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Abstract
We consider the problem of automatic macro-
action discovery in imitation learning, which
we cast as one of change-point detection. Un-
like prior work in change-point detection, the
present work leverages discriminative learning
algorithms.

Our main contribution is a novel supervised
learning algorithm which extends the classical
Boosting framework by combining it with dy-
namic programming. The resulting process al-
ternatively improves the performance of individ-
ual strong predictors and the estimated change-
points in the training sequence.

Empirical evaluation is presented for the pro-
posed method on tasks where change-points arise
naturally as part of a classification problem. Fi-
nally we show the applicability of the algorithm
to macro-action discovery in imitation learning
and demonstrate it allows us to solve complex
image-based goal-planning problems with thou-
sands of features.

1. Introduction
The supervised learning framework provides a large vari-
ety of powerful tools capable of addressing the complexity
and variability of a number of growing applications. In this
framework, methods are typically developed under an i.i.d.
assumption concerning the application data. Here however
we seek to leverage supervised machine learning methods
in a slightly different setting. We consider the data to be
generated sequentially via a mixture model comprising a
latent variable, given which the i.i.d. assumption holds. The
value of this latent variable however is not known during
the training phase and must be inferred.
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This problem of latent variable inference in sequentially
generated data can be seen as one of change-point detec-
tion (Fearnhead & Liu, 2007). Given the sequentially gen-
erated data (X,Y ) ∈ Rd × {1...C} change-point detec-
tion consists in finding positions n in the sequence which
mark changes in the nature of the joint probability p(X,Y ).
Change-points can then be seen as an abrupt change in the
source generating the data. Such a change can concern
changes either some of the parameters of the underlying
model, or even to the nature of the model itself. To give a
concrete example, which we will address in section 4.2,
in the case of speech segmentation, a change-point in a
conversation can signal either the change of speaker or a
change in the nature of the background noise.

Due to the nature of the problem, most previous work
on change-point detection has focused on generative ap-
proaches. Such approaches attempt to model the joint dis-
tribution p(X,Y ) and to detect changes in these models
over the sequences. In the present work however we are
concerned with classification problems which lend them-
selves more naturally to discriminative approaches. Thus
we propose to take a discriminative view of the problem
and instead look directly at the conditional probability dis-
tributions p(Y |X) and more specifically at the decision
function argmaxY p(Y = y|X). This allows us to lever-
age discriminative classifiers, while avoiding the complex,
and ultimately unnecessary, problem of joint distribution
modeling (Ng & Jordan, 2001).

Our main contribution is a novel method that automat-
ically assigns samples in a training set to a mixture of
classifiers using the concept of macro-classes. Given a
training set, our proposed algorithm DPBoost (Dynamic
Programming Boosting) comprises an alternating proce-
dure that goes back and forth between a)training classifiers
and b)estimating for each sample in the training set which
macro-class it should be assigned to. We are specifically
interested in situations where the macro-labels have a tem-
poral regularity. This regularity could be that they do not
change “too often”, that the number of times they change
is upper-bounded a priori, or that we know in advance ex-
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actly what the sequence of macro-labels will be (without
knowing at what times these changes occur).

Furthermore, beyond the presentation of a novel change-
point detection algorithm, the present work seeks to lever-
age the presented method to solve complex goal-planning
tasks with a visual component. Specifically, DPBoost is
employed within the framework of imitation learning to
perform automatic macro-action discovery. This allows the
segmentation of complex goal-planning policies into a se-
ries of simpler ones. The segmentation in turn facilitates
the solution of these tasks. The tasks addressed are com-
plex not only due to the size of the state-space but also due
to the partial observability of the underlying Markov Deci-
sion Process and to their visual nature.

2. Related Work
Change-point detection (Fearnhead & Liu, 2007) has been
studied extensively in statistics. Approaches typically fo-
cus on the statistical properties of the generating model
to detect abrupt changes. Some such approaches method,
such as CUSUM (Brown et al.) and GLR (Siegmund &
Venkatraman, 1995), only compute certain properties of the
data, for example the logarithm of the likelihood ratio be-
tween segments of data. On the other hand, there are meth-
ods that attempt to model the generating process either in a
MAP (Braun & Muller, 1998) or Bayesian setting (Adams
& MacKay, 2007).

As stated in section 1, in the present work we would like to
address change-point detection from a discriminative point
of view. In this respect our work present certain similari-
ties with previous work (Harchaoui & Lévy-Leduc, 2007).
There the authors use a dynamic programming formulation
and LASSO to perform change-point detection. Unlike our
work however the authors are interested mainly in change-
point detection, whereas the present work is interested in
change-point detection only as an implicit goal which will
help simplify a complex classification task.

The ultimate goal of DPBoost is to train a mixture of clas-
sifiers trained on disjoint subsets of the training data. The
well known framework of using a mixture of experts can, as
has been noted (Jordan, 1994), be seen as a divide and con-
quer approach to solving complex learning tasks. Thus the
problem at hand is decomposed into a number of smaller
problems each addressed by a different predictor whose ca-
pacity may not be adequate to solve the over-arching task
on its own.

In (Ladicky & Torr, 2011) the authors decompose the train-
ing set as to detect regions where the decision function is
approximately linear thus building complex decision func-
tions from a mixture of linear support vector machines. In
the context of reinforcement learning, previous work (Li

et al., 2006) has proposed to use a mixture of linear regres-
sors to model the complex value function of the environ-
ment.

The notion of latent variables has also been em-
ployed (Felzenszwalb et al., 2010), there authors propose a
latent-SVM approach to automatically discover the various
different parts of an object which they seek to detect. Sim-
ilarly we propose to use a latent variable to implicitly un-
cover the latent variables of the sequential data-generating
process.

The proposed method, Dynamic Program Boosting, seeks
to leverage the Boosting family of algorithms (Freund &
Schapire, 1995) which can itself be seen as a way of com-
bining multiple weak experts corresponding to the weak
learners. On a higher level Boosting classifiers can them-
selves be mixed in more complex frameworks, e.g. Noisy-
OR formulations (Kim & Cipolla, 2008) or cascade struc-
tures (Saberian & Vasconcelos, 2010). Though these ap-
proaches invariably impose some form of structure on the
samples, these dependencies tend to be spatial and not tem-
poral. Unlike these aforementioned approaches we present
here an approach to combining a number Boosting classi-
fiers in a setting where data is temporally connected.

Such settings, arise naturally in goal-planning tasks typi-
cally addressed in a reinforcement learning setting, where
an intelligent agent gradually learns to solve the task at
hand by interacting with the environment usually modeled
as a (Partially Observable) Markov Decision Process. Due
to the complexity of the tasks we wish to address we seek
to leverage two extensions of this framework. These are
imitation learning and hierarchical reinforcement learning.

In imitation learning (Argall et al., 2009), also referred to as
learning from demonstration or mimicking, the intelligent
agent is presented with a number of trajectories which are
typically considered to be generated by an optimal or near-
optimal policy. In practice these trajectories are created
by having an expert – the teacher – navigate the environ-
ment (Ross et al., 2011). A typical approach to imitation
learning, adopted here, is to cast the learning problem as
a classification one (e.g. (Hadsell et al., 2009)) by using
classifiers to perform state-to-action mapping.

Hierarchical reinforcement learning and more specifically
the options framework (Sutton et al., 1999), offers a
promising route towards scaling up reinforcement learning.
In this setting, the agent has at its disposal, beyond the sim-
ple primitive actions, a number of options (variably known
as skills or macro-actions) which consist each of a policy,
a termination condition, and an initiation set. One of the
core issues that arise in the options framework is that of au-
tomatically discovering these macro-actions (Singh et al.,
2004) .
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As has been previously shown (Konidaris et al., 2010), in
an imitation learning setting the problem of macro-actions
discovery becomes one of segmenting the teacher trajec-
tories. Each segment is then assigned to a different pre-
dictor, this in turn can be cast as a change-point detec-
tion problem. Similar to the work presented here, previous
work (Konidaris et al., 2010) forgoes modeling the joint
distribution p(X,Y ). Instead the authors propose model-
ing p(Y |X) directly in order to learn the value function
of the Markov Decision Process. The modeling however,
and by extension the change-point detection itself, is per-
formed with a Hidden Markov Model which is a genera-
tive method. On the contrary, the present work uses a dis-
criminative approach (namely boosting) to directly learn a
policy. This in turn allows us to address more complex
tasks. We not that in this setting, the macro-classes inferred
by the Dynamic Programming Boosting, correspond to the
discovered macro-actions in teacher trajectories.

3. Dynamic Programming Boosting
In the following we assume access to a sequence of training
samples, each composed of an available signal and a label.
Each of these samples is associated to a macro-class the
value of which is unknown. The only prior knowledge is a)
the regularity of these macro-classes, which do not change
often, and b) that given these macro-classes the label can be
predicted from the available signal. We consider here the
general case of training a family of Q multiclass classifiers
from a sequence of N training samples that we know is
composed of at most Q underlying macro-classes.

Our iterative DPBoost procedure described below alterna-
tively re-estimates the optimal macro-labeling of the sam-
ples (see § 3.2), and adds weak learners to the strong clas-
sifiers associated with the macro-labels (see § 3.3) using a
standard Boosting criterion.

As stated the corresponding macro-labels are unknown dur-
ing training, the assumption is made however that given
their values the training samples and their labels are gener-
ated i.i.d.. We are interested in situations where the macro-
labels have a temporal regularity. We focus here specifi-
cally on the case where there is an upper-bound T on the
number of times said macro-labels change in the training
sequence.

3.1. Objective

Let

(xn, yn) ∈ RD × {1, . . . , C}, n = 1, . . . , N

be a training set, where the xn are the observable states and
yn the sample labels. Let Q be a number of classifiers (or

macro-classes). Our objective is to train

fq : RD → {1, . . . , C}, q = 1, . . . , Q

such that there exists a sequence of macro-labels

qn ∈ {1, . . . , Q}, n = 1, . . . , N

, with a maximum number of changes T , leading to the
minimum of the prediction errors∑

n

1{fqn (xn) 6=yn}.

Given a prediction loss

L(f1, . . . , fQ, q1, . . . , qN ) =

N∑
n=1

l(fqn(xn), yn) (1)

where the per-sample loss l accounts for the mistake in pre-
diction on sample n, we want to find a family of predictors
f1, . . . , fQ and a sequence of macro-labels q1, ..., qN which
minimize the loss, under the constraint that the number of
transitions is lesser than T . That is

argmin
f1,...,fQ,q1,...,qN
T (q1,...,qN )≤T

L(f1, . . . , fQ, q1, . . . , qN ).

where we define the number of transitions

TT (q1, . . . , qN ) =

N−1∑
n=1

1{qn 6=qn+1}

The following sections describe an alternating procedure
which goes back and forth between improving the predic-
tors f1, . . . , fQ, given the training set and the macro-labels
q1, . . . , qN , and estimating the optimal q1, . . . , qN , given
the predictors f1, . . . , fQ and the training set.

3.2. Estimating the macro-labels with Dynamic
Programming

Given the training set and predictors f1, . . . , fQ, let Sq,t
n

stand for the optimal achievable loss summed over the first
n samples, with exactly t transitions, and arriving at qn =
q. We have, ∀n, t, q

Sq,t
n =


0 if n = 0
Sq,0
n + l(fq(xn), yn) if n > 0, t = 0

min
q′

S
q′,t−1{q 6=q′}
n−1 + l(fq′(xn), yn) if n > 0, t > 0

from the Sq,t
n , we can compute the optimal sequence

q1, . . . , qN under the constraint that there are less then T
transitions with

(qn, tn) =


argmin
q,t≤T

Sq,t
N if n = N

argmin
q,t=tn+1−1q 6=qn+1

Sq,t
n if n < N
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Table 1. Alternating DPBoost procedure.

∀q, f1q ← Boost
(
0, {(xn, yn)}Nn=1

)
for k = 1, . . . ,K − 1 do
(qk+1

1 , . . . , qk+1
N )←DPSeq

(
fk1 , . . . , f

k
Q, {(xn, yn)}Nn=1

)
∀q, fk+1

q ← Boost
(
fkq , {(xn, yn)}n: qk+1

n =q

)
end for

Given this Dynamic Programming procedure we define

DPSeq(f1, . . . , fQ, (x1, y1), . . . , (xN , yN ))

as the optimal sequence of macro-labels q1, . . . , qN it com-
putes.

Note that this procedure can be modified to impose differ-
ent constraints on the transitions. In particular we can force
an exact number of transitions instead of an upper bound.
Alternatively we can impose a deterministic sequence of
macro-classes, letting the dynamic programming find the
best timing for said transitions.

3.3. Boost

Let
Boost(f, {(x1, y1), . . . , (xN , yN )})

be an update of a strong predictor f by adding one weak
learner such that the loss on the provided samples is strictly
improved.

Then our DPBoost algorithm, as sketched on Table 1, ini-
tializes Q strong classifiers by adding one weak learner in
each using the full dataset and from there on alternates be-
tween the optimization of the macro-labels q1, . . . , qN us-
ing DPSeq and the improvement of the strong classifiers
using Boost on subsets of the training set. Specifically for
each predictor fq , this subset consists of the training sam-
ples (xn, yn) for which qn = q. Using this set Boost then
adds an optimal weak learner h to the ensemble fq so that
fk+1
q = fkq + akqhk, where k is the Boosting round and
akq the weak learner coefficient. The criterion of optimality
depends on the Boosting algorithm used and the family of
weak learners used. In the experiments presented here the
weak learners consist of classification stumps.

3.4. Convergence Analysis

Given that both the DPSeq and Boost steps minimize the
same positive loss (1), it is easy to see that the process is
guaranteed to converge at the limit.

We note that given that the weak learnability assumption
holds for the underlying Boosting algorithm 1 then it au-
tomatically holds for each classifier fq and the weights wq

1 There is a γ > 0 such that for every distributionw of weights

it assigns to the samples (xn, yn) such that qn = q. This
follows from the fact that the weight vector wq can be ex-
tended to allN samples by simply settingwn

q = 0 for those
samples for which qn 6= q.

In the case where Boost comprises Adaboost we can show
that DPBoost’s loss converges at an exponential rate.

Let fk = (fk1 , . . . , f
k
Q) and qk = (qk1 , . . . , q

k
N ). We have

that

L(fk,qk+1) =

Q∑
q=1

∑
n:qk+1

n =q

exp
(
−ynfk+1

q (xn)
)
.

Thus the loss L(fk,qk+1) can be decomposed as the sum
of Q separate losses

∀q, Lq(f
k+1
q ,qk+1) =

∑
n:qk+1

n =q

exp
(
−ynfk+1

q (xn)
)
. (2)

For each one of these losses it can be proven (Schapire &
Singer, 1999) that due to Adaboost’s weak learnability as-
sumption,

∃γ > 0,∀k, q,∃γk+1,q ≥ γ,

Lq(f
k+1
q ,qk+1) ≤

√
1− 4γ2k+1,q L(f

k
q ,q

k+1) (3)

where 1
2 − γk+1,q is the weighted error of the weak learner

hk+1
q added to fq at iteration k + 1.

It follows that

L(fk+1,qk+1) =
∑
q

Lq(f
k+1
q ,qk+1) (4)

≤
∑
q

√
1− 4γ2Lq(f

k
q ,q

k+1) (5)

=
√

1− 4γ2 L(fk,qk+1) (6)

≤
√
1− 4γ2 L(fk,qk) (7)

where equalities (4) and (6) are the loss decomposition (2),
inequality (5) is due to Adaboost’s weak learnability as-
sumption, and inequality (7) comes from the dynamic pro-
gramming step of DPBoost.

Given that L(f0,q0) = N , for every initialization q0, and
from the fact that the exponential loss bounds the 0-1 loss
from above we have that

L(fKq ,q
K) ≤ N

K∏
k=1

√
1− 4γ2,

and finally

P̂ r(fKqKn (xn) 6= yn) ≤
K∏

k=1

√
1− 4γ2 ≤ exp

(
−2

K∑
k=1

γ2

)
.

over the training data (xn, yn) there exists a weak learner h such
that the weighted error on the data is ε ≤ 1

2
− γ.
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4. Experiments
In order to highlight the strengths of the proposed algorithm
we present a series of experiments in three distinct settings.
On a synthetic task in 4.1, on a speech-to-text transcription
task in 4.2, and finally on highly complex goal-planning
tasks. This final set of tasks served as a primary motivation
for the development of the method in 4.3.

4.1. Synthetic Experiments

We provide in Figure 1 some results on a synthetic prob-
lem. The feature space is the square [0, 1]2 and there are
two macro-classes. For the first macro-class, the positive
class comprises the points contained in a small disc in the
upper-left of the square. For the second macro-class the
positive class comprises the points contained in a large cen-
tered disc. We construct the training set by changing the
macro-class with probability p = 0.01 between each sam-
ple and by sampling the x’s uniformly in [0, 1]2. Thus, as
per DPBoost’s assumption, given the macro-class the sam-
ples are generated i.i.d.

Given such a training set of N = 1, 000 samples, we
trained predictors composed of 1, 000 stumps built from
linear classifiers using the following learning procedures:

The first one has access to the macro-labels and is the best
baseline one can build using Boosting and the family of
predictors we consider. We separate the full training set
into two separate training sets corresponding to the two
macro-classes and train the two strong classifiers separately
using Adaboost.

The second is our DPBoost procedure. It does not have ac-
cess to the macro-labels and relies on a loose constraint on
the number of changes of the macro-labels. We set a bound
of T = 20 which is twice more than the actual number we
are expected to meet. It should be noted that the procedure
is extremely robust to that value.

In Fig 1 the top row shows the training samples from
each macro-class extracted from the training set. Note
that this representation does not show their ordering in the
set, hence the temporal consistency. In all images, the cir-
cles depict the positive class in the two respective macro-
classes. The middle row shows the responses of two pre-
dictors trained with AdaBoost, using for each only the sam-
ples from the corresponding macro-class. The bottom row
shows the responses of two predictors built with DPBoost,
trained without the knowledge of what sample belongs to
what macro-class but relying on the sequence consistency
by imposing that there are less than 20 macro-class transi-
tions in the training set.

Finally we note that we also tried a second baseline which
also does not use the macro-class labels. This is similar

Training Samples

AdaBoost (using macro-labels)

DPBoost (using sequence consistency alone)

Figure 1. Synthetic task results.

to DPBoost without regularization, i.e. without the dy-
namic programming component. At each Boosting step,
each sample is included in the training set for the strong
classifier with the best response. This procedure degener-
ates and produces two constant strong classifiers, one neg-
ative and one positive, each sample being associated to the
one with the correct response. This result is not shown in
Figure 1.

4.2. Experiments in Speech-to-Text Transcription

In order to evaluate DPBoost in a more challenging setting,
we consider the task of speech-to-text transcription. More
specifically given an audio recording of a conversation, we
would like to identify the uttered phonemes. In such a
setting it is beneficial to first segment the speech accord-
ing to speaker identity. This is due to the fact that audio-
transcription is sensitive to the particularities of the speech
patterns of different speakers. The goal here is to per-
form concurrent, speech-to-text transcription and speaker
diarization which will allow for speaker adaptation of the
individual classifiers.

We run experiments using the TIMIT dataset which is a
acoustic-phonetic corpus used in the development and eval-
uation of automatic speech recognition systems. It contains
data from 630 different users, representing eight dialects of
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American English, each reading ten sentences.

For our experiments we use data corresponding to a single
accent, New England, so as to make the task more challeng-
ing. We isolate from the training data, and for each user,
utterances of each phoneme, and collect all utterances of
the ten most common phonemes. We then create “conver-
sations” with the following process: At any given moment,
we designate a speaker and select, uniformly at random,
a phoneme utterance from the data corresponding to that
speaker; this process is repeated sequentially, while switch-
ing between speakers with a predefined probability ps (in
our experiments we set ps = 0.01).

Using the above process we create batches of fifty conver-
sations, with each batch comprising conversations with a
specific number of speakers, different for every batch. Each
batch is then used separately to train DPBoost with the ex-
plicit goal of perform speech to text transcription and the
implicit goal of speaker diarization. Prior to training we
pre-process the data to extract MFCC features (Davis &
Mermelstein, 1980) which results in data of dimensionality
D = 39.

Figure 2 (A) shows the results obtained from the DPBoost
training procedure when we set the number of macro-
classes equal to the number of speakers. That is we assume
prior knowledge of the number of speakers in a conversa-
tion. We calculate the number of discrepancies between the
macro-classes assigned by DPBoost and the true macro-
classes representing speaker identity. We plot the distribu-
tion of the Hamming distance between the two labellings
for conversations of each batch (for {2, 3, 4, 5, 6} speakers
in each conversation).

In Figure 2 (B) we present results when limited prior
knowledge on the number of speakers is available.
Specifically for each batch of conversations comprising
{3, 4, 5, 6} speakers, we set the upper limit T on the num-
ber of macro-classes to be twice the true number of speak-
ers. For a fair amount of speakers present in the conver-
sation (i.e. up to 5), DPBoost successfully discovers the
redundancy in the number of macro-classes discarding the
excessive number. In these cases the Hamming distance
between macro-classes and speakers remains small. For
larger parties (i.e. 6) however the process performs poorly.
Thus though DPBoost exhibits robustness to the tightness
of the macro-class bound, for larger problems it seems
some care is needed, in the form of prior knowledge, for
the method to perform well.

4.3. Experiments in Goal-Planning

In this section we address complex goal-planning tasks
entailing an avatar navigating a 3D simulated environ-
ment. We generate this 3D environment with the OGRE

(A) (B)

Figure 2. Distribution of the Hamming distance between true and
estimated macro-classes A) with and B) without prior knowledge
of the number of speakers.

(A) (B)

(C) (D)

Figure 3. Rendering of the avatar’s view.

3D graphics rendering engine. OGRE produces a realistic
rendering of the scene as seen by the avatar. The engine
is capable of depicting complex 3D objects, as well as the
effects of differing lighting sources. As can be seen in Fig-
ure 3 the rendered result is of high quality. The simulator
is furthermore equipped with the BULLET physics engine
that allows for the realistic simulation of the physical inter-
actions between the avatar and its environment.

This environment is challenging from a goal-planning per-
spective due to its complexity. The size of the state-space
is considerably larger than that of typical maze problems
often found in the literature. The signal passed to the goal
planner consists of images, thus making the problem one
of visual goal-planning; as a consequence the goal-planner
must also address the task from a computer vision point of
view.

4.3.1. TASKS

The possible actions that the avatar can take in this 3D envi-
ronment are “move forward”, which moves the avatar for-
ward by 3cm, and “turn left” or “turn right” which alter the
avatar’s orientation by π/300. In all the following environ-



Discriminative Macro-Action Discovery

ments the textures displayed on the walls and ground are
randomly selected. The lights are set at fixed locations in
order to avoid overly dark areas.

We consider the two following tasks:

Follow The Arrow The avatar is situated in a T-shaped
corridor. At each of its branches there is a flag of random
color. At the end of T’s stem there is an arrow painted on
the wall which indicates which flag the avatar must reach,
see Figure 3 (D). Reaching the wrong flag results in a failed
run. The length of the branches are generated at random to
be between 3 and 5 meters whereas the length of the stem
is set between 8 and 20 meters.

Stay On Path The avatar is situated in a large room (with
dimension between 25 and 40 meters). On the floor there is
a painted path painted. The avatar must follows this path to
reach the flag situated at its end. Stepping outside this path
results in a failed run.

4.3.2. MACRO-ACTION SWITCHING

During the training phase, change point detection, i.e. the
macro-action discovery, is handled by the dynamic pro-
gramming step of the algorithm. During the testing phase
however, the algorithm must rely on switching functions

Hq′

q : RD → {−1, 1}, ∀q 6= q′

which will signal the shift from macro-action q to macro-
action q′.

Such functions can be trained from the q1, . . . , qN esti-
mated by DPBoost. In the context of goal-planning these
functions would act as indicators for moving from one
macro-action to the next.

In order for these switch functions to be effective in prac-
tice it is imperative that they do not signal a transition too
soon. Thus we would like that ∀n ≤ m,Hq′

q (xn) < 0,
where m signifies the moment of transition. On the other
hand, the switching function need only respond positively
at the moment of transition, thus its response is indifferent
∀n > m.

Based on this, the training set for each switching function
Hq′

q is built as follows, for each trajectory where the tran-
sition q → q′ occurs at moment m, we gather the samples
xn for which n < m and couple them with a negative la-
bel yq→q′

n = −1. Here yq→q′

n signifies the label of sample
xn for training Hq′

q as opposed to its true label yn. For
the positive samples we simply need the samples xm at
the moment the transitions from q → q′ occur in the vari-
ous trajectories. In practice however in order to make our
switching functions more robust we add J positive samples
xm, ..., xm+J−1 from each trajectory.

(A) (B)

Figure 4. (A) shows the original image It rendered by the simula-
tor. (B) is the downscaled version Ist of the image which is passed
to DPBoost

Using the constructed training sets {xn, yq→q′

n }, the func-
tions Hq′

q are learned using AdaBoost with classification
stumps. Of course any other discriminative approach can
be employed at this step.

4.3.3. RESULTS

For each of the aforementioned tasks we generate twenty
trajectories, using a hard-coded teacher, which represent
the optimal policy in the given environment. It should be
noted that the teachers are given access to knowledge which
is not available to the avatar (at least not directly). For
example, in the case of “follow the arrow” the teacher is
aware of the direction pointed to by the arrow. By con-
trast, the avatar’s only information at each time step is its
view, to be more specific, the data xt available to DPBoost
consist of the RGB values of a scaled down version (from
320×240 to 64×48 pixels) of the avatar’s current view, see
Figure 4. As this hidden state is not readily available to the
avatar it must be inferred with the help of the goal-planner.

Follow the Arrow This task presents the avatar with the
further challenge that given solely the avatar’s view, the en-
vironment is only partially observable; without further in-
formation the avatar cannot know whether it has already
seen the arrow, or the direction the arrow is pointing in.
Without this knowledge it is unclear, to the avatar, whether
it should be looking for the arrow or a flag (or even which
flag).

In order to empirically evaluate our approach we train three
DPBoost goal-planners, where we set the upper limit on
the number of macro-actions to {2, 3, 4} respectively. We
compare DPBoost against a baseline which consists of a
goal-planner based on a single AdaBoost classifier which
performs state-to-action mapping; in this case there is no
Dynamic Programming component to the learning phase
nor any switching function. This baseline is denoted with a
dash in Table 2.

Observing the training process of DPBoost, in the case of
three macro-actions, we notice the discovery of three intu-
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Table 2. Goal-Planning Results (Percentage of successful runs).
In both cases the skill-tree baseline has a 0% success rate.

Stay on Path Results
Nb. of macro-actions - 2 3 4

Success Rate 16 % 52% 64% 48%

Follow The Arrow
Nb. of macro-actions - 2 3 4

Success Rate 28 % 40% 56% 24%

itive policies, namely “Go to the arrow”, “Turn in direc-
tion of arrow”, and “Go to flag”. In Table 2, we present
the percentage of successful test runs for the baseline goal-
planner and DPBoost with {2, 3, 4}, macro-actions, that is
we count, over 25 test runs, the percentage of times the
avatar successfully completes the task.

As can be seen DPBoost performs considerably better than
the baseline when we set the number of macro-actions to
2 or 3. For 4 macro-actions however the performance de-
grades to the level of the baseline. Thus it is clear that some
care must be taken in setting the number of macro-actions.

Stay On Path The second goal-planning task, does not
present the avatar with the challenge of partial observabil-
ity, it remains however a very challenging task as the avatar
must infer from its current view its position on the path, and
by extent whether it should continue to go forward or start
turning. Adding to the difficulty of the task is the fact that
a single mistake, i.e. stepping outside the path, is enough
to result in a failed run.

As can be seen by the results in Table 2, the tasks proves
too challenging for the baseline. As before we show results
for {2, 3, 4} macro-actions. In this case, DPBoost proves
to be more robust to the choice of the number of macro-
actions. Though there does not seem to be an intuitive in-
terpretation of the discovered macro-actions, the presented
results demonstrate that these macro-actions are necessary
for completing the task.

4.3.4. COMPARISON TO SKILL TREES

As mentioned, the previous work on skill trees (Konidaris
et al., 2010) is closely related to the present work in that it
first addressed automatic macro-action discovery in imita-
tion learning by casting the problem as one of change-point
detection. Skill trees however attempt to learn a function
approximation of the value function, instead of a state-to-
action mapping To do so they employ a generative frame-
work (HMMs) to perform change-point detection.

Furthermore skill trees, before performing trajectory seg-

mentation, first project the data onto a Fourier Basis the
size of which grows exponentially with the size of the input
features. As the dimensionality of our data is of the order of
magnitude of a few thousand, the skill tree approach cannot
be applied as is. Instead in order to apply skill trees to our
goal-planning tasks we first employ slow feature analysis
(Kompella et al., 2012) to reduce the dimensionality of the
data.

Once the projected data has been segmented and the skill
trees constructed, we use the data in each node of the tree
to build a state-to-action mapping for the specific macro-
action corresponding to the node. We experimented both
with training these classifiers in the projected space, as well
as in the original state space representation (RGB images).
In both cases the agent failed at the goal-planning tasks.
Over the 25 test runs, the agent never succeeded in reach-
ing the objective. This highlights one of the main strengths
of the proposed method. Namely that it is able to perform
macro-action discovery in high-dimensional space while
addressing the discriminative objective. This allows it to
solve complex goal-planning tasks which prove too chal-
lenging even for state-of-the-art methods.

5. Conclusions
We presented a novel method which combines a family
of discriminative learning algorithms with dynamic pro-
gramming to perform change-point detection in sequen-
tially generated data. The strength of the proposed method
was shown empirically on a synthetic data problem, on
speech-to-text transcription, and on complex, and at times
partially observable, goal-planning tasks. In the case of
speech-to-text transcription, DPBoost was shown to suc-
cessfully address the implicit goal of speaker diarization.
In the goal-planning case DPBoost was shown to success-
fully discover macro-actions necessary to address the com-
plexity of the environment.

We note that DPBoost’s generic nature allows it to be used
in a variety of applications. We aim to investigate its appli-
cability to automatic pose discovery in complex computer
vision tasks. We also plan to extend the DPBoost frame-
work to combine it with the DAGGER framework (Ross
et al., 2011) to address more complex goal-planning tasks.
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