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Abstract

The process of manually labeling data is very expensive and
sometimes infeasible due to privacy and security issues. This
paper investigates the use of two algorithms for clustering unla-
beled training i-vectors. This aims at improving speaker recog-
nition performance by using state-of-the-art supervised tech-
niques in the context of the NIST i-vector Machine Learning
Challenge 2014. The first algorithm is the well-known Ward
clustering that aims at optimizing an objective function across
all clusters. The second one is a cascade clustering, which ben-
efits from the latest advances in speaker modeling and session
compensation techniques, and relies on both the cosine similar-
ity and probabilistic linear discriminant analysis (PLDA). Fur-
thermore, this paper investigates the multi-clustering fusion that
opens the door for further improvements. The experimental re-
sults show that the use of the automatically labeled i-vectors to
train supervised methods such as LDA, PLDA or linear logistic
regression-based fusion, decreases the minimum decision cost
function by up to 22%.

1. Introduction

Modern speaker recognition systems typically rely on several
handcrafted preprocessing or feature extraction techniques, and
involve speech corpus engineering. This required knowledge
often prevents researchers outside the audio processing commu-
nity to be involved in speaker recognition evaluations (SREs).
To foster the interest of a wider range of researchers and, e.g.,
the application of recent advances in machine learning, NIST
has organized a novel benchmark, the NIST i-vector Machine
Learning Challenge 2014." Tn contrast to previous NIST SREs,
this challenge relies on the i-vector paradigm [1], which is
widely used by state-of-the-art speaker recognition systems [2].
By providing such i-vectors directly instead of audio data, this
benchmark is accessible to participants outside the audio pro-
cessing community.

This i-vector paradigm only acts as a front-end, by ex-
tracting low-dimensional i-vectors from speech utterances of
varying durations. Many session compensation and classifi-
cation techniques commonly applied on top of i-vectors are
supervised, such as probabilistic linear discriminant analysis
(PLDA) [3], linear discriminant analysis (LDA) and within-
class covariance normalization (WCCN) [1]. They hence re-
quire a labeled and preferably large training set. Similarly, both
true claimant and impostor trials, and, hence, labeled training
data are required to fuse several speaker recognition systems. In
contrast, the development data provided by NIST for this com-
petition are unlabeled. Therefore, one of the main challenges of
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this benchmark is how to effectively use the unlabeled i-vectors
from the development set.

A potential solution to this problem is clustering, group-
ing the unlabeled i-vectors into several clusters, before assign-
ing a label to each cluster. The resulting automatically labeled
i-vectors can then be employed as a training set for state-of-the-
art supervised classification and fusion techniques. However,
the clustering technique must be totally unsupervised, which is
not the case in many existing approaches [4, 5]. In this work,
we evaluate two fully unsupervised bottom-up clustering ap-
proaches. The first one is the Ward clustering [6, 7] that aims at
optimizing an objective function across all clusters. The second
one is a two-step iterative technique, which employs two differ-
ent similarity measures. The first step merges clusters using the
cosine metric between the average i-vectors representing each
cluster. The resulting clusters are used to train a PLDA model,
which enables a second clustering step based on PLDA scoring.

The evaluation of these two clustering techniques is per-
formed by studying their impact on two different front-end
speaker recognition systems: (1) a LDA-Cosine system based
on the baseline provided by NIST that relies on cosine scoring
(also known as fast scoring), and (2) a PLDA-based system.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 briefly reviews the
two front-end speaker recognition systems used in our experi-
ments. Section 4 presents both clustering algorithms and their
fusion using the Hungarian algorithm. The experimental results
are shown in section 5. Section 6 concludes the paper.

2. Related Work

2.1. Speaker Recognition

The data supplied by NIST for this challenge are i-vectors that
were extracted using a speaker recognition system developed
by the John Hopkins University Human Language Technology
Center of Excellence in conjunction with MIT Lincoln Labora-
tory for the 2012 NIST SRE.” This i-vector paradigm [1] is built
on top of the Gaussian mixture model (GMM) framework [8].
It aims at extracting a low-dimensional factor w, called an i-
vector, from a speech utterance ©. This approach has been
successfully and widely used by the speaker recognition com-
munity [1, 9, 10, 11, 2]. It relies on the definition of a low-
dimensional total variability subspace 1" and can be described
in the GMM mean supervector space by:

p=m+Tw, (1)

where p is the GMM mean supervector that best describes the
sample O, w is the low-dimensional i-vector extracted from
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the sample O, which is assumed to follow a normal distribution
N (0, I), and m is the GMM mean supervector of the universal
background model (UBM). In practice, T is learned using the
expectation-maximization (EM) algorithm.

This i-vector approach only acts as a front-end extractor and
does not perform session compensation or scoring. Therefore,
several techniques are commonly applied to i-vectors.

The authors in [12] show that whitening and length-
normalization are very helpful preprocessing techniques.
Whitening consists of normalizing the i-vector space, such
that their covariance matrix is turned into the identity matrix.
Length-normalization aims at reducing the mismatch between
training and testing i-vectors by projecting them into a unit
sphere.

Several scoring techniques have been employed to classify
i-vectors. A simple and fast approach is cosine scoring [1].
Prior to scoring, linear discriminant analysis (LDA) can be ap-
plied to boost the performance. Another popular technique is
probabilistic linear discriminant analysis (PLDA), which is a
supervised generative framework initially proposed for the task
of face recognition [3]. Several variants of this model have been
proposed. Heavy-tailed prior distributions can be used instead
of Gaussian ones [9, 11]. Besides, fully Bayesian formulations
have been proposed in [13, 10]. In this work, we rely on the
original approach with Gaussian priors, for which a scalable
and exact formulation exists [14, 15].

On the other hand, the fusion of speaker recognition sys-
tems often allows significant performance improvements [2].
Empirical approaches such as the sum or majority voting rules
can be employed for this purpose. However, better performance
is often achieved when using true claimant and impostor scores
to train a supervised classifier for the fusion. Such a simple and
efficient approach relies on logistic regression [16].

2.2. Speaker Clustering

When employing state-of-the-art supervised scoring or fusion
techniques, a large labeled training set is required. In contrast,
the development set supplied for this challenge is unlabeled.
Clustering is a possible way to circumvent this problem.

Before the development of the i-vector paradigm, speaker
clustering using supervectors was explored in [17, 18]. In
their work, the authors found that the simple cosine similar-
ity measure is very effective at clustering utterances that be-
long to the same speaker, when applied to supervectors, which
are dimensionality reduced using principal component analy-
sis (PCA). More recently, a similar finding was shown using
i-vectors [19, 20, 21, 22]. In [19], a cosine-based k-means clus-
tering is used to group telephone speech conversations in which
the number of speakers is a priori known (k = 2). A more
generalized version of this approach is proposed in [20] using
spectral clustering along with a simple heuristic that aims at
automatically finding the number of speakers. In [21, 22], the
authors successfully extended the mean shift approach [23] by
employing the cosine similarity instead of the Euclidean dis-
tance.

Other approaches that do not rely on the cosine similarity
were also investigated. A probabilistic approach is proposed
in [24], applying a Bayesian GMM to PCA-reduced i-vectors.
In [5], speaker clustering is redefined as an integer linear pro-
gramming (ILP) problem where the goal is to find a global op-
timum over the whole clusters. A labeled training set is then
required to compute the within-class covariance matrix used in
their distance metric. In [4], a PLDA-based clustering shows a

good improvement over the well-known Bayesian information
criterion (BIC) algorithm [25]. Once more, this approach re-
quires a labeled training set to estimate the PLDA model.

3. Speaker Recognition

In this section, we describe the two different scoring strategies
employed in this work. The first one relies on the NIST base-
line, which employs cosine scoring, but an LDA step has been
added. The second one is the popular PLDA approach.

3.1. LDA-Cosine System

As part of the i-vector challenge, NIST provides an implemen-
tation of a baseline system, which is a variant of cosine scoring.
The following system is based on this approach, but makes use
of an additional LDA step to boost the performance.

First, i-vectors are preprocessed. The sample mean and the
sample covariance of the unlabeled development data are com-
puted. These statistics are then used to center and whiten the
i-vectors. Next, length-normalization is performed, projecting
all the i-vectors into the unit Euclidean sphere.

Moreover, when a labeled training set is available, it has
been shown that LDA applied prior to cosine scoring is a very
effective strategy [1].

At enrollment time, for each target model i, its J; = 5
length-normalized enrollment i-vectors wy;, ; are averaged:
1 &
wi = ;wi,j ; 2

a strategy, which was empirically shown to be efficient in [26].
The resulting client models w; are then projected into the unit
sphere, leading to w;.

At test time, the cosine similarity measure [1] is employed.
This is a simple and efficient method for estimating how close
an i-vector w; extracted from a test utterance @ is to the aver-
age i-vector w; representing a target speaker 4:

w; + Wt

hcosine (wh wt) - w; - Wy , (3)

il
the i-vectors being length-normalized (||w; || = |Jw:| = 1).

3.2. PLDA System

Recently, another technique called PLDA [3] has been shown
to be very efficient when applied to i-vectors [2]. PLDA is a
supervised, generative and probabilistic framework that models
both speaker and channel effects.

More formally, PLDA assumes that the j‘h i-vector of
speaker ¢ is generated by:

w; ;= Fh; + Gk@j + €5, 4)

where F' and G are the subspaces describing the speaker and
channel effects, respectively. h; and k; ; are the associated la-
tent variables, which are assumed to be normally distributed
N (0,I). Finally, €;,; represents the residual noise, which is
supposed to follow a Gaussian distribution A/ (0, X).

The parameters @ = {F', G, X} of this model are learned
using an expectation-maximization algorithm over a labeled
training set of i-vectors. In this work, this labeled training set
is obtained using clustering techniques (cf. section 4). Once the
model has been trained, given a test i-vector w; and an i-vector



w; representing a target speaker ¢, authentication is achieved by
computing the following log-likelihood ratio (LLR) score:

. B p(wi, w: | ©)
hpida (wi, we) = In (p(wz' | ©)p(w: | ®)> @

Here, p(w;,w: | ©) is the likelihood that the i-vectors w;
and w; share the same latent identity variable h; and, hence,
are coming from the same target speaker. In contrast p(w; |
O)p(w: | O) is the likelihood that the i-vectors w; and w;
have different latent identity variables h; and h; and, therefore,
are from different speakers.

We employ the same preprocessing and enrollment strate-
gies as for the cosine scoring baseline (cf. section 3.1). In par-
ticular, this means that a target speaker model is generated by
averaging its enrollment samples (cf. Eq. (2)).

For details on how to train the parameters @ and how to
estimate the likelihood, readers are referred to [3, 14].

4. Hierarchical Clustering
4.1. Ward Clustering

We use the so-called Ward clustering [6] as the first choice to
map i-vectors to speakers in an unsupervised manner. This is
a greedy agglomerative clustering algorithm that, in its general
form, aims at optimizing an overall objective function. In this
work, the sum of within-class scatter of the optimal partition,
i.e., across all clusters, is minimized, resulting in maximally
compact groups of i-vectors. For this objective function, the so-
called Lance-Williams [27] algorithm computes distances be-
tween pairs of clusters recursively, reducing the clustering time
drastically. Both Ward and Lance-Williams algorithms fit to-
gether when square Euclidean derived distances are used, re-
sulting in the algorithm described below.

Initially, each i-vector is assigned a different cluster as is
typically done in bottom-up hierarchical approaches to cluster-
ing. The Euclidean distance between all pairs of i-vectors is
computed and stored in a distance matrix.” The two closest
clusters are successively merged until only one remains, obtain-
ing the whole clustering dendrogram as output.

A key point of agglomerative clustering algorithms is the
linking method, or how to measure the distance between two
clusters at some stage in the clustering process. Instead of
directly recomputing the distance between two clusters of i-
vectors at each iteration, the Lance-Williams [27] recursion en-
ables the computation of all the distances required at any clus-
tering step from the initial distance matrix. Assuming two clus-
ters C; and C; are being merged, the distances between the
merged cluster C;;) and all other clusters C}, are updated as:

dije = aidir + ajdjr + Bdij 6)

with d;; being the distance from cluster C}; to cluster C'; and:
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3Note that only N (N — 1)/2 different entries need to be computed,
as Euclidean distance is symmetric.

and n; being the number of i-vectors in cluster C;. In this work,
each i-vector is initially in a separate cluster. Other choices for
o, a; and [ lead to single, complete and average linkage.

This clustering algorithm is a simplified version of the one
presented in [7], with the difference that the Euclidean distance
is used instead of the Hotelling t-square distance. The factor
covariance matrices used in the computation of the total fac-
tors are not available in the data provided for the NIST i-vector
challenge.

Speaker clusters are expected to naturally arise during the
clustering process. We assume the speaker clusters can be sim-
ply found by thresholding the distance values in the clustering
dendrogram. For a given parent node p and child node c in the
dendrogram, if d, > 61 and d. < 61, all descendants including
node c are assigned the same speaker identifier.

4.2. Cosine-PLDA Clustering

The second choice to map i-vectors to speakers in an unsu-
pervised bottom-up manner relies on the use of two similarity
measures that are commonly employed in the speaker recogni-
tion field when dealing with i-vectors: (1) the cosine similar-
ity measure [1] and (2) the PLDA similarity measure [9, 11].
The former (i.e., cosine measure) does not require any training
data, which makes it very suitable to our clustering problem.
The latter (i.e., PLDA measure) has been shown to be better
but needs training data to learn the PLDA model. To take ad-
vantage of both measures, we propose a cascade system with
two main clustering steps: (1) cosine-based clustering and (2)
PLDA-based clustering. This clustering is illustrated in Fig. 1.

Step 1: Cosine-based clustering. As for Ward clustering, a
symmetric similarity matrix is computed using cosine measure
between each pair of i-vectors. As quoted in [22], “a rationale
for using cosine similarity instead of Euclidean distance can be
supplied by postulating a normal distribution for the speaker
population”. Once the similarity matrix is computed, the clos-
est clusters are merged iteratively until a stopping criterion is
reached. In practice, the stopping criterion 62 is set reasonably
high* to ensure pure clusters for the next clustering step. The
update of the similarity matrix at each iteration is performed
by computing cosine measure between the average i-vectors
of the updated clusters (c¢f. Eq. 3). The choice of this special
kind of linkage is motivated by both the study in [26] and our
preliminary experiments on this i-vector challenge. Both lead
to the same conclusion that averaging the length-normalized i-
vectors is always better than computing the average, maximum
and minimum scores. This explains why the average, complete
and single linkages -which are less expensive than our proposed
linkage- are discarded in this algorithm.

Step 2: PLDA-based clustering. The first clustering step
provides an initial set of clusters that can be used to train an
initial PLDA model. In order to reduce the effect of under-
clustering (i.e., one speaker belongs to several clusters) of the
training set, only clusters with more than four i-vectors are re-
tained. Once the F' and G matrices of the PLDA model are
estimated, the second step of this clustering is enabled. As
for the previous algorithm, a similarity matrix is computed, but
this time using the likelihood ratio between each pair of aver-
age i-vectors (one average i-vector corresponds to one cluster)

402 was set empirically to 0.4 which corresponds to an angle of
around 66° between both average i-vectors.
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Figure 1: COSINE-PLDA CLUSTERING. This figure illustrates how this two-step clustering works. At the end of cosine clustering,
small clusters are formed. These clusters are used to estimate a PLDA model and thus enable a second clustering based on PLDA.

as expressed in Eq. (5). Again, it is worth noting that Eq. (5)
is symmetric. Therefore, only the upper triangular part of the
similarity matrix is computed as for Euclidean and cosine mea-
sures. Once the similarity matrix is computed, the closest clus-
ters are merged iteratively until the stopping criterion is reached.
Recalling that the log likelihood ratio in Eq. (5) selects one of
two hypotheses Hy (both average i-vectors belong to the same
speaker) or H; (average i-vectors belong to different speakers),
the stopping criterion 03 of the hierarchical clustering is theo-
retically equal to 0.°

Regarding the update after each merge of pair of clusters, and
since the labeled data of the training set has changed, both the
PLDA model and the whole triangular matrix should ideally
be re-estimated in contrast to the previous two clustering al-
gorithms (i.e., Ward and cosine clustering) where only one raw
(or column) in the matrix needs to be recomputed. In practice,
these updates are very costly despite the use of a scalable PLDA
implementation. This is why they are re-estimated only every
N merges (N = 500), and in between two updates, complete
linkage strategy is applied to avoid any undesired merge.

4.3. Multi-Clustering Fusion

Although the two previously described algorithms share the
same bottom-up approach to cluster i-vectors, they rely on
different similarity measures and linking strategies. There-
fore, they may be complementary and their combination might
lead to a performance gain. To study the complementarity
of both clustering methods, we use the clustering similarity
measure defined in [28]. Let C = {C1,Cs,...,Cy} and
D = {D1,Das,...,D,} denote the sets of clusters provided
by both algorithms. The similarity S between C and D is de-
fined by:

S, D) = (10)

1 7 |CZ N Djl
max(m,n) ZZ |C; U Dj| -
=1 j5=1
A value of S close to 1 indicates that C and D are very similar,
and, thus, there is no potential gain from combining them. If .S
is close to 0, then, there is no overlap between C and D, which
means that at least one of them is weak. Again, a performance
gain cannot be achieved by combining them in this case. The
multi-clustering fusion could be helpful only when S is far from
these extremes.
In our case, we found that S = 0.54 when C and D are
selected at the operating point that minimizes the minimum de-
cision cost function (minDCF) on the progress (cf. Fig. 3). This

SIn practice, better results in terms of minDCF on the progress set
are achieved with 03 =~ 20 using our PLDA implementation [14].

finding keeps the door open to further improvements, and mo-
tivates us to investigate several combination methods. In this
work, we explore the Hungarian algorithm [29], a combinato-
rial optimization algorithm that aims at finding the best mapping
between both sets of clusters.

The Hungarian algorithm was used in [30] to associate
speaker and face clusters for bimodal person diarization. Sim-
ilarly, we use this strategy to associate the two sets of speaker
clusters. First, the co-occurrence matrix between C and D is
computed. Next, pairs of clusters with the highest overlap are
iteratively selected. At each iteration, columns and rows corre-
sponding to these pairs are filled with zeros. The process ends
when the whole co-occurrence matrix turns to zero.

This algorithm results in a new set of clusters F =
{F1, F>, ..., Fp}, with p < min(m, n), that have always same
or higher purity (i.e., less outliers) than the ones in C and D.
Therefore, it forms a confident training set for supervised recog-
nition systems. However, when both clustering are not at the
same level of performance, there is a risk of “chunking” a good
cluster, which would produce a less optimal training set for su-
pervised techniques. To reduce such a risk, JF is only used to
train the linear logistic regression-based score fusion of the two
recognition systems, LDA-Cosine and PLDA. In section 5, this
strategy is compared with the ones that solely rely on C or D as
training sets for score fusion.

A summary of the strategies employed in this work is de-
picted in Fig. 2.

LDA-Cosine

Ward Clustering ™ _______
Clustering C
nlabeled i
Development, K?;(i?glamn
Set
Cosine-PLDA Clustering ™\ _Fusion 1
Clustering D

LDA-Cosine

Figure 2: SUMMARY OF THE SPEAKER RECOGNITION SYS-
TEMS. This figure illustrates how the different clustering tech-
niques are applied to build several speaker recognition systems.



5. Experimental Results

Two main sets are provided by NIST: development and evalu-
ation sets. The development set comprises 36, 572 unlabeled
i-vectors. The evaluation set includes both enrollment and test
data. The enrollment data consist of 1, 306 target speaker mod-
els (both female and male) with 5 i-vectors per models. The test
data comprise 9, 634 i-vectors. There are 12, 582, 004 trials that
consist of all possible pairs involving a target model and a test
i-vector. The trials are divided into two subsets: progress and
evaluation subsets, comprising 40% and 60%, respectively. The
results on the progress set are provided to participants just after
their submission. The performance metric used in this evalua-
tion is the minDCF, which is defined by:

minDCF = mtin (FRR(t) + 100FAR(t)), (11)

where FRR and FAR denote the false rejection rate and false
acceptance rate, and ¢ the varying threshold.

The experiments in this work are conducted using
SPEAR [31],° a new speaker recognition python library devel-
oped upon Bob [32]. The PLDA parameters Dg, D¢ and the
number of iterations are set to 300, 100 and 200, respectively.
The dimension of the LDA projection matrix is set to 300.

5.1. Impact of Clustering Algorithms

First we evaluate the impact of both Ward and Cosine-PLDA
clusterings on the recognition performance, throughout the ag-
glomerative clustering process. This is performed using the
PLDA based recognition system (section 3.2). Fig. 3 draws the
minDCF when decreasing the number of clusters from 30k to
10k. This figure shows that both clusterings are able to outper-
form the NIST baseline system, and that Cosine-PLDA cluster-
ing achieves a relative decrease of about 22% in minDCF when
compared to the baseline system. This minDCF value is ob-
tained for a number of clusters equal to 16k. This leads in prac-
tice to a training set of only 1942 clusters because only clusters
with more than four i-vectors are feeding the PLDA. Fig. 3 also
shows that the Cosine-PLDA clustering is more adequate to the
problem of speaker recognition than the Ward clustering when
dealing with i-vectors. However, it is worth noting that Ward
clustering is much faster than Cosine-PLDA clustering, since
the latter requires costly updates of the PLDA model and the
similarity matrix as described in section 4.2.

Similar trends are observed on the experiments conducted
on the LDA-Cosine system. Table 1 summarizes these findings.
This table shows that the LDA-Cosine system outperforms the
baseline by around 8% when using the Cosine-PLDA cluster-
ing, but it is worse than the PLDA recognition system.

5.2. Impact of Multi-Clustering Fusion

The last two columns of Table 1 shows the results of combin-
ing both Cosine+LDA and PLDA systems, and this using two
different strategies: Fusion 1 and Fusion 2. As illustrated in
Fig. 2, Fusion 1 uses the same training set that was initially
used to learn the LDA/PLDA parameters, whereas Fusion 2 uses
the training set provided by the Hungarian algorithm. Table 1
shows that the results of Fusion 1 are always worse than the best
unimodal system (i.e., PLDA system). However, Fusion 2 pro-
vides an improvement for the systems based on Ward clustering
by reducing the minDCF from 0.355 to 0.345, which leads to

6https ://pypi.python.org/pypi/bob.spear

Table 1: PERFORMANCE SUMMARY. This table reports the
minDCF of the different systems on the progress set.’

Clustering LDA + Cosine PLDA  Fusion1l Fusion2
‘Ward 0.374 0.355 0.357 0.345
Cosine-PLDA 0.356 0.300 0.302 0.300
0.50 : :
==+ NIST Baseline
_ e—e Ward Clustering
0451 »—  Cosine-PLDA Clustering ||

minDCF
£

0235 %
Number of clusters (x1000)

15 10

Figure 3: MINDCF IN TERMS OF THE NUMBER OF CLUSTERS.
This figure shows the minDCF values computed by NIST on the
progress set in terms of the number of the clusters for both clus-
tering methods on the PLDA recognition system.

relative decrease of around 3% in minDCF. Regarding the sys-
tems based on Cosine-PLDA clustering we have noticed neutral
effect of Fusion 2. This is mainly due to the fact LDA-Cosine
and PLDA systems are not at the same level of performance for
this clustering.

6. Conclusions

In this paper, we investigated the use of two algorithms for clus-
tering unlabeled training i-vectors to improve speaker recogni-
tion performance in the context of the NIST i-vector Machine
Learning Challenge 2014. These clustering techniques allow
the use of state-of-the-art supervised techniques such as LDA,
PLDA or linear logistic regression-based fusion. The first one
is the Ward clustering, which is a very fast approach. The sec-
ond one is a cascade clustering, which relies on both the cosine
similarity and PLDA, and decreases the minimum decision cost
function by up to 22%. We also explored the use of Hungarian
algorithm for multi-clustering fusion for which promising re-
sults are obtained. Future work might consider semi-supervised
approaches to benefit from both hand-labeled and large unla-
beled pools of data.
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