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Abstract

We consider the problem of ad hoc microphone array calibration where the distance matrix

consisted of all microphones pairwise distances have entries missing corresponding to distances

greater than dmax. Furthermore, the known entries are noisy modeled through additive inde-

pendent random variables with strictly sub-Gaussian distribution, Sub(c2(d)) with a bounded

constant dependent on the distance d between the microphone pairs. In this report, we exploit

matrix completion approach to recover the full distance matrix. We derive the theoretical guar-

antees of microphone calibration performance which demonstrates that the error of calibrating a

network of N microphones using matrix completion decreases as O(N−1/2).

Keywords: Ad hoc microphone array calibration, Matrix completion, Euclidean distance

matrix, Missing pairwise distances, Microphone localization.
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1. Introduction

Ad hoc microphone arrays consist of a set of sensor nodes spatially distributed over the

acoustic field, in an ad hoc fashion. Processing of the data acquired with distributed sensors

involves challenges attributed to the issues such as asynchronous sampling and unknown mi-

crophone positions. We address the problem of finding the sensor positions also referred to as

microphone calibration. Finding the correct positioning of the microphones plays a key role in

distant audio processing tasks such as source localization [1, 2, 3], high-quality acquisition for

distant speech separation [4, 5, 6] and recognition [7, 8, 9]. Recent advances in mobile com-

puting and communication technologies enable using cell phones, PDA’s or tablets as a flexible

acquisition set-up providing an ad hoc network of microphones. However, the unknown prior

information on relative positions of the microphones is a key problem to achieve effective data

processing.

The state-of-the-art techniques for microphone calibration often require information about

distances between all microphones. Estimation of the pairwise distances becomes unreliable as

the distances between the microphones are increased [10, 11, 12, 13]. Hence, the purpose of this

report is to enable microphone calibration when some of the pairwise distances are missing. The

matrix consisted of the squared pairwise distances has very low rank (explained in Section 2.1).

The low-rank property has been investigated in the past years to devise efficient optimization

schemes for matrix completion, i.e. recovering a low-rank matrix from randomly known entries.

Candès et al. [14] showed that a small random fraction of the entries are sufficient to reconstruct

a low-rank matrix exactly. Keshavan et al. proposed a matrix completion algorithm known as

OptSpace and showed its optimality [15]. Furthermore, they proved that their algorithm is robust

against noise [16]. Drineas et al. [11] exploited the low rank property to recover the distance

matrix. However, they assume a nonzero probability of obtaining accurate distances for any pair

of sensors regardless of their distance. This assumption severely restricts the applicability of

their result for the microphone array calibration problem.

In this report, we build on our recent work on estimation of the microphones pairwise dis-

tances using the coherence model of a diffuse field [17]. This approach implies a local con-
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nectivity constraint as the pairwise distances of the further microphones can not be estimated.

We construct a matrix of all the pairwise distances with missing entries corresponding to the

unknown distances. We exploit the low-rank property of the square of this matrix to enable es-

timation of all the pairwise distances using matrix completion approach. The goal of this report

is to provide the theoretical guarantees to bound the error for ad hoc microphone calibration

considering the local connectivity of the noisy known entries. In Section 2, the mathematical

basis and the model used for the calibration problem are described. The theoretical guarantees

of calibration error using matrix completion are established in Section 3.

2. Problem Formulation

2.1. Distance Matrix

Consider a distance matrix DN×N consisting of the distances between N microphones con-

structed as

D =
[
di j

]
, di j =

∥∥∥xi − x j

∥∥∥ , i, j ∈ {1, . . . ,N} , (1)

where di j is the Euclidean distance between microphones i and j located at xi and x j. Therefore,

D is a symmetric matrix and it is often full rank.

Let XN×ζ denote the position matrix whose ith row, xT
i ∈ Rζ , is the position of microphone

i in ζ-dimensional Euclidean coordinate where microphones are deployed and .T denotes the

transpose operator. By squaring the elements of D, we construct a matrix MN×N which can be

written as

M = 1NΛ
T + Λ1N

T − 2XXT , (2)

where 1N ∈ RN is the all ones vector and Λ = (X ◦ X)1ζ where ◦ denotes the Hadamard product.

We observe that M is the sum of three matrices of rank 1, 1 and at most ζ respectively. Therefore,

the rank of the squared distance matrix constructed of the elements Mi j =
[
d2

i j

]
is at most ζ +

2 [11]. For instance, if the microphones are located on a plane or shell of a sphere, M has rank

4 and if they are placed on a line or circle, the rank is exactly 3. Hence, there is significant

dependency between the elements of M and exploiting this low-rank property is the core of the
3



proposed method in this report. The maximum distance that can be computed by this method is

assumed to be dmax. pairwise distances greater than dmax are missing implying a locality structure

in the missing entries in the distance matrix D consisted of the pairwise distances. This locality

constraint in distance estimation is a typical problem in ad hoc microphone arrays [18]. In

addition, the computation algorithm can lead to deviation from the model resulting in unreliable

estimates of the short distances causing random missing entries in D. Furthermore, the known

entries are noisy due to measurement inaccuracies and violation of diffuseness.

2.2. Objective

The noisy estimates of the pairwise distances is modeled as

d̃i j = di j + wi j ; D̃ = D + W , (3)

where wi j is the measurement noise for distance di j and W is the corresponding measurement

noise matrix. We introduce a noise matrix on the squared distance matrix as

Z = M̃ − M = D̃ ◦ D̃ − D ◦ D , (4)

where M̃ is the noisy squared distance matrix.

There are two kinds of missing entries. The first group is consisted of the structured missing

entries corresponding to the distances greater than dmax. We denote this group by S defined as

S = {(i, j) : di j ≥ dmax} , (5)

where di j =
∥∥∥xi − x j

∥∥∥. These structured missing entries are denoted by a matrix

Ds
i j =


Di j if (i, j) ∈ S

0 otherwise
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Thus, the noiseless recognized pairwise distance matrix is given by

Ds̄ = D − Ds ,

and we obtain the known squared distance matrix as

Ms = Ds ◦ Ds

M s̄ = Ds̄ ◦ Ds̄ = M − Ms .

(6)

Considering the noise on the known entries, we obtain

M̃ s̄ = M s̄ + Z s̄ , (7)

where Z s̄ denotes the noise on the known entries in the squared distance matrix.

For modeling the random missing entries, we assume that each entry is sampled with proba-

bility p. Sampling can be introduced by a projection operator on an arbitrary matrix QN×N , given

by

ΨE(Q)i j =


Qi j if (i, j) ∈ E

0 otherwise
(8)

where E ⊆ [N]× [N] denotes the known entries after random erasing process and has cardinality

|E| ≈ pN2. Therefore, the final recognized squared distance matrix is given by

ME = ΨE(M̃ s̄) . (9)

The goal of the matrix recovery algorithm is to find the missing entries and remove the noise,

given matrix ME .

2.3. Noise Model

The level of noise in extracting the pairwise distances, wi j in (3), increases as the distances

grow (In many scenario in sensor localization we have same situation). We model this effect
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through

W = Υ ◦ D ,

where the noise matrix ΥN×N is consisted of i.i.d entries with sub-Gaussian distribution of a

bounded constant ς2, thus [16]

P(|Υi j| ≥ β) ≤ 2 e−
β2

2ς2 . (10)

Based on (7), Z s̄
i j = 2d2

i jΥi j + d2
i jΥ

2
i j; thereby Z s̄

i j is also a sub-Gaussian random variable with

a bounded constant c(di j) = 2ςd2
i j. The physical setup confines |Z s̄

i j| ≤ 4a2 where a is the radius

of the table.

2.4. Evaluation Measure

Extracting the absolute position of the microphones deployed in ζ dimensional space requires

at least ζ + 1 anchor points in addition to the distance matrix. Therefore, in a scenario that the

only available information are pairwise distances, the evaluation measure must quantify the error

in estimation of the relative position of the microphones thus robust to the rigid transforma-

tions (translation, rotation and reflection). Hence, we quantify the distance between the actual

locations X and estimated locations X̂ as [19]

dist(X, X̂) =
1
N

∥∥∥JXXT J − JX̂X̂T J
∥∥∥

F ,

J = IN − (1/N)1N1T
N

(11)

where ‖·‖F denotes the Frobenius norm and IN is the N × N identity matrix. The distance

measure stated in (11) is useful to compare the performance of different methods in terms of

microphone array geometry estimation.

2.5. Matrix Completion

We recall our problem of having N microphones distributed on a space of dimension ζ.

Hence, the squared distance matrix M has rank η = ζ + 2, but it is only partially known. The

6



objective is to recover MN×N of rank η � N from a sampling of its entries without having

to ascertain all the N2 entries, or collect N2 or more measurements about M. The approach

proposed through matrix completion relies on the fact that a low-rank data matrix carries much

less information than its ambient dimension implies. Intuitively, as the matrix M has (2N − η)η

degrees of freedom1, we need to know at least ηN of the row entries as well as ηN of the column

entries reduced by η2 number of the repeated values to recover the entire elements of M.

Given ME defined in (9), the matrix completion recovers an estimate of the distance matrix

M̂ through the following optimization

Minimize rank (M̂ )

subject to M̂i j = Mi j , (i, j) ∈ E
(12)

We use the procedure of OptSpace proposed by Keshavan et al. [16] for estimating a matrix given

the desired rank η.

3. Theoretical Guarantees for Microphone Calibration

We denote the smallest singular value of the squared distance matrix by ση(M). Based on

the following theorem we guarantee that there is an upper bound on the calibration error which

decreases by the number of microphones.

Theorem 1. There exist constants C1 and C2, such that the output X̂ satisfies

dist(X, X̂) ≤ C1
a2

p
+ C2 ς

d2
max
√

pN
(13)

with probability greater than 1 − N−3, provided that the right-hand side is less than ση(M)/N.

1The degrees of freedom can be estimated by counting the parameters in the singular value decomposition (the number
of degrees of freedom associated with the description of the singular values and of the left and right singular vectors).
When the rank is small, this is considerably smaller than N2 [20].
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3.1. Proof of Theorem 1

The squared distance matrix M ∈ RN×N with rank−η, singular values σk(M), k ∈ [η] and

singular value decomposition UΣUT is (µ1, µ2)-incoherent if the following conditions hold.

A1. For all i ∈ [N]:
∑η

k=1 U2
ik ≤ η µ1 .

A2. For all i, j ∈ [N]:
∣∣∣ ∑η

k=1 Uik(σk(M)/σ1(M))U jk

∣∣∣ ≤ √η µ2 .

where without loss of generality, UT U = NI.

For a (µ1, µ2)-incoherent matrix M, (14) is correct with probability greater than 1 − N−3;

cf. [16]-Theorem 1.2.

1
N
‖M − M̂‖F ≤

C′1 ‖ΨE(Ms)‖2 + C′2
∥∥∥ΨE(Z s̄)

∥∥∥
2

p N
, (14)

provided that

|E| ≥ C′1Nκ2
η(M) max

{
µ1η log N ; µ2

1η
2κ4
η(M) ; µ2

2η
2κ4
η(M)

}
, (15)

and
C′1 ‖ΨE(Ms)‖2 + C′2

∥∥∥ΨE(Z s̄)
∥∥∥

2

p N
≤ ση(M)/N , (16)

where the condition number κη(M) = σ1(M)/ση(M).

To prove Theorem 1, we show the correctness of the upper bound stated in (13) based on the

following Theorems 2 and 3.

Theorem 2. There exists a constant C′′1 , such that with probability greater than 1 − N−3,

‖ΨE(Ms)‖2 ≤ C′′1 a2 N . (17)

The proof of this theorem is explained in section 3.2.

Theorem 3. There exists a constant C′′2 , such that with probability greater than 1 − N−3,

∥∥∥ΨE(Z s̄)
∥∥∥ ≤ C′′2 ςd2

max

√
pN . (18)
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The proof of this theorem is explained in section 3.3.

On the other hand, the following condition holds for any arbitrary network of micro-

phones [21]

dist(X, X̂) ≤
1
N
||M − M̂||F . (19)

Therefore, based on Theorem 2, Theorem 3 and the relations (14) and (19), the upper bound

stated in (13) is correct where C1 = C′1C′′1 and C2 = C′2C′′2 . A Journal paper has been submitted

which shows the correctness of the conditions (15) and (16) along with the (µ1, µ2)-incoherency

of M. That finishes the proof of Theorem 1.

�

3.2. Proof of Theorem 2

The goal is to find the bound of the norm of the squared distance matrix with missing entries

according to structures indicated by E and S . Based on (5) and (8), we define matrix E as

Ei j =


1 if (i, j) ∈ E ∩ S

0 otherwise

Both E and S are symmetric matrices, hence E is also symmetric. Due to the physical setup, we

know that ΨE(M)i j ≤ 4a2 for all i, j ∈ [N] and from the norm definition we have

‖ΨE(Ms)‖2 ≤ 4a2 max
‖h‖=‖~~~‖=1

∑
i, j

|hi| |~ j| Ei j = 4a2‖E‖2 ,

where h = [h1, h2, ..., hN]T and ~~~ = [~1, ~2, ..., ~N]T are right and left eigenvectors of matrix E. In

order to bound ‖E‖2, we first define a binomial random variable vector ν = [ν1, ν2, ..., νN]T where

νi =
∑
j∈[N]

|Ei j| . (20)
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Based on the Gershgorin circle theorem we have ‖E‖2 ≤ ‖ν‖∞. Each entry in matrix E is one

with probability p q where q is the probability that the entry is included in structured missing

entries or

q = P{|xi − x j| ≥ dmax} .

Hence, we have

E[νi] = N pq , (21)

For bounding E[νi], it is necessary to bound q. The lowest probability of missing distances

corresponds to the case that the microphone location with respect to the edge of the circular

table has a distance more than dmax and the highest probability corresponds to the case that the

microphone is located right at the edge of the table. The maximum of dmax is a. We denote the

upper bound and lower bound with qmax(a, dmax) and qmin(a, dmax) respectively, therefore

qmin(a, dmax) ≤ q ≤ qmax(a, dmax) . (22)

qmin(a, dmax) = max{1 −
( dmax

a
)2
, 0} and

qmax = 1 −
2γ
π

+
1

2π
sin 4γ +

2ξ2

π
[2γ + sin 2γ] − 2ξ2 , (23)

where ξ = dmax/2a and γ = sin−1 ξ. Based on (21) and (22) we have

N pqmin(a, dmax) ≤ E[νi] ≤ N pqmax(a, dmax) . (24)

By applying the Chernoff bound to νi we have

P
(
νi > (1 + ε)E[νi]

)
≤ 2−(1+ε)E[νi] ,

where ε is an arbitrary positive constant. Therefore, based on (24) we have

P
(
νi > (1 + ε)N p qmax

)
≤ 2−(1+ε)N p qmin . (25)
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By applying the union bound we have

P
(

max
i∈[N]

νi > (1 + ε)N p qmax
)
≤ 2−(1+ε)N p qmin+log2 N . (26)

We assume that qmin grows as O( log2 N
N ); this assumption indicates that the ratio of the structured

missing entries with respect to N decreases as N grows or in other words, dmax increases as the

size of the network N grows. Therefore, we have

P
(

max
i∈[N]

νi > (1 + ε)N p qmax
)
≤ N−θ , (27)

where the positive parameter θ = (1 + ε)p − 1; by choosing ε ≥ 4/p − 1, with probability greater

than 1 − N−3, we have

‖ΨE(Ms)‖2 ≤ 4a2 max
i∈[N]

νi ,

and based on (27)

‖ΨE(Ms)‖2 ≤ 4a2(1 + θ)qmaxN .

The value for qmax for large N based on (23) is 1/3 +
√

3/(2π). Anyway qmax is probability

measure and is less than one. Therefore, we achieve

‖ΨE(Ms)‖2 ≤ C′′1 a2 N .

�

3.3. Proof of Theorem 3

Based on the noise model described in Section 2.3, Z s̄
i j is obtained as

Z s̄
i j = d2

i jΥi j

(
2 + Υi j

)
≈ 2d2

i jΥi j, (28)
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where di j ≤ dmax and based on concentration inequality for 1-Lipschitz function ‖.‖ on random

variables ΨE(Z s̄) with zero mean and sub-Gaussian tail with parameter 4ς2d4
max(10), (28),

P
(∣∣∣∣ ∥∥∥ΨE(Z s̄)

∥∥∥ − E
(∥∥∥ΨE(Z s̄)

∥∥∥) ∣∣∣∣ > t
)
≤ exp

(
−t2

8 ς2d4
max

)
. (29)

By setting t = 2d2
max

√
6ς2 log N we have

∥∥∥ΨE(Z s̄)
∥∥∥ ≤ E

(∥∥∥ΨE(Z s̄)
∥∥∥) + 2d2

max

√
6ς2 log N (30)

with probability bigger than 1−N−3. So we need to extract bound for expectation of ΨE(Z s̄) that

has symmetric random enties. By using Theorem 1.1 from [22],

E
(∥∥∥ΨE(Z s̄)

∥∥∥) ≤ C4 E
(
max
j∈[N]

∥∥∥ΨE(Z s̄
. j)

∥∥∥) (31)

Furthermore by using union bound and with apply Chernoff bound on the sum of independent

random variables [16]

E
(
max
j∈[N]

∥∥∥ΨE(Z s̄
. j)

∥∥∥2
)
≤ C5d4

max ς
2 pN (32)

Since

E
(
max
j∈[N]

∥∥∥ΨE(Z s̄
. j)

∥∥∥) ≤ √
E

(
max
j∈[N]

∥∥∥∥ΨE(Z s̄
. j)

∥∥∥∥2
)

(33)

Base on relations (31), (32) and (33)

E
(∥∥∥ΨE(Z s̄)

∥∥∥) ≤ C6d2
maxς

√
pN (34)

By using (34) and (30) for pN � log N we have

∥∥∥ΨE(Z s̄)
∥∥∥ ≤ C′′2 d2

maxς
√

pN

�
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4. Conclusions

Rigorous analysis on the calibration of ad hoc microphone arrays are provided when the pair-

wise distances are only partially observed in a noisy setting. We exploited the matrix completion

algorithm to recover the entire distance matrix and established theoretical guarantees for the er-

ror of microphone calibration. This analysis elucidates that the calibration error decreases as the

local connectivity and the size of the network grows. The proposed algorithm and theoretical

guarantees are applicable to the general ad hoc sensor array scenarios.
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