30]. The localization accuracy is measured as the number
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Fig. 3: Speaker localization performance evaluated for 5-10 sources in (a) clean and (b) reverberant and noisy condition

of times sources are localized correctly (the support of the recovered
signal corresponds to the cell on the grid where the source is located)
divided by the number of all sources.

The block sparse Bayesian learning (BSBL) algorithm can learn
the AR parameters during the optimization, although, the procedure
is very expensive in terms of computational cost. Hence, we carry
out some studies on an average AR model for speech signal which
can be exploited for source localization. To estimate the AR coeffi-
cients, the frequency band (number-of-FFT-points = 2048*4) is split
into blocks of size 16 and processed independently. Fig. 4 illustrates
the frequency domain average AR model for 10 min speech signal.
The first-order coefficient is estimated as 0.45. We can see that the
higher order coefficients are small so the blocks are modeled as a
first-order AR process to incorporate the intra-block correlation.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

Coefficient Number

Fig. 4: 10-order AR coefficients estimated for 10min speech signal. The
cross lines illustrate the variance of estimates

The results of multi-speaker localization exploiting block struc-
ture are illustrated in Fig. 3 for B = 16. All the algorithms are run
for the stopping threshold fixed to 1e-2 and the maximum iteration
of 150. The BSBL algorithm assumes that all sources have similar
correlation structure. The experimental analysis on speech-specific
average AR model as depicted in Fig. 4 shows very small variance
around the AR coefficients and supports this approximation. We can
see that exploiting the frequency structures yield very strong results.
The number of microphones is only 4 whereas we can localize up to
9 sources with 95% accuracy. The orthogonality or disjointness of
spectrographic speech signals is a key property to achieve this bound
of performance [14, 15, 31].

The BSBL algorithm employs the AR dependency model to re-
place the Euclidean norms with Mahalanobis distance measure and
it plays a role of whitening the sources during the learning of hy-
perparameters [27]. On the other hand, incorporation of AR model
in the framework of L1L2 enables preserving these structural depen-
dencies. As a basic example, an AR signal is generated by filtering
a white Gaussian noise. The formulation of the L1L2-AR enables
recovery of the input u (6) along with the signal components. The
speech signal can be constructed by filtering the recovered u [32]
while the AR model parameters can be estimated from the initial es-
timates of block sparse recovery and refined in an iterative manner.

We can see that AR dependency is better preserved using the pro-
posed procedure as illustrated in Fig. 1. However, this approach did
not outperform the standard basis pursuit in terms of speech localiza-
tion. Furthermore, the results of the harmonic sparse recovery were
comparable to the block-sparse recovery, hence they are not further
elaborated here [15].

The other important observation is that the ad-hoc layout of mi-
crophone array improves the results for all sparse recovery algo-
rithms. It can be justified as the theoretical analysis of the perfor-
mance bounds of sparse recovery algorithms is entangled with the
spectral properties ofΦ. A key property to guarantee the theoretical
performance bounds is the coherence ϑ of the measurement matrix
defined as the smallest angle between any pairs of the columns of
Φ. The number N of recoverable non-zero coefficients using either
convexified or greedy sparse recovery is inversely proportional to
the coherence as N < 1

2 (ϑ
−1 + 1) [19]. Therefore, to guarantee

the performance of sparse recovery algorithms, it is desired to mini-
mize the coherence. As the measurement matrix is constructed of the
location-dependent projections, this property implies that the perfor-
mance of our localization framework is entangled with the micro-
phone array layout. A large-aperture random design of microphone
array yields the projections to be mutually incoherent, so the projec-
tions are spread across all the acoustic scene and each microphone
captures the information about all components of S [33]. Further-
more, the coherence of the acoustic measurements is smaller at the
high frequencies of the broadband speech spectrum, hence the bands
bellow 100Hz are discarded from our localization scheme [15].

6. CONCLUSIONS
In this paper, we incorporated the speech-specific models for struc-
tured sparse recovery of reverberant speech sources. We outlined
the fundamental computational approaches to model-based sparse
recovery and evaluated their performance in terms of source local-
ization accuracy. The numerical assessments show the block sparse
Bayesian learning framework yields the best performance and an av-
erage AR model can be learned for speaker localization and specified
to the algorithm to reduce the computational cost. Furthermore, we
considered the impact of construction layout of the microphone array
in the performance of sparse recovery framework. The theoretical
insights suggest that an ad-hoc design of microphone array can bet-
ter preserve the acoustic information by reducing the coherence of
the acoustic measurements. The empirical evaluations confirm that
considering the design specifications acknowledged by the generic
theory of sparse signal recovery leads to significant improvement in
speech localization performance.
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