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Abstract

This paper presents an evaluation of the verification and calibration performance of a face recog-

nition system based on inter-session variability modeling. As an extension to calibration through

linear transformation of scores, categorical calibration is introduced as a way to include additional

information about images for calibration. The cost of likelihood ratio, which is a well-known mea-

sure in the speaker recognition field, is used as a calibration performance metric. Results on the

challenging MOBIO and SCface databases indicate that linearly calibrated face recognition scores

are less misleading in their likelihood ratio interpretation than uncalibrated scores. In addition,

the categorical calibration experiments show that calibration can be used not only to improve the

likelihood ratio interpretation of scores, but also to improve the verification performance of a face

recognition system.

Keywords: forensic face recognition, likelihood ratio, calibration, linear score transformation.

1 Introduction

Face is one of the common biometric modalities that is used by humans to perform person recognition [1].

Due to advancements of audio-visual recording equipment in recent years, cameras are used regularly in

our everyday life. Taking photos or videos of people became popular as camera technology for mobile

devices (e. g., smart phones and tablets) rapidly improved. In the security sector, surveillance cameras

are often used to monitor public places such as train stations, airports, shopping malls and hospitals.

The availability of digital images from these cameras has stimulated the development of technologies to

∗Roy Wallace is currently working as a software engineer at Zap Technology in Brisbane, Australia.
†Rahim Saeidi is currently working as a researcher at Speech and Image Processing Unit, School of Computing, University

of Eastern Finland.

1



process them. One of these technologies is automatic face recognition, i. e., a technology to recognize a

person’s identity from his or her facial image [2].

Automatic face recognition in biometrics has applications that can be divided into 3 main groups:

commercial, governmental and forensic applications [3]. An example of commercial face recognition is

the user authentication process that is performed by mobile devices and personal computers. In govern-

mental applications, automatic face recognition systems may be used in biometric passport verification

or border control activities. For both commercial and government related applications, the subjects

usually cooperate with the system. In forensic applications, digital image evidence can be recovered

from surveillance operations that often involve closed circuit television (CCTV) cameras. In contrast to

commercial applications, subjects in forensic face recognition generally do not cooperate with the sys-

tem while such evidence is captured. Rather, they are either unaware of the system or are deliberately

uncooperative, for example by hiding or disguising themselves with hats, sunglasses or masks.

Sometimes, crime scenes are watched by eyewitnesses, who may later be called upon to identify sus-

pects. One problem of eyewitnesses is that their memory can be influenced by misleading information

presented after the crime occurred [4, 5]. In cognitive psychology, this effect is called the misinforma-

tion effect paradigm [6]. Therefore, eyewitness testimonies should not be taken as the only source of

information to decide whether or not the suspect is the perpetrator.

When a crime scene is monitored by a CCTV camera, the captured images are commonly compared

to facial images from potential suspects of the crime by forensic experts. On one hand, humans tend

to perform better than an automatic based system when recognizing familiar faces [7, 8], but on the

other hand it has been shown that automatic face recognition systems surpass human performance when

comparing unfamiliar faces in difficult illumination conditions [9]. Hence, automatic systems for forensic

face recognition should be used to assist forensic experts.

Several challenges emerge when images captured from mobile devices or CCTV cameras are used for

face recognition. Issues that influence recognition performance include low resolution in the captured

images, the pose of the subject, partial occlusions of the subject’s face and variable illumination [10].

To address these issues, various techniques have been developed including image preprocessing to reduce

illumination effects [11], feature normalization [12, 13] and inter-session variability (ISV) modeling [14].

Score normalization techniques, such as zero and test score normalization (ZT-norm), have also been

shown to improve verification performance [15].

Generally, automatic face recognition systems compute a similarity score between a given probe

sample and a model from a known identity. In authentication or verification applications of automatic

face recognition, this score is compared to a threshold to classify the trial as either a client or an

impostor. In forensic applications, interpreting the score is more complicated because legal decisions

cannot be made directly by the automatic face comparison system but rather should be made by a judge
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or jury in court, after integrating information including several pieces of evidence. If the outcome of

the face comparison should be presented in court, a favorable way to express it is in form of a likelihood

ratio, i. e., a relative likelihood of the following two competing hypotheses [16]: a) the probe image (e. g.,

from CCTV) came from the suspect (prosecution hypothesis HP ) or b) it originated from someone else

(defense hypothesis HD). It is reported that uncalibrated likelihood ratios can be misleading in their

interpretation for forensics application [17, 18]. The approach that can be taken to tackle this issue is

calibration [17, 19], a process to transform raw scores computed by automatic face recognition systems

into calibrated likelihood ratio scores.

In the field of speaker recognition, calibration is used in the speaker recognition evaluation (SRE)

that is regularly held by the American National Institute for Standards and Technology (NIST) to verify

advances of the technology for speaker detection systems and measuring its performance [20]. In other

forensic biometric fields such as fingerprint, earmarks and signature recognition, calibration is used

to transform raw scores from biometric systems to likelihood ratios [21, 22, 23]. To our knowledge,

there is only limited literature available that discusses calibration for scores produced by automatic face

recognition systems [21, 24].

In previous works on face recognition, we proposed a session variability reduction method through

ISV modeling [14], and a score normalization technique via ZT-norm implementation [15] to the face

recognition system. These works only focus on improving the system verification performance. Unlike the

previous works, in this study we also focus on the calibration performance and introducing calibration

techniques for face recognition systems. Experiments are carried out using a face recognition system

based on ISV modeling, with and without ZT-norm, and on two challenging facial image databases:

mobile biometrics (MOBIO) and surveillance camera face (SCface). We evaluate both verification and

calibration performances, before and after linear calibration is applied to the scores. We then introduce

categorical calibration as a way to utilize additional information about facial images for calibration.

With categorical calibration, we show that not only calibration, but also verification performance can

be improved. In the discussion, we examine the effects of calibration on score distributions produced by

the face recognition system.

One important aspect of the research in this paper is that we provide the source code for all exper-

iments, evaluations, tables and plots that are shown in Section 7. All experiments solely rely on open

source software and are, therewith, entirely reproducible.

The remainder of this paper is structured as follows: the face recognition system is explained in more

detail in Section 2, followed by introduction of likelihood ratio calibration in Section 3 and metrics used

to evaluate the system performance in Section 4. In Section 5, we present databases and evaluation

protocols. The experimental setup is detailed in Section 6. Finally, the results of all experiments are

discussed in Section 7, and Section 8 concludes the paper.
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2 Face recognition

Automatic face recognition is the task of recognizing people from their facial images. There are several

challenges that influence automatic face recognition systems, like facial expressions, different illumination

conditions, partial occlusions of the face, non-frontal pose and low image resolution.

Before the person shown in an image can be identified, the face has to be detected. Since we want

to investigate face recognition, rather than face detection, we use the hand-labeled eye positions that

are provided with the databases (cf. Section 5) to geometrically normalize the images. Images are

then photometrically enhanced to reduce the influence of illumination, e. g. using the method introduced

in [11].

From these preprocessed images, features that are useful for face recognition are extracted. Over

the last few decades, numerous algorithms have been developed to extract different kinds of features

like eigenfaces [25], local binary patterns [26], scale invariant feature transform (SIFT) features [27] and

Gabor features [28]. In addition, the way to extract features from raw pixel values has also been stud-

ied [29]. Using these features, a recognition algorithm is then executed, for example linear discriminant

analysis [30], the Bayesian intra-personal/extra-personal classifier [31], support vector machines [32],

elastic bunch graph matching [33], or local Gabor binary pattern histogram sequences [34]. In this work

we focus on a face recognition system that was one of the best performing systems in [35], which relies

on an inter-session variability (ISV) modeling in a Gaussian mixture model (GMM) framework using

discrete cosine transform (DCT) block features.

To ensure reproducibility and comparability of our face recognition system, we strictly follow the

evaluation protocols defined by the MOBIO and SCface databases and solely use open source software [36,

35] to run our experiments. The database protocols define the setup of the face verification experiment

by dividing the images into three groups: training set, development set and evaluation set. First, facial

features are extracted from all images of the database. Next, the images from the training set are used

to adapt the face recognition system to the conditions of the database. Then, for each client in the

development set, the features of one or more of the client’s images are used to enroll a client model. The

features of the remaining images from the development set are used to probe the system by computing

similarity scores between client models and probe features. Finally, the scores from the evaluation set are

computed in a similar way. These scores can be directly used to compute the recognition performance

of the system, but they can also be further processed by score normalization, e. g. ZT-norm, or score

calibration.
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Figure 1: The process of extracting DCT block features from a geometrically normalized image.

2.1 UBM-GMM modeling of DCT block features

As in [14], the features extracted from the preprocessed images are DCT block features. After the image

is decomposed into several overlapping blocks, DCT features ~xb are extracted from each of the blocks.

This extraction process is visualized in Figure 1.

In contrast to most approaches to face recognition, these features are not concatenated into a single

long feature vector, but each feature is taken to be an independent observation of the same person. To

enroll a model of a client, the distribution of DCT block features from one or more images from the client

is modeled by a Gaussian mixture model (GMM). The enrollment process to create the client-specific

GMM is twofold. Firstly, a client-unspecific GMM – the so-called universal background model (UBM)

λUBM – models the distribution of features from an independent set of training images that does not

include images from clients. Secondly, the client-specific GMM λc is created by adapting the means

of the UBM to the features of the client’s enrollment features [14] while keeping the same covariance

matrices as the UBM.

2.2 Inter-session variability (ISV) modeling

The ISV modeling technique was originally inspired by the speaker recognition field [37]. This technique

involves estimating a linear subspace in GMM supervector space to capture the effects of image variations

(due to, e. g., illumination, pose, facial expression, occlusion) and accounts for these variations during

client model enrollment. The enrolled client-specific GMMs thereby isolate a client-specific component

from image-dependent components in GMM supervector space. This modeling technique has been shown

to improve stability against these image-dependent variations. For details, readers are directed to [14].

During the deployment (test) phase, the DCT features ~xp = {~xp,b}Bb=1 for all blocks b of a probe

image are extracted, and an estimate is made of how well the probe features can be explained by a
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certain client model λc. Specifically, this is achieved by computing the average log likelihood ratio (LLR)

score:

h(~xp, λc) =
1

B

B∑
b=1

log
p(~xp,b | λc)

p(~xp,b | λUBM)
. (1)

This score, thus, compares the likelihood that the client model λc generated the observations (HP ) versus

the likelihood that they were generated by the universal background model, λUBM (HD).

2.3 ZT score normalization

After score computation, we employ ZT score normalization (ZT-norm), which was also adopted from

the speaker verification field [38]. ZT-norm incorporates both client-centric Z-norm and probe-centric

T-norm [39]. The goal of ZT-norm is to make the score independent of the current client or probe.

Both Z- and T-norm convert a raw score h to a normalized score h′ by subtracting an average impostor

score µ and dividing it by its standard deviation σ:

h′ =
h− µ
σ

. (2)

The difference between Z- and T-norm is how impostor scores are computed. For Z-norm, these scores

are computed between the currently tested client model λc and all probe images from the cohort, whereas

for T-norm, scores are computed between the current probe ~xp and all cohort client models.

Finally, ZT-norm is a combination of first applying Z-norm and then applying T-norm afterward,

which was shown to perform well for face recognition [15]. It should be noted that the ZT-norm score

transformation removes any log-likelihood ratio properties that the scores may have had before transfor-

mation.

3 Likelihood ratio calibration

Using an automatic face recognition system for forensic applications, it is important to ensure that

scores are output in the form of likelihood ratios. Even if face recognition algorithms are designed to

produce likelihood ratio scores, due to various reasons like score normalization or imbalanced training

data, this goal might not be directly achieved. One way to give likelihood ratio properties to the face

recognition scores is through calibration, which is described as “the act of defining the mapping from

score to log-likelihood-ratio” [19].

3.1 Likelihood ratios for forensic face recognition

Experts argue that reporting a likelihood ratio is a sound way of presenting scientific evidence to court.

A likelihood ratio (LR) expresses the ratio of two likelihoods. For forensics, this is the ratio of the
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likelihoods of observing the evidence E in two competing hypothesis: the prosecution hypothesis HP

and the defense hypothesis HD:

LR =
P (E | HP )

P (E | HD)
. (3)

For forensic face recognition, these two competing hypotheses can be defined as:

• HP : probe ~xp originates from the client c, and

• HD: probe ~xp originates from someone else.

For numerical stability reasons, the likelihood ratio is taken in the logarithmic domain, forming the log

likelihood ratio (LLR).

3.2 Linear score transformation

One way to perform calibration in a binary classification process like face verification is through linear

calibration [40]. This calibration process linearly transforms raw scores produced by a face recognition

system to calibrated likelihood ratio scores. The linear transformation used to calibrate raw scores h (or

h′ after ZT-norm) to calibrated LLR’s ` is:

` = w0 + w1h, (4)

where w0 is the offset parameter and w1 is the scaling parameter. These two parameters are obtained

from the scores of the development set of the database via logistic regression.

Finally, the trained calibration parameters are applied to the scores of the evaluation set. In this

way, calibration transfers knowledge about the whole score distribution from the development set to the

evaluation set, in order to improve the interpretability of the resulting calibrated scores.

3.3 Categorical calibration

In this paper, we introduce a technique called categorical calibration to the face recognition field. This

calibration technique is an extension of linear calibration described above that replaces the single offset

parameter w0 with a set of N category-dependent offset parameters w0,i. Assuming that there are N

distinct probe image categories Q = {qi}Ni=1 and that, therefore, probe features ~xp that produced score

h belong to a certain category q, scores transformation using categorical calibration can be formulated

as:

` =

N∑
i=1

δq,qiw0,i + w1h , (5)
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where δ is the Kronecker delta:

δq,qi =

 1 if q = qi

0 if q 6= qi

. (6)

Categorical calibration is motivated by a calibration technique in speaker recognition that employs

side information [41]. In categorical calibration, the categories can be in the form of quality measures [42,

43] of the image such as subject pose, illumination condition, resolution, facial expression, etc. In

this paper, we use distance between camera and subject to determine the category of probe images.

Unlike conventional linear calibration, an improvement in verification performance is possible through

categorical calibration. This is because the rank order of scores is invariant under Equation (4) but not

under Equation (5).

4 Performance Measures

Two types of metrics are used to measure the verification performance of our face recognition system.

The metrics are verification cost (Cver) and probability of false rejection (Pfr), both of which measure

performance at different locations in the ROC curves, as well as the cost of log likelihood ratio (Cllr),

which assesses the whole ROC curve. In this section, we introduce these measures in more detail. For

all metrics, lower values indicate better system performance.

4.1 Verification cost

The verification cost Cver is a binary-classification system performance measure, which is defined as:

Cver(θ) = Pcli × CFR × FRR(θ)

+ (1− Pcli)× CFA × FAR(θ) ,

(7)

where Pcli is the prior probability that the probe image is of the client, CFR and CFA are the weighted

cost of false reject and false alarm errors, respectively, and θ is the decision threshold of the system.

This metric is analogous to detection cost (Cdet) in the speaker recognition field [44]. It measures the

verification cost at a single operating point of the DET-curve [45] or at a certain false rejection rate

(FRR) or false acceptance rate (FAR) point.

If the prior probability Pcli = 0.5 and the same weighting cost for CFR and CFA are used (CFR =

CFA = 1), Equation (7) becomes:

Cver(θ) =
FRR(θ) + FAR(θ)

2
. (8)

This function is identical to the half total error rate (HTER), which is a well-known evaluation measure
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commonly used in face recognition [15, 46]. In our experiments, we use two different ways to determine

a threshold θ. First, the optimal threshold θ∗ is computed based on the development and evaluation set

independently, by minimizing:

θ∗ = arg min
θ

Cver(θ) . (9)

In this paper, we refer to the minimum verification cost as Cmin
ver = Cver(θ

∗).

To give a more realistic and unbiased evaluation of the verification cost on the evaluation set, we also

compute the optimal threshold θ∗ based on the development set and compute the Cver of the evaluation

set at that threshold. For brevity, we simply call this value Cver.

In addition to the Cver measure, we also report the FRR at the threshold, where the FAR = 1% as

probability of false rejection (Pfr) for both development and evaluation set. Both Cmin
ver and Pfr are solely

discrimination performance measures that are insensitive to linear calibration.

4.2 Cost of log likelihood ratio

The last performance measure used in this paper is the cost of log likelihood ratio (Cllr). Unlike Cver

and Pfr, the Cllr is an application-independent verification measure [47]. Usually, in face and speaker

verification systems, hard decisions are made by thresholding the scores. The Cllr includes the concept

of expected cost and soft Bayes decision. This metric can be seen as an integral over all cost functions

Cver in Equation (7) that is parameterized by Pcli, CFR and CFA, thereby assessing calibration at all

thresholds θ.

The metric Cllr is a performance measure commonly used in speaker recognition, e. g., in the NIST

SRE plan [20]. It can be interpreted as a scalar measure that summarizes the quality of the likelihood

ratio scores [48]. The Cllr is formulated as:

Cllr =
1

2Ncli

∑
hi∈{hcli}

log2(1 + exp(−hi))

+
1

2Nimp

∑
hj∈{himp}

log2(1 + exp(hj)) ,

(10)

where Ncli and Nimp are the number of client and impostor trials, respectively. The Cllr value can be

expressed as the sum of a minimum Cllr value referred to as discrimination loss, Cmin
llr , plus calibration

loss, Cmc:

Cmc = Cllr − Cmin
llr , (11)

Discrimination loss Cmin
llr and calibration loss Cmc indicate the verification and calibration performances

of a system, respectively [47]. To compute a meaningful value of Cllr, it is important that the scores are

interpretable as likelihood ratios and, therefore, calibration is required before computing this measure.

The Cllr can also be seen as a validity measure of a biometric system, in that it indicates the quality
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Table 1: The interpretations of Cllr values for system performance and likelihood ratio scores [47].

Cllr value
System performance

interpretation
Special LLR properties

0 Perfect verification system. LLR = −∞ for impostors and LLR =∞ for clients.

0 < Cllr < 1 Well-calibrated system. −∞ < LLR <∞ and LLRs are well-calibrated.

1 Reference verification system. LLR = 0 for impostors and clients.

Cllr > 1 Badly calibrated system. No LLR interpretation possible.

(a) MOBIO (b) SCface

Figure 2: Example images of the (a) MOBIO and (b) SCface databases. In (b) the first image shows an
enrollment sample, while remaining images are from the close, medium and far condition, respectively.

and validity of the likelihood ratios produced by the system [49]. The interpretation of Cllr values are

presented in Table 1. A perfect verification system has Cllr = 0, while a reference system has Cllr = 1.

The perfect verification system always produces LLR = −∞ for impostor scores and LLR =∞ for client

scores. In contrast, the reference system always produces LLR = 0, i. e., it does not add any information

in the forensic decision process. When a verification system has Cllr > 1, it is considered to be badly

calibrated. The scores produced by this system are misleading if interpreted as likelihood ratios. If the

calibration loss Cmc is removed from the Cllr value, we find the discrimination loss is 0 ≤ Cmin
llr < 1.

A well-calibrated system has 0 ≤ Cllr < 1 and produces well-calibrated likelihood ratios. A well-

calibrated likelihood ratio ` has the interesting property that “the likelihood ratio of the likelihood ratio

is the likelihood ratio”, which is referred to as idempotence [50, 51]:

` = log
P (` | HP )

P (` | HD)
. (12)

This explains that the log likelihood ratio of log likelihood ratio ` is the log likelihood ratio ` itself. One

implication of Equation (12) is that for ` = 0, the likelihoods of both HP and HD are equal.

5 Databases and protocols

We evaluate face verification and calibration performance on two challenging image databases. Since we

want to evaluate performance in forensic cases and there is no publicly available forensic database, we

chose the MOBIO [52] and SCface [53] databases that contain images that are as close as possible to real

forensic data. Samples of facial images from the databases are presented in Figure 2. In order to have

unbiased evaluations (see [54] for effects of biased evaluations), the clients of each database are divided

into three different sets:
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Table 2: Number of client and impostor scores in MOBIO and SCface.

Database Protocol
(Client / Impostor trials)

Development set Evaluation set

MOBIO
male (2,520 / 57,960) (3,990 / 147,630)

female (1,890 / 32,130) (2,100 / 39,900)

SCface

close (220 / 9,460) (215 / 9,030)

medium (220 / 9,460) (215 / 9,030)

far (220 / 9,460) (215 / 9,030)

combined (660 / 28,380) (645 / 27,090)

1. A training set: images of this set are used to learn the parameters of the face recognition algorithm.

Here, model training uses two thirds of this training data, while the remaining third is used as cohort

images and cohort clients for ZT score normalization. In total, we use 9600 and 688 facial images

of 50 and 43 identities for MOBIO and SCface, respectively.

2. A development set: these images are used to optimize meta-parameters of the algorithm. The

scores obtained with this set are also used to train score calibration parameters.

3. An evaluation set: these images are used to compute the final verification and calibration perfor-

mances.

5.1 MOBIO

The mobile biometrics (MOBIO) database [52] is a multi-modal face and speech database containing video

recordings from mobile devices. The database was collected in order to capture real-world scenarios for

face and speaker authentication. In this paper, we use image data extracted from the database1.

The 150 clients of the MOBIO database are divided into training set (50), development set (42) and

evaluation set (58 persons). The training set is further split into 34 clients that are used to train the

face recognition system, and 16 persons in the ZT-norm cohort.

The database is accompanied by two protocols, which are based on gender: male and female. Client

models are enrolled using features from 5 facial images per identity. Finally, client and impostor scores

are computed by probing all client models with all probe images. The number of client and impostor

trials are listed in Table 2. Due to the low number of clients in the training set, the training of the face

recognition system and the ZT-norm is always performed gender-independently. However, calibration is

executed gender-dependently, following the gender-split as specified in the protocols.

5.2 SCface

The surveillance camera face (SCface) database [53] represents an indoor monitoring scenario. The

probe images were captured from different surveillance cameras with three subject-to-camera distances:

1http://www.idiap.ch/dataset/mobio
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1 meter (close), 2.6 meters (medium) and 4.2 meters (far). With about 10 pixels inter-eye-distance,

the far condition has the lowest image resolution, while the close condition has a viewing angle slightly

from above (cf. Figure 2(b)). As is often the case in real surveillance applications, client models are each

enrolled from a single high-quality frontal mug-shot photograph.

In total, the number of clients in the SCface database is 130. They are split into sets of 43 subjects for

training, 44 for development and 43 for evaluation. The training clients are split up into 29 clients that

are used to train the face recognition system and 14 identities in the cohort. There are four protocols

defined: close, medium, far and combined. The combined protocol includes all images from the close,

medium and far conditions. Again, all probe images are compared to all client models, leading to the

number of client and impostor trials listed in Table 2.

6 Experimental setup

In this section, we describe the setup of the face recognition system and calibration. We execute exper-

iments on both databases independently. For each database, the face recognition system is adapted to

the training set of the database and the cohort images are taken only from the corresponding training

set. The parameters for the face recognition experiments, explained in more detail in this section, are

optimized to the development set of each database separately. Here we use the same algorithm config-

uration as in [15]. Except where stated otherwise, ZT score normalization always uses cohort images

across all conditions, i. e., gender-independent for MOBIO and distance-independent for SCface.

Importantly, all results are generated solely using open source software. The face recognition al-

gorithm, the linear calibration of scores, the verification and calibration metrics, as well as the image

database interfaces rely on the open source signal-processing and machine learning toolbox Bob [36]2.

The face recognition and linear calibration experiments are conducted with the FaceRecLib [35]3 which

implements the evaluation protocols for the databases. The calibration module inside Bob is adapted

from Bosaris [48], a toolkit for calibrating, fusing and evaluating scores from binary classifiers. All re-

sults, figures, tables and plots presented in this paper can be reproduced using the provided software

package4.

6.1 Face recognition

The first step of the image processing chain for face recognition is image preprocessing. After geometrical

alignment using the hand-labeled eye positions that are provided with the databases, the eye positions

in the resulting gray-scale image are horizontally aligned at 16 pixels from the top and separated by

2http://www.idiap.ch/software/bob
3http://pypi.python.org/pypi/facereclib
4http://pypi.python.org/pypi/xfacereclib.paper.IET2014
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33 pixels, with a resulting image resolution of 64 × 80 pixels. To reduce the effects of illumination, the

images of the MOBIO database are photometrically normalized [11].

The preprocessed images are split into overlapping blocks of 12× 12 pixels for MOBIO and 20× 20

pixels for SCface, sampled with the minimum step size of 1 pixel [15]. Thus, a total of B = 3657 or 2745

blocks are generated from each image in the MOBIO or SCface database, respectively.

Each image block is normalized such that pixel values have zero mean and unit variance. Then,

from each image block a set of DCT features [55] is extracted, and the 45 (MOBIO) or 66 (SCface)

lowest frequency components are retained. Finally, the coefficients of all blocks in every image are again

normalized to zero mean and unit variance [15].

For the face recognition system, a separate UBM is computed for each of the two databases. To train

the linear ISV subspace, we use the same training data as for UBM creation. As in [15], we selected a

subspace of 320 dimensions for MOBIO and 80 dimensions for SCface.

6.2 Calibration

Two calibration conditions are evaluated in the MOBIO database. These conditions are based on gender

division into male and female subsets. The calibration parameters are computed from the scores of the

development set of each gender independently. Afterward, calibration is applied to the scores of the

evaluation set with corresponding gender.

Four distance conditions in the SCface database, which are close, medium, far and combined , are

evaluated. Besides conventional linear calibration, we also apply categorical calibration to the combined

scores of SCface. In this categorical calibration experiment, additional information about facial images,

i. e., the distance between surveillance camera and subject is used. Specifically, the distances close,

medium and far are used to form the set of probe image categories Q.

7 Results

This section describes the results of our face recognition and score calibration experiments. Evaluated on

the MOBIO and SCface databases, the verification performance of the face recognition system is observed

with and without ZT-norm. Afterward, calibration is applied to both raw and ZT-normalized scores.

Categorical calibration is shown to be beneficial for both the discrimination and calibration performance

of SCface scores. At the end of this section, we present detailed analysis of the effect of calibration on

score distributions.
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Table 3: Verification performance using raw and ZT-normalized scores, evaluated on MOBIO and SCface.

Dataset
raw scores ZT-norm

(dev/eval)
dev. set eval. set dev. set eval. set

Cmin
ver Pfr Cmin

ver Cver Pfr Cmin
ver Pfr Cmin

ver Cver Pfr

MOBIO:

a. male 3.90% 9.52% 7.10% 7.26% 17.44% 3.87% 10.28% 6.52% 6.77% 17.42%

b. female 5.84% 13.07% 11.86% 12.69% 37.71% 6.87% 18.84% 10.21% 14.78% 35.57%

SCface:

a. close 10.66% 30.91% 10.57% 10.82% 35.81% 7.14% 27.27% 8.10% 8.74% 35.35%

b. medium 11.19% 38.64% 8.08% 8.91% 33.02% 9.32% 36.36% 6.90% 7.48% 32.56%

c. far 19.39% 73.64% 19.99% 20.45% 73.95% 18.40% 74.55% 19.66% 20.51% 76.28%

d. combined 17.03% 52.27% 16.39% 16.41% 51.01% 12.56% 45.15% 12.23% 12.44% 44.81%

Table 4: Verification performance for the SCface database showing the impacts of (a) using all conditions
for the ZT-norm cohort and (b) computing the threshold on the combined set without ZT-norm.

(a) ZT-norm with combined cohort

Protocol Cmin
ver (dev) Cmin

ver (eval) Cver Pfr

close 7.14 % 8.10 % 8.27 % 29.77 %

medium 9.32 % 6.24 % 6.61 % 26.51 %

far 18.40 % 20.07 % 20.78 % 78.60 %

(b) Threshold on combined set

Protocol Cmin
ver Cver

close 10.57 % 14.68 %

medium 8.08 % 13.75 %

far 19.99 % 20.79 %

7.1 Verification performance before calibration

The verification performance of the face recognition system for both MOBIO and SCface is presented in

Table 3. The performance is expressed in terms of Cmin
ver and Pfr for the development and evaluation set.

Additionally, the unbiased Cver measure is given for the evaluation set, where the optimal threshold θ∗

from the development set is taken into account.

For the MOBIO database, the verification results for development and evaluation set differ. While

in the development set the Cmin
ver values range around 4 % for male and 6 % for female clients, they are

7 % and 11 %, respectively, in the evaluation set. This is similar to what has been observed in [15, 46].

ZT-norm improves the Cmin
ver values for the evaluation set, but not for the development set of MOBIO

female data. In this condition, there seems to be shift of scores from development to evaluation set,

which causes relatively large differences between Cmin
ver and Cver. In addition, ZT-norm seems to only

maintain the Pfr values.

For the SCface database, the four protocols close, medium, far and combined are evaluated. In

Table 3, ZT-norm is performed using only cohort images from the corresponding distance condition.

The close and medium images with sufficient image resolution provide Cmin
ver error rates in the order

of 10 %, while in the far condition the error rates are roughly doubled. In general, ZT-norm improves

verification performance moderately, especially for the combined protocol where error rates are reduced

by up to 4 % after ZT-norm. This positive gain of ZT-norm can be observed across all performance

measures in Table 3.

Motivated by the last observation, we repeated the ZT-norm experiments using cohort images across

all distance conditions. The results of this experiment are shown in Table 4(a). Interestingly, nearly all
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Table 5: Calibration performance after linear calibration of the raw and ZT-normalized scores of the
evaluation set of MOBIO and SCface.

Dataset condition: raw scores ZT-norm

(eval. set) Cmin
llr Cllr Cmc Cmin

llr Cllr Cmc

MOBIO:

a. male 0.254 0.278 0.024 0.236 0.257 0.021

b. female 0.392 0.473 0.080 0.360 0.483 0.122

SCface:

a. close 0.343 0.378 0.034 0.261 0.287 0.026

b. medium 0.284 0.313 0.029 0.205 0.243 0.038

c. far 0.625 0.659 0.034 0.636 0.664 0.028

d. combined 0.503 0.523 0.020 0.419 0.432 0.013

error rates dropped remarkably, except for the far condition, which seems to be little effected. Addition-

ally, we tested how the selection of the threshold influences performance. In Table 3, the threshold is

computed for each distance condition independently. In Table 4(b), a single threshold for all conditions

is selected. Clearly, the performance on the evaluation set drops seriously, especially for the medium and

close conditions5.

The observation from the last two experiments is that integrating additional information about the

images, e. g., the subject-to-camera distance into the face recognition system improves verification, but

this is apparently not true for all steps of the face recognition tool chain. Therefore, in the following

calibration experiments, we use the best setup for the SCface database: ZT-norm uses cohort images

across all distance conditions, while the threshold is based on distance-dependent scores.

7.2 Calibration performance

In order to study the effect of calibration on face recognition, the system performance is evaluated using

the Cllr measure. The evaluated scores are the calibrated likelihood ratios from the evaluation sets

of MOBIO and SCface. The Cllr measure is composed of the sum of two metrics: the discrimination

loss Cmin
llr , which reflects the minimum loss due to verification errors, and the calibration loss Cmc,

which reflects the additional cost of miscalibration. The calibration experiment results are presented in

Table 5. In general, Cmin
llr values after ZT-norm are lower than those of raw scores, which indicates that

better verification performance is offered by the ZT-norm scores. In the MOBIO database, for the ZT-

norm scores there are 7 % and 8 % relative improvements in Cmin
llr compared to raw scores for male and

female genders, respectively. For SCface, the system with ZT-norm has improved Cmin
llr discrimination

performance compared to the raw system in most distance conditions. Stable performance is observed in

far condition, while significant relative improvements are shown for other distance conditions, ranging

from 17 % in the combined condition to 40 % for close. These observations are in line with the results

reported in Section 7.1.

Table 5 shows that ZT-normalization improves Cllr compared to raw scores, except for the female

5Since Cmin
ver is independent of the threshold, its values are identical in Tables 3 and 4(b).
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Table 6: The Cver(θ0) values before and after calibration is applied to the ZT-normalized scores in the
evaluation set of MOBIO and SCface.

Cver(θ0)

Dataset Cmin
ver Cver before after

calibration calibration

MOBIO:

a. male 6.52 % 6.77 % 35.93 % 6.65 %

b. female 10.21 % 14.78 % 38.08 % 13.64 %

SCface:

a. close 8.10 % 8.27 % 26.37 % 8.22 %

b. medium 6.24 % 6.61 % 26.22 % 6.42 %

c. far 20.07 % 20.78 % 30.13 % 20.62 %

d. combined 12.23 % 12.44 % 27.57 % 12.64 %

Table 7: Verification and calibration performance of the ZT-normalized scores of the SCface combined
protocol before calibration and after linear and categorical calibration.

Calibration
Cmin

llr Cllr Cmc Cmin
ver Cver Cver(θ0) Pfr # param

technique

None 0.419 0.736 0.317 12.23 % 12.44 % 27.57 % 44.81% 0

Linear 0.419 0.432 0.013 12.23 % 12.44 % 12.64 % 44.81% 2

Categorical 0.392 0.406 0.014 11.59% 12.11% 11.83% 47.13 % 5

condition in MOBIO. Apparently, applying ZT-norm results in an improved Cmin
llr , but not necessarily

an improved Cmc. This means that applying ZT-norm reduces discrimination loss, while the effect of

calibration loss (Cmc) results in an inferior Cllr for the female subset of MOBIO compared to the raw

scores.

Table 6 presents the verification cost Cver at threshold θ0 = 0, which is computed before and after

calibration for the ZT-normalized scores from the evaluation set of MOBIO and SCface. Threshold

θ0 = 0 is selected as it represents the application-independent threshold for well-calibrated likelihood

ratio scores. In Table 6, it is clearly shown that the Cver(θ0) values after calibration are far lower than

before calibration. Mostly, Cver(θ0) values are in the order of the Cver values or even lower, which shows

that calibration can produce well-calibrated likelihood ratios from the ZT-normalized scores that are

produced by our face recognition system.

From our evaluation using Cllr, it has been found that ZT-norm is favored to increase face recognition

performance in general. Through calibration, raw scores from the face recognition system have been

successfully converted into log likelihood ratio scores so that θ0 = 0 becomes a valid threshold as measured

by the verification performance metric Cver.

7.3 Categorical calibration in SCface

In the experiment with categorical calibration, we include the distance information of SCface images

as categories Q = {close,medium, far} to improve calibration and verification performance of the face

recognition system. For categorical calibration, the scores from the combined distance condition with

ZT score normalization are used.
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Figure 3: Score distributions for MOBIO male and SCface combined before and after calibration, both
before (raw) and after ZT score normalization (ZT-norm).

The results of this categorical experiment are presented in Table 7. In the first row, the values of

Cllrand Cmc are presented for uncalibrated scores for the sake of completeness. The reader should bear in

mind that the metric Cllr is only meaningful for evaluating scores with a likelihood ratio interpretation.

Comparing the performance of linear and categorical calibration, the latter provides a relative re-

duction in Cmin
llr and Cllr of around 6 %. In general, including category information through categorical

calibration improves verification performance. Based on the Cver values in Table 7, categorical cali-

bration has successfully improved verification performance compared to linear calibration, by 5.2 % in

Cmin
ver and 2.7 % in Cver. Similarly, categorical calibration performs well in terms of Cver(θ0) with relative

improvement of 6.4 %. In terms of Pfr, however, the categorical calibration can only maintain the system

verification performance. This effect might be explained by the fact that categorical calibration focuses

on the overlapping part of the score distributions, and not on the tail belonging low FAR values.

The findings in this categorical calibration experiment show that the categorical calibration technique,

in general, offers better face recognition performance in both verification and calibration compared to

the linear calibration technique.
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7.4 Discussion

In the previous sections, we analyzed the verification and calibration performance of the face recognition

system with regards to the use of ZT-norm. It was shown that ZT-norm, in general, helps to improve

the verification performance. Furthermore, both linear and categorical calibration were applied to the

scores, resulting in improved calibration performance. In this section, we further analyze the effect of

calibration with respect to the distribution of client and impostor scores.

The score distributions for the evaluation set of both MOBIO and SCface before and after calibration

are presented in Figure 3. The distributions are depicted for the male gender in MOBIO and the combined

distance condition in SCface. ZT-norm affects distribution of uncalibrated scores for both MOBIO and

SCface (first column of Figure 3). Generally, both raw and ZT-normalized impostor scores assemble

around score value 0 before calibration. For SCface, the raw scores show a high peak compared to the

ZT-normalized uncalibrated scores.

Depicted in the second column of Figure 3, the distributions of calibrated LLR scores represent the

behavior of well-calibrated log likelihood ratios. One indicator is the intersection between the score

distribution of clients and impostors, which lies near the likelihood ratio ` = 0. This corresponds to the

properties of well-calibrated log likelihood ratio ` explained in Equation (12).

In addition to the analysis of score distributions before and after linear calibration, we present the

score distributions after categorical calibration. In Figure 4, the score distributions for the SCface eval-

uation set with ZT-norm are depicted before calibration, after linear calibration and after categorical

calibration. Both linear and categorical calibration scale and shift the score distributions such that the

intersection of the client and impostor distributions lies closer to ` = 0. Especially for the categorical

calibration, all three different distance conditions intersect exactly at ` = 0. This shows that both cal-

ibration techniques have successfully produced well-calibrated likelihood ratios from the ZT-normalized

scores. As described previously, a common scaling parameter w1 is utilized in Equation (5) for all cate-

gories, close, medium and far , while a different offset w0,i is used for each category. Figure 4 illustrates

how this extra information and flexibility in calibration results in improved separation and distribution

of scores, ultimately leading to improved verification and calibration performance.

8 Conclusion

In this paper, we presented evaluations of calibration of a face recognition system based on inter-session

variability modeling on the MOBIO and SCface databases. Calibration produces scores in the form of

likelihood ratios. We performed categorical calibration on the SCface database with subject-to-camera

distance as a category. We showed that categorical calibration improves face recognition performance

in terms of calibration and verification compared to a system with linear calibration, by incorporating
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Figure 4: Distributions of scores from SCface with ZT-normalization before calibration, after linear
calibration and after categorical calibration.

additional information about the probe images in the calibration process.

Through this paper, we hope to encourage further research in the area of calibration for face recog-

nition using the categorical calibration technique, since it can be applied to other categories such as

pose, illumination and expression to reduce the impact of these image variations from the face recog-

nition process. Researchers are encouraged to utilize our open source software package, which is easily

understandable, well-documented and tested.
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