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ABSTRACT

Speech activity detection (SAD) is a conceptually simple task

that still poses serious challenges for speech processing in a

large variety of scenarios. Current energy-based and model-

based approaches tend to directly segment speech and non-

speech classes, but are not robust enough to non-stationary

noise. In this paper, we use a multi-source activity detection

(MSAD) approach to SAD by finding the activity levels of

speech and a set of non-speech acoustic sources. Public talks

such as TED involve a large variety of non-speech audio that

is difficult to handle with standard SAD systems. We evaluate

the effect of using either the proposed MSAD system versus

a tailored version of the popular SHOUT SAD system. We

evaluate our approach on a subset of the TED data to show

the effectiveness of the technique, with and without a sparsity

constraint on the vector of acoustic source activities.

Index Terms— multi source activity detection, speech

activity detection, sparse constraint, speaker retrieval, speaker

diarization

1. INTRODUCTION

The recording of public talks in symposiums, conferences and

lectures typically entails high quality recording equipment set

up by professionals. However, the room acoustics in these

scenarios tends to be fairly reverberant since, even if close-

talking and lapel microphones are used to capture the speech,

a sense of the acoustic background is typically seeked for.

Besides the main speaker, or few speakers at most in multi-

speaker talks and interviews, all sorts of feedback from the

audience such as applause, laugh, woos, and whistles are also

recorded. Rehearsed public talks such as those from Technol-

ogy, Entertainment, Design (TED) [1] include recorded and

live music as well as adverts resulting in a wide variety of

acoustic scenes.

Technologies such as speech recognition and speaker di-

arization can output cues that are valuable for the search and
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retrieval of semantically relevant information in a multime-

dia archive. Algorithms aiming at automatically processing

the type of data described above typically assume knowledge

of speech regions in the audio, found using a Speech Activ-

ity Detection (SAD) system. Most SAD algorithms focus on

quiet acoustic environments, sometimes involving some sta-

tionary noise, that shape the task as a two-class classification

problem. Energy-based approaches tend to generalize well

in quiet conditions, but fail to properly handle noise as non-

speech. Preprocessing the audio using noise reduction tech-

niques such as the Wiener filter, or Short-Time Speech Am-

plitude (STSA) or Log Spectral Amplitude (LSA) estimators,

can make an energy-based SAD effectively handle stationary

noise, although probably lacking robustness when it comes to

non-stationary noise and more structured audio such as music.

Model-based approaches use the speech and noise structure to

determine whether speech or non-speech is present based on

models trained on speech and non-speech audio. The popular

SHOUT [2] package, designed for broadcast news data, uses

an iterative segmentation/training algorithm to train speech,

silence and sound models that are then used to segment the

audio.

When non-speech audio is heterogeneous it seems natural

to use more than one model to capture the variability of the

different non-speech sources more precisely. In this paper, we

approach speech activity detection as a multi-class problem,

where one class is speech and the rest are different types of

non-speech. Furthermore, we assume that more than one of

these classes can be active simultaneously by using an activity

level for each of them, a posterior probability indeed. Since

very few of the available acoustic sources are expected to be

active at a time, we also use a sparsity constraint to estimate

the vector of class posterior probabilities. The framework is

based on the work presented in [3] on speaker detection where

the activity levels are the weights of a mixture model. These

weights are estimated using an EM algorithm and the objec-

tive function can be augmented with a sparsity constraint. The

current work was encouraged by the positive results obtained

in this study.

Section 2 describes the theoretical framework, underly-

ing models and estimation procedures of the sparse and non-



sparse algorithms. Section 3 gives details about the training

and detection setups of the multi-source activity detection al-

gorithm. Section 4 provides and discusses the speech activity

detection error results obtained for a set of TED talks and

Section 5 draws some conclusions out of this work.

2. MULTI-SOURCE ACTIVITY DETECTION

The multi-source activity detection (MSAD) system uses a

latent variable approach to estimate the activity level of each

acoustic class. It is based on the work presented in [3], where

the activity levels of several speakers in a mixture of speakers

are detected in the presence of convolutive distortion. This

framework assumes that feature vectors xt at time t originate

from a mixture of known mixture models with pdf

p(xt,α) =

M
∑

m=1

αmp(xt;λm) with α = {α1, . . . , αM},

(1)

where αm indicates the activity of class m with
∑

M

m=1
αm =

1, and p(xt;λm) is the pdf of class m estimated via Gaus-

sian Mixture Models (GMM) or Student-t Mixture Models

(TMM) [4] in this work. The hypothesis motivating such

model is that the non-linearities in the feature space can be

captured by linear relations in the probability space. A close

look into (1) reveals that the proposed model is adequate for

the single source case. However, a weighted sum of pdfs

represents a multiple choice scenario rather than the non-

linearities found in spectral envelope features of overlapping

speech. It still provides a mechanism to assign probabili-

ties to each class while definitely simplifying the estimation

procedure of the activity levels.

The activity levels of the acoustic sources, i.e. the vector

α, are estimated on a window of 2T + 1 feature vectors. In

this case, the total likelihood for a given window becomes

p(X,α) =

t+T
∏

t−T

p(xt,α) (2)

if we assume independence amongst frames. As we describe

below, an EM algorithm can be used to find the α that maxi-

mizes the total likelihood function.

2.1. Non-sparse α

Equation 1 has the form of a GMM, with the Gaussian pdfs

for each mixture being replaced by generic distributions

p(xt;λm). Estimation of the αm weights is hence analogous

to the maximum likelihood estimation of Gaussian weights

of GMM [5]. The method of Langrange multipliers is used to

maximize (2) with the constraint that the weights sum up to

one. An Expectation-Maximization (EM) algorithm provides

weight estimates by alternating the computation of the class

posterior probabilities by

γmt =
αmp(xt, λm)

∑

M

l=1
αlp(xt, λl)

(3)

and then iteratively updating the weights according to

αm =
1

T

T
∑

t=1

γmt . (4)

These update equations are the same as used for mixture

weight training of GMM. The algorithm is guaranteed to con-

verge to local maximum likelihood weight estimates.

2.2. Sparse α

In audio recordings, acoustic sources are rarely active at the

same time, especially in the case of communication. In a

public talk, the speaker, the audience and also the technical

staff make it such that the number of acoustic sources are few

enough to be distinguishable and understandable. This can

be modeled by a sparsity constraint on the components of α.

As proposed in [3] the total likelihood function of (2) can be

regularised by adding a term measuring the sparsity of α. We

use Hoyer’s sparsity measure [6]

H(α) =
1√

M − 1

(√
M − ||α||

1

||α||
2

)

(5)

for this purpose. This measure yields a value equal to 1 if

and only if one component αm is not 0, zero if all the compo-

nents are equal. The new objective function becomes a linear

combination of the total likelihood and sparsity terms as

α
∗ = argmax

α
(θp(X,α) + (1− θ)H(α)) (6)

subject to
∑

M

m=1
αm = 1. Note that whenever θ < 1 the

estimated weights will be suboptimal in likelihood terms. The

range 0 ≤ θ ≤ 1 sets a trade-off from pure likelihood to pure

sparsity.

As in the non-sparse case, the EM update equations are

found by setting the new Lagrangian to zero and then finding

its derivatives. However, in the sparse case, the maximization

step has no closed-form solution and the non-linear set of M

equations as

θ(
√
M − 1) ||α||3

2

(

T
∑

t=1

γmt − Tαm

)

(7)

+ (1− θ)αm

(

αm − ||α||2
2

)

= 0

on M variables is to be solved. Using the non-sparse esti-

mates of α as initial conditions we solve such system of equa-

tions using the Levenverg-Marquardt algorithm.



3. MSAD SYSTEM SETUP

The following sections give details about the model training

step and the event detection step of the MSAD system.

3.1. Model training

The MSAD system assumes statistical knowledge about the

acoustic sources to detect, which translates into having a way

to compute p(xt;λm), for all m. In this work, these are either

Gaussian or Student-t Mixture Models (GMM,TMM) trained

using a small set of the TED [1] corpus, i.e. public talks and

lectures respectively, and a subset of the Magnatune [7] cor-

pus, a music database featuring a permissive license. The

details for the training data are shown in Table 1. Target-

ing public talks we find it interesting to focus on six acoustic

classes, namely speech, silence, laugh, applause, music and

TED music. The latter models the TED head/tail music that

would eventually allow us to safely ignore audio before and

after it. The labels for each class were obtained manually,

paying special attention to use audio with a single acoustic

class only. All the acoustic classes except music were trained

on TED data, i.e. in-domain data. For the music class, a se-

lection of songs covering a variety of styles were taken from

the Magnatune database to train the music model.

Class Sources Recordings Length(min)

Speech TED 12 16

Silence TED 12 5

Laugh TED 12 2

Applause TED 12 3

TED Music TED 12 4

Music Magnatune 51 57

Table 1. Data sources, number of recordings and audio length

used for training the acoustic event models.

We trained a 64-mixture GMM using 19 MFCC as fea-

tures and 5 iterations of maximum likelihood estimation. We

also trained TMM, whose mixtures have heavier tails than

Gaussians, becoming less sensitive to outliers during training.

Since the TMM parameteres tend to converge rather slowly,

the TMM were bootstrapped from the GMM and setting the

initial degrees of freedom to 20 for each mixture, resulting in

peaky pdfs. All parameters, i.e. weights, means, variances

and degrees of freedom were then reestimated using an EM

algorithm [4] with 10 iterations.

3.2. Activity Detection

Once the models are trained, the algorithms described in Sec-

tions 2.1 and 2.2 are used to determine the activation level

of each class on a sliding window of 300ms and a window

shift of 10ms. These values result in a satisfactory trade-off

between speed and performance as informally seen in some

preliminary tests. We also apply a windowing function onto

the likelihood scores used to compute the class posterior prob-

abilities (3) so that the center frames are given larger weights

compared to those at the boundaries. Sharper decision edges

over time as well as more stable steady states were informally

observed using this windowing function.

4. EXPERIMENTS AND RESULTS

We ran a set of experiments comparing the SHOUT [2] speech

vs. nonspeech detection system with the proposed MSAD ap-

proach. There are a number of differences in both approaches

that are worth mentioning. In this work, SHOUT was trained

to detect three acoustic classes, namely speech, silence and

sound using exactly the same data used for the MSAD sys-

tem. MSAD uses 6 acoustic models, speech, silence, laugh,

applause, music and TED music instead. SHOUT uses the

Viterbi algorithm during decoding on a frame-by-frame, i.e.

every 10ms, basis whereas the MSAD approach uses no de-

coding outputing class posteriors every 100ms. Both algo-

rithms use 19 MFCC features plsu log-energy together with

their corresponding delta and double delta coefficients.

In the International Workshop on Spoken Language

Translation (IWSLT) evaluation campaigns manually an-

notated speech activity labels are provided. We use the 2010

development and the 2010, 2011 and 2012 evaluation sets

together as the evaluation data set for the speech activity

detection experiments. The compound data set involves 31

TED talks with around 7 hours of audio manually annotated

with speech activity labels. We use the average miss, false

alarm and total errors as performance measure. The detected

class is found by maximum likelihood decoding for SHOUT

and by taking the class with maximum posterior probability

for the MSAD system. A smoothing time of 1.5s was applied

on the output of both systems. No collar was used during

scoring.

Table 2 gives the results for the SHOUT and several se-

tups of the MSAD system. The MSAD system outperforms

the SHOUT system by 7% to 9% in terms of relative to-

tal error. The best absolute error rate is 4.9%, meaning that

around 95.1% of the time the MSAD system gives the right

specch/nonspeech label. The MSAD system gives miss and

false alarm errors in the same range whereas a large propor-

tion of the errors are false alarms for the SHOUT system.

Note that the SHOUT system outputs the class activities that

maximize the likelihood over the whole recording whereas

the MSAD system uses the maximum posterior probability at

each time frame, that is, locally optimized. Neither of these

systems has an easy way of tuning the operating point, al-



though an insertion penalty could be eventually used during

Viterbi decoding. We did not explore this possibility in this

paper.

Regarding the MSAD system, error rates stay stable

across all setups. There is no clear difference in using Gaus-

sian or Student-t Mixture Models. The additional complexity

of TMM is a retraining pass of all mean, variance, weight

and degrees of freedom parameters whereas the likelihood

computation cost is still comparable to that of Gaussian com-

ponents.

The MSAD setups using the sparsity constraint (θ = 5e−
3) obtain marginal gains only when using TMM and do not

bring any improvement otherwise. We have observed that the

non-sparse MSAD system (θ = 1) outputs precise class activ-

ities almost all the time. This suggests that the acoustic mod-

els are pure enough for the posteriors to be clean whenever

only one source is active, something expectable after manual

annotation of the training data. In practice, the sparsity con-

straint has a large effect on the activity contours over time

as shown in Figure 1, although differences against the non-

sparse system are small if we take the winning class for each

frame into account. On the other hand, one or two active com-

ponents in a vector of six may not be necessarily considered

as sparse, especially when we compare to other studies such

as [3] or the vast majority of work on sparse linear systems

that consider thousands of components.

SAD θ Miss(%) FA(%) Error(%)

SHOUT - 1.4% 4.0% 5.4%

MSAD-GMM 1 2.1% 2.8% 4.9%

MSAD-GMM 5e-3 2.2% 2.8% 5.0%

MSAD-TMM 1 2.2% 2.8% 5.0%

MSAD-TMM 5e-3 2.2% 2.7% 4.9%

Table 2. Miss, false-alarm and total errors of the SHOUT

speech/non-speech detection system and the proposed multi-

source activity detection system.

5. CONCLUSION

We showed the effectivity of the proposed multi-source ac-

tivity detection (MSAD) system in the context of public talks

such as those from TED. In such scenario, this system is able

to properly deal with non-stationary noise and sound from the

acoustic environment, the speakers and the audience for the

purpose of speech activity detection. The MSAD obtained

relative gains in speech detection error in the range 7% to 9%

versus the SHOUT speech/non-speech segmentation system

that uses a speech, silence and sound models. The different

variants of the MSAD algorithm did not result in significant

differences in error rate, whether Gaussian mixtures models

Fig. 1. Activity contours of non-sparse (θ = 1, top) and

sparse (θ = 5e−3, middle) MSAD system outputs over time.

The waveform is shown below for reference.

or Student-t mixture models were used. We also showed the

use of a sparsity constraint on the vector of activities that im-

proved the visualization aspects of the activity contours over

time while it turned out not to be effective in error rate terms.
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