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Abstract

User authentication is an important step to protect infaionaand in this context, face biometrics
potentially advantageous. Face biometrics is naturaljting, easy to use, and less human-invas
Unfortunately, recent work has revealed that face biorm®is vulnerable to spoofing attacks us
cheap low-tech equipment. This paper introduces a novelappgaling approach to detect fg
spoofing using the spatiotemporal (dynamic texture) exbessof the highly popular local binan
pattern operator. The key idea of the approach is to learrdatett the structure and the dynamicg
the facial micro-textures that characterise real facesbufake ones. We evaluated the approach \
two publicly available databases (Replay-Attack DatalaasECASIA Face Anti-Spoofing Databas
The results show that our approach performs better thaa-sfahe-art techniques following th
provided evaluation protocols of each database.
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1 Introduction

Because of its natural and non-intrusive interaction, tithenwerification and recognition using facial
information are among the most active and challenging dareesmputer vision research. Despite the
significant progress of face recognition technology in teent decades, a wide range of viewpoints,
ageing of subjects and complex outdoor lighting are stilésrch challenges. Advances in the area were
extensively reported in [1] and [2].

Unfortunately, the issue of verifying if the face presenteda camera is indeed a face from a real
person and not an attempt to deceive (spoof) the system hsttyrbeen overlooked. It was not until

very recently that the problem of spoofing attacks against faiometric system gained attention of
the research community. This can be attested by the grgdnateasing number of publicly available

databases [3-6] and the recently organized IJCB 2011 cdtiopebn countermeasures to 2-D facial
spoofing attacks [7] which was the first competition conddidar studying best practices for non-

intrusive spoofing detection.

A spoofing attack consists in the use of forged biometridgred gain illegitimate access to secured
resources protected by a biometric authentication systdra.lack of resistance to direct attacks is not
exclusive to face biometrics. The findings in [8], [9] and J[Ifdicate that fingerprint authentication
systems suffer from a similar weakness. The same shortgpamnris recognition systems has been
diagnosed [11-13]. Finally, in [14] and [15], the spoofintpeks to speaker biometrics are addressed.
The literature review for spoofing in face recognition sgsdewill be presented in Section 2.

In authentication systems based on face biometrics, sgpaftacks are usually perpetrated using pho-
tographs, videos or forged masks. While one can also use-npake plastic surgery as means of
spoofing, photographs and videos are probably the most consmarces of spoofing attacks. More-
over, due to the increasing popularity of social network sitels (Facebook, Flickr, YouTube, Instagram
and others), a great deal of multimedia content - espeaiallgos and photographs - is available on the
web that can be used to spoof a face authentication systeondén to mitigate the vulnerability of face
authentication systems, effective countermeasures stfate spoofing have to be deployed.

Micro-texture analysis has been effectively used in detggphoto attacks from single face images
[3,16,17]. Recently, the micro-texture-based analysissfinofing detection was extended in the spa-
tiotemporal domain in [18] and [19]. In both papers, the atdhintroduced a compact face liveness
description that combines facial appearance and dynarsiog gpatiotemporal (dynamic texture) ex-
tensions of the highly popular local binary pattern (LBPp@yach [20]. More specifically, local binary
patterns from three orthogonal planes (LBP-TOP) were demnsd. This variant has shown to be very
effective in describing the horizontal and vertical motjatterns in addition to appearance [21].

Even though authors of [18] and [19] considered LBP-TORetadynamic texture analysis for face
spoofing detection, very dissimilar strategies were intoedl for exploring the temporal dimension.
In [18], the LBP-TOP-based face liveness description wasaeted from relatively short time win-
dows using the dense sampling of multiresolution approatiereas an average of LBP-TOP features
over longer temporal windows was used in [19]. Moreover, ékperimental setups had significant
differences because different face normalization teakesqwvere applied in each work. Furthermore,
the evaluations were performed on different databaseslg¢Réyitack Database [3] and CASIA Face
Anti-Spoofing Database [6], respectively). In this artjcle consolidate the methods proposed in [18]
and [19], isolating the different variables and studying ffotential of the different LBP-TOP coun-
termeasures in different settings on both datasets. Fumtre, we demonstrate that our principled
approach is able to consistently outperform prior work antbhme databases and following the same
evaluation protocols. We also provide an open-source frariethat makes our research fully repro-
ducible with minimal effort.



This work provides an in-depth analysis on the use of dynasxture for face liveness description.
We apply a unified experimental setup and evaluation metbggdor assessing the effectiveness of
the different temporal processing strategies introduodd8] and [19]. The remainder of the paper is
organized as follows: in Section 2, a brief review of thevatd literature is provided. The basic theory
of local binary patterns in spatiotemporal domain is introgd in Section 3. Our dynamic texture-
based face liveness description is described in Sectioredtid® 5 presents the two publicly available
databases which are used for evaluating the proposed cowdsure. In Section 6, we report on the
experimental setup and results. Finally, in Section 7, warsarize this work highlighting its main
contributions.

2 Literature review

Considering the type of countermeasures for face antifsgpthat does not require user collaboration,
Chakka et al. in [7] propose a classification scheme baseldeoioliowing cues:

e Presence of vitality (liveness)
e Differences in motion patterns

e Differences in image quality assessment

Presence of vitality or liveness detection consists ofctefor features that only live faces can possess.
For instance, Pan et al. in [4] exploited the observation thenans blink once every 2 to 4 s and
proposed an eye blink-based countermeasure. Experimamiesccout with the ZJU Eye Blink Database
(http://www.cs.zju.edu.cn/gpan/database/db_blimklhshowed an accuracy of 95.7%.

The countermeasures based on differences in motion pattelsnon the fact that real faces display a
different motion behaviour compared to a spoof attempt.Ir&ioler et al. [22] present a motion-based
countermeasure that estimates the correlation betwetsmafit regions of the face using optical flow
field. In this approach, the input is considered a spoof ifdptical flow field on the center of the face
and on the center of the ears present the same direction.effagmpance was evaluated using the subset
‘Head Rotation Shot’ of the XM2VTS database whose real acees the videos of this subset, and the
attacks were generated with hard copies of those data. thesidatabase, which was not made publicly
available, an equal error rate (EER) of 0.5% was achievedosfand Marcel [23] present a motion-
based countermeasure measuring the correlation betwedadt and the background through simple
frame differences. Using the PRINT ATTACK database, thatragch presented a good discrimination
power (half total error rate (HTER) equals to 9%).

Countermeasures based on differences in image qualitgsaesat rely on the presence of artefacts in-
trinsically present at the attack media. Such remarkaldpasties can be originated from media quality
issues or differences in reflectance properties of the bbjgmsed to the camera. Li et al. [24] hypothe-
size that fraudulent photographs have less high-frequenicyponents than real ones. To test the hypoth-
esis, a small database was built with four identities coimgiboth real access and printed photo attacks.
With this private database, an accuracy of 100% was achiévesuming that real access images con-
centrate more information in a specific frequency band, Tah €] and Zhang et al. [6] used, as coun-
termeasure, a set of difference of Gaussian filters (DoGglexta specific frequency band to discrim-
inate attacks and non-attacks. Evaluations carried otitthwt CASIA Face Anti-Spoofing Database and
NUAA Photograph Imposter Database (http://parnec.ndaaca/xtan/data/NUAAImposterDB.html) showed
an equal error rate of 17% and an accuracy of 86%, respectivel



Because of differences in reflectance properties, reasfeesy likely present different texture patterns
compared with fake faces. Following that hypothesis, M&aattal. [17] and Chingovska et al. [3]
explored the power of local binary patterns (LBP) as a coumtasure. Maatta et al. combined three
different LBP configurations (LB?z, LBP”fé2 and LBFg;?l) in a normalized face image and trained a
support vector machine (SVM) classifier to discriminatel ezal fake faces. Evaluations carried out
with NUAA Photograph Impostor Database [5] showed a goodriisnation power (2.9% in EER).
Chingovska et al. analysed the effectiveness of gﬁBEnd set of extended LBPs [25] in still images
to discriminate real and fake faces. Evaluations carriddaailn three different databases, the NUAA
Photograph Impostor Database, Replay-Attack databas€ABdA Face Anti-Spoofing Database [6],
showed a good discrimination power with a HTER equal to 1%,189.03% and 18.17%, respectively.

3 LBP-based dynamic texture description

Maatta et al. [17] and Chingovska et al. [3] propose a LBReauntermeasures to spoofing attacks
based on the hypothesis that real faces present differentrdepatterns in comparison with fake ones.
However, the proposed techniques analyse each frame atiul not considering the behaviour over
time. As pointed out in Section 2, motion is a cue exploredome works and in combination with
texture can generate a powerful countermeasure. For Heggrthe face liveness for spoofing detection,
we considered a spatiotemporal representation which cwaliacial appearance and dynamics. We
adopted the LBP-based spatiotemporal representatiorubead its recent convincing performance in
modelling moving faces and facial expression recognitioth&so for dynamic texture recognition [20].

The LBP texture analysis operator, introduced by Ojala.§¢R6127], is defined as a gray-scale invariant
texture measure, derived from a general definition of texinra local neighbourhood. It is a powerful
texture descriptor, and among its properties in real-waplications are its discriminative power, com-
putational simplicity and tolerance against monotonicyggeale changes. The original LBP operator
forms labels for the image pixels by thresholding the 3 neighbourhood with the center value and
considering the result as a binary number. The histogramese2® = 256 different labels is then used
as an image descriptor.

The original LBP operator was defined to only deal with thetispinformation. However, more re-
cently, it has been extended to a spatiotemporal reprassnfar dynamic texture (DT) analysis. This
has yielded to the so-called volume local binary patterrnraipe (VLBP) [21]. The idea behind VLBP
consists of looking at dynamic texture (video sequence)sas af volumes in theX, Y, T') space where

X andY denote the spatial coordinates dfiddenotes the frame index (time). The neighborhood of
each pixel is thus defined in a three-dimensional space. ,Bimilar to basic LBP in spatial domain,
volume textons can be defined and extracted into histogrdinestefore, VLBP combines motion and
appearance into a dynamic texture description.

To make VLBP computationally treatable and easy to extemel,cb-occurrences of the LBP on the
three orthogonal planes (LBP-TOP) was also introduced. [RBP-TOP consists of the three orthog-
onal planes XY, XT andY T - and the concatenation of local binary pattern co-occagestatistics
in these three directions. The circular neighbourhoodganeralized to elliptical sampling to fit to the
space-time statistics. The LBP codes are extracted fronXtHeXT and YT planes, which are de-
noted asXY-LBP, XT-LBP andYT-LBP, for all pixels, and statistics of the three different plane
are obtained and concatenated into a single histogram. fduegure is shown in Figure 1. In this
representation, DT is encoded by the'-LBP, XT-LBP andYT-LBP.

Figure 1 LBP from three orthogonal planes. (a)Three planes intersecting one pixdb) LBP
histogram of each planéc) Concatenating the histograms (courtesy of [21]).




Using equal radii for the time and spatial axes is not a goamcehfor dynamic textures [21], and
therefore, in theXT andY T planes, different radii can be assigned to sample neigiimpyoints in
space and time. More generally, the raBii, R, and Ry, respectively, in axex, Y andT and the
number of neighbouring pointBxy, Pxr and Py, respectively, in theX'Y, XT andY T planes can
also be different. Furthermore, the type of LBP operator acheplane can vary; for example, the
uniform pattern {2) or rotation invariant uniform pattern-{u2) variants [20] can be deployed. The
corresponding feature is denoted as LBP-@E;);%PYT&R%R{

Assuming we are given & xY xT' dynamic texturéz. € {0,--- , X —1},y. € {0,--- Y — 1} ,t. €

{0,---,T —1}), i.e. avideo sequence. A histogram of the DT can be defined as
z,y,t

wheren; is the number of different labels produced by the LBP operatdhe jth plane ( = 0 :
XY, 1: XTand2:YT),andf;(z,y,t) expresses the LBP code of the central pixely, ¢) in the jth
plane.

Similar to the original LBP, the histograms must be nornelizo get a coherent description for com-
paring the DTs:

Hi;
nj—1

Nij = :

(2)

In addition to the computational simplification, compareihwLBP, LBP-TOP has the advantage

to generate independent histograms for each of the intargaalanes, in space and time, which can
be treated in combination or individually. Because of thera&inentioned complexity issues on the
implementation of a VLBP-based processor, the developatiocéemporal face liveness description uses
LBP-TOP to encode both facial appearance and dynamics.

Our key idea is to learn and detect the structure and the dgsaoh the facial micro-textures that
characterise real faces but not fake ones. Due to its taleragainst monotonic gray-scale changes,
LBP-based representation is adequate for measuring tleg fexture quality and determining whether
degradations due to recapturing process, e.g. the usefirgparedium, are observed. Instead of just
applying static texture analysis, we exploit also seveyalthic visual cues that are based on either the
motion patterns of a genuine human face or the used displajume

Unlike photographs and display devices, real faces aresthad®n-rigid objects with contractions of
facial muscles which result in temporally deformed facetiires such as eye lids and lips. Therefore,
it can be assumed that the specific facial motion pattermdu@img eye blinking, mouth movements
and facial expression changes) should be detected whea human being is observed in front of the
camera. The movement of the display medium may cause selstiattive motion patterns that do not
describe genuine faces. As shown in Figure 2, the use ofgplapoofing medium might cause sudden
characteristic reflections when a photograph is warped ocalse of a glossy surface of the display
medium. As it can be seen, warped photo attacks may causeliatedaied facial motion patterns. It
is likely that hand-held attacks introduce synchronizeaksig of the face and spoofing medium which
can be observed as excessive relative motion in the viewauidl fregion if the distance between the
display medium and the camera is relatively short. In thiskwae try to exploit the aforementioned
visual cues for face spoofing detection by exploring the dyindexture content of the facial region. We
adopted the LBP-based spoofing detection in spatiotemplorakin because LBP-TOP features have
been successfully applied in describing dynamic events facial expressions [21].



Figure 2 Example sequence of a warped photo attack from the C8IA Face Anti-Spoofing
Database [6]. This describes the characteristic reflections (flickeriofga planar spoofing medium
and the distorted motion patterns.

4 The proposed countermeasure

Figure 3 shows a block diagram of the proposed countermeaBust, each frame of the original frame
sequence was gray-scaled and passed through a face detsngpmodified census transform (MCT)
features [28]. Only detected faces with more than 50 pixeisidth and height were considered. The
detected faces were geometric normalized4to< 64 pixels. In order to reduce the face detector noise,
the same face bounding box was used for each set of framesirusieel LBP-TOP calculation. As
can be seen in the Figure 4, the middle frame was chosen. tun&tely, the face detector is not
error free, and in case of error in the middle frame face tietl®cthe nearest detection was chosen;
otherwise, the observation was discarded. After the fatexctien step, the LBP operators were applied
for each plane XY, XT andYT) and the histograms were computed and then concatenateer Af
the feature extraction step, binary classification can leel s discriminate spoofing attacks from real
access attempts.

Figure 3 Block diagram of the proposed countermeasure.

Figure 4 Face detection strategy forR; = 1.

Face liveness is rather difficult to be determined based enrbtion between a couple of successive
frames. The used volume can be expanded along the temparahsion by increasing,, as aforemen-
tioned in Section 3. This way to deal with dynamic textureafied single resolution approach, since
only one histogram per LBP-TOP plane is accumulated. Howvévis leads to rather sparse sampling
on the temporal planeX7T andYT’; thus, we might loose valuable details. In order to explbtwee t
dynamic texture information more carefully, we proposealriultiresolution approach.

The multiresolution approach can be performed by concttentéhe histograms in the time domain
(XT and YT) for different values ofR,. The notation chosen to represent these settings is using
brackets for the multiresolution data. For examgie,= [1 — 3] means that the LBP-TOP operator
will be calculated forR; = 1, Ry = 2 and R; = 3 and all resultant histograms will be concatenated.
With the multiresolution approach, dense sampling on theoteal planesXT andY T is achieved.

The proposed countermeasure was implemented using thsidres processing and machine learning
toolbox Bob [29], and the source code of the algorithm islaizée as an add-on package to this frame-
work (http://pypi.python.org/pypi/antispoofing.lbpopAfter installation, it is possible to reproduce all
results reported in this article.

5 Spoofing databases

In this section, we give an overview of the two largest andtnoballenging face spoofing databases,
Replay-Attack Database [3] and the CASIA Face Anti-Spoobagabase [6], consisting of real access
attempts and several fake face attacks of different natumelgr varying conditions. Instead of still
images, both datasets contain short video recordings whadtes them suitable for evaluating counter-
measures that exploit also temporal information.



5.1 Replay-Attack Database

The Replay-Attack Database (http://www.idiap.ch/dafasplayattack) [3] consists of short videe 10s)
recordings of both real-access and attack attempts to &Jretit identities using a laptop. It contains
1,200 videos (200 real-access and 1,000 attacks), anditioésgtvere taken in three different scenarios
with two different illumination and support conditions. &kcenarios of attack include the following:

1. Print: the attacker displays hard copies of high-resolution eip@tphs printed on A4 paper
2. Mobile: the attacker displays photos and videos taken with an iB@&S using the phone screen

3. Highdef: the attacker displays high-resolution photos and videsisguan iPad screen with a
resolution ofl, 024 x 768.

The illumination conditions include the following:

1. Controlled: the background of the scene is uniform and the light of a @scent lamp illuminates
the scene

2. Adverse: the background of the scene is non-uniform and daylighirilhates the scene

The support conditions include the following:

1. Hand-based: the attacker holds the attack media using his own hands

2. Fixed: the attacker sets the attack device in a fixed support seg dot move during the spoofing
attempt

Figure 5 shows some examples of real accesses and attadkeiand scenarios. The top row shows
samples from the controlled scenario. The bottom row shamsptes from the adverse scenario.
Columns from left to right show examples of real access,t@diphotograph, mobile phone and tablet
attacks.

Figure 5 Some frames of real access and spoofing attempts (ctasy of [3]).

The Replay-Attack Database provides a protocol for ohjeltievaluating a given countermeasure.
Such protocol defines three non-overlapping partitionstrfaining, development and testing counter-
measures (see Table 1). The training set should be usedrtdheacountermeasure, and the develop-
ment set is used to tune the countermeasure and to estintateshdld value to be used in the test set.
The test set must be used only to report results. As a perfareneneasurement, the protocol advises
the use of HTER (Equation 3).

FAR(7, D) + FRR(r, D)

HTER =
2 Y

®3)

wherer is a thresholdD is the dataset, FAR is the false acceptance rate and FRR fal$eerejection
rate. In this protocol, the value efis estimated on the EER using the development set.



Table 1 Number of videos in each subset

Type Train Devel. Test Total

Real access 60 60 80 200
Print attack 30 + 30 30 430 40 + 40 100 + 100
Mobile attack 60 + 60 60 4 60 80 4 80 200 + 200
Highdef attack 60 + 60 60 + 60 80 4 80 200 + 200
Total 360 360 480 1200

Numbers displayed as sums indicate the amount of hand-laaskfixed support attack available in each subset [3].

5.2 CASIA Face Anti-Spoofing Database

The CASIA Face Anti-Spoofing Database (http://www.cbsadacn/english/FaceAntiSpoof%20Databases.asp)
[6] contains 50 real clients, and the corresponding fakedare captured with high quality from the

original ones. The variety is achieved by introducing thneaging qualities (low, normal and high) and

three fake face attacks which include warped photo, cutgpfeteblink) and video attacks. Examples

from the database can be seen in Figure 6. Altogether, tlabase consists of 600 video clips, and

the subjects are divided into subsets for training andrtgg240 and 360, respectively). Results of a
baseline system are also provided along the databaserfopfaparison. The baseline system considers

the high-frequency information in the facial region usingltiple DoG features and SVM classifier and

is inspired by the work of Tan et al. [5].

Figure 6 Example images of real accesses and the correspongdispoofing attempts (courtesy of

[6]).

Since the main purpose of the database is to investigateodselgbe effects of different fake face types
and imaging qualities, the test protocol consists of sewemarios in which particular train and test
samples are to be used. The quality test considers the theggng qualities separately, low (1), normal
(2) and high quality (3), and evaluates the overall spoofietgction performance under a variety of
attacks at the given imaging quality. Similarly, the fakeefdest assesses how robust the anti-spoofing
measure is to specific fake face attacks, warped photo (@phato (5) and video attacks (6), regardless
of the imaging quality. In the overall test (7), all data ased to give a more general evaluation. The
results of each scenario are reported as detection erdw-oft (DET) curves and EERs, which is the
point where FAR equals FRR on the DET curve.

6 Experiments

This section provides an in-depth analysis on the proposde-TOP-based face liveness description
using the Replay-Attack Database [3] and the CASIA Face-8ptofing Database [6]. First, we study
the effect of different classifiers and LBP-TOP parametgr®liowing the evaluation method proposed
in [18]. The LBP-TOP representation is computed over nedditi short temporal windows, and the

results are reported using the overall classification awoyufor the individual volumes. Altogether, four

experiments were carried out evaluating the effectivenéss

Each LBP-TOP plane individually and in combination
Different classifiers

Different LBP operators

P w0 NP

The multiresolution approach



In order to study the effect of the different variables, epahameter was tuned solely (fixing other
elements) using the development set of each face spoofinata. It should be noted that unlike the
Replay-Attack Database, the CASIA Face Anti-Spoofing Deabs lacking a specific development set.
Therefore, the first 4 experiments were performed in thialmde using cross-validation by randomly
dividing the training data into fivefold. Hence, the resuitesented for CASIA Face Anti-Spoofing
Database are actually the average HTER on the test set osdefigtions of the algorithm with different
folds playing the role of a development set.

Finally, we also studied the accumulation of facial appeegaand dynamics information over longer
time windows and perform an evaluation at system level. Toess attempt-based results presented in
Section 6.5 were obtained using the official protocol of edatabase.

Inspired by [3], the LBP-TOP operator chosen to start théuatimn was LBP—TOQ‘Z&8 L1.R,"

5Lyt

6.1 Effectiveness of each LBP-TOP plane individually and itombination

In this experiment, we analysed the effectiveness of eatikidual plane and their combinations when
the multiresolution area is increased. Figure 7 shows thER{&volution, on the test set, considering
individual and combined histograms of LBP-TOP planes fohedatabase. We used, as binary classifier,
a linear projection derived from linear discriminant asay(LDA) as in [3].

Figure 7 Evaluation of HTER (%) in each plane when multiresoution area (R;) is increased.
With LBP-TOPg%&LL r, and LDA classifier test set(a) Replay-Attack Database(b) CASIA Face
Anti-Spoofing Database.

The results indicate differences in the performance betvilee two databases. The temporal compo-
nents X7 andYT) are a decisive cue for the Replay-Attack Database, anddhwination of all
three planesXY, XT andYT) gives the best performance. Conversely, for the CASIA Fauie
Spoofing Database, the addition of temporal planes imprhagerformance only slightly compared to
the spatial LBP representation (considering only 3hE plane). These observations can be explained
by taking a closer look at the differences in the databasedtair spoofing attack scenarios. 2-D fake
face attacks can be categorized into two groups, close-gig@nic attacks, based on how the fake face
is represented with the spoofing medium.

A close-up spoof describes only the facial area which isgmesl to the sensor. The main weakness
with the tightly cropped fake faces is that the boundariethefspoofing medium, e.g. a video screen
frame, photograph edges or the attacker’'s hands, are yisisitle during the attack and thus can be
detected in the scene [19]. However, these visual cues chidbden by incorporating the background
scene in the face spoof and placing the resulting scenicféaeevery near to the sensor as performed
on the Replay-Attack Database. In such cases, the descrigtifacial appearance leads to rather good
performance because the proximity between the spoofingumealnd the camera causes the recaptured
face image to be out-of-focus also revealing other faciute quality issues, like degradation due to
the used spoofing medium. Furthermore, the attacks in Rexitagk Database are performed using two
types of support conditions, fixed and hand-held. Naturtdily LBP-TOP-based face representation can
easily detect fixed photo and print attacks since there isan@ation in the facial texture over time. On
the other hand, the hand-held attacks introduce synctedrshaking of the face and spoofing medium.
This can be observed as excessive relative motion in the @igam, due to the proximity between the
display medium and the sensor. Since the distinctive glotmlon patterns are clearly visible also on
the facial region, they can be captured even by computingBie TOP description over relatively short
temporal windows, i.e. low values &f;.



In contrast, the CASIA Face Anti-Spoofing Database consistdose-up face spoofs. The distance
between the camera and the display medium is much farthepa@ to the attacks on Replay-Attack
Database. The display medium does not usually move mucheimttiack scenarios. Therefore, the
overall translational movement of a fake face is much clésd¢he motion of a genuine head. Due to
the lack of distinctive shaking of the display medium, theSIA Face Anti-Spoofing Database can be
considered to be more challenging from the dynamic textoietf view. Because the motion cues
are harder to explore in some attack scenarios using smaés/af R;, we investigated in Section 6.5
whether the use of longer time windows helps to reveal theadiises between a genuine face and a fake
one.

6.2 Effectiveness of different classifiers

In this experiment, we analysed the effectiveness of diffeclassifiers when the multiresolution area
is increased. Figure 8 shows the HTER evolution, on the tstusider three different classification
schemes. The first one usg$ distance, since the feature vectors are histograms. The samategy
reported in [3] was carried out. A reference histogram onithweal accesses was created averaging
the histograms in the training set. The last two selecteskiflaation schemes analysed were LDA and
SVM with a radial basis function kernel (RBF).

Figure 8 Evaluation of HTER (%) with LBP-TOP 18L,28,8,1,1,Rt using different classifiers. (a)
Replay-Attack Databaséb) CASIA Face Anti-Spoofing Database.

The SVM classifier with an RBF kernel provided the best penfomce on the Replay-Attack Database
and the CASIA Face Anti-Spoofing Database (7.97% and 20.72%rims of HTER, respectively).
However, it is important to remark that the same LBP-TOP guométion with an LDA classifier resulted
in comparable performance (11.35% and 24.91% in terms of R)TEhis is not a huge gap, and the
classification scheme is far simpler. As similar findingsehaeen reported [3,30], the use of simple
and computationally efficient classifiers should be indemtsiclered when constructing real-world anti-
spoofing solutions.

6.3 Effectiveness of different LBP operators

The size of the histogram in a multiresolution analysisjimetdomain, increases linearly witk,. The
choice of an appropriate LBP representation in the planas important issue since it impacts the size
of the histograms. Using uniform patterns or rotation iraatr extensions, in one or multiple planes,
may bring a significant reduction in computational comgilexin this experiment, the effectiveness of
different LBP operators in the three LBP-TOP plan&s{, X7 andYT") was analysed. Figure 9 shows
the performance, in HTER terms, configuring each plane ds bB® (with 256 bins forP = 8), LBP*?
(uniform patterns) and LBP*? (rotation invariant uniform patterns) when the multiregmn area ;)

is increased in both databases. Results must be interpsgttethe support of Figure 10, which shows
the number of bins on the histograms used for classificatioeach configuration.



Figure 9 Evaluation of HTER (%) with LBP-TOP g 5 8 1,1,r, USing different LBP configurations
in planes with SVM classifier. (a)Replay-Attack Databagy) CASIA Face Anti-Spoofing Database.

Figure 10 Evaluation of the histogram size whenR;) is increased.

When the multiresolution area is increased, the HTER satsifar LBP*“2 and LBP*? on both datasets.
For the basic LBP operator, a minimum can be observed in 7.&08620.71% on the Replay-Attack
Database and CASIA Face Anti-Spoofing Database, resplcti@n both databases, basic LBP and
LBP“2 presented similar performance. Even though the use ofaeg¢BP leads to the best results,
the LBP*? operator seems to provide a reasonable trade-off betwemputational complexity (see
Figure 10) and performance. Hence, we will still proceedwiBP*2.

6.4 Effectiveness of the multiresolution approach

In this experiment, we analysed the effectiveness of thdiresblution approach in comparison with
the single resolution approach. The single resolution @gagr consists of using only fixed values for
R;, without concatenating histograms for ed¢h With this approach, the size of the histograms will be
constant for different values dt;, which decreases the computational complexity comparétetoul-
tiresolution approach. Figure 11 shows the HTER evolut@rdifferent values of?; in both databases
comparing both approaches.

Figure 11 Evaluation of HTER (%) using LBP-TOPg’z&&l’l’Rt with single resolution and multires-
olution approach using SVM classifier. (a)Replay-Attack Databasé¢b) CASIA Face Anti-Spoofing
database.

On both datasets, the HTER of the single resolution approarckases withk;, whereas the multires-
olution approach helps to keep the HTER low when the mutilté®n area is increased. This suggests
that the increase oR; causes more sparse sampling in the single resolution agpmhen valuable
motion information is lost. In contrary, the more dense damgmf the multiresolution approach is able
to provide a more detailed description of the motion pagietimus improving the discriminative power.

6.5 Access attempt-based analysis

In the previous experiments, the importance of the tempdiraension was studied using the single
resolution and the multiresolution approaches. As seeretii@ 6.1, the multiresolution approach
is able to capture well the nature of fixed photo attacks amdettessive motion of display medium,
especially on the Replay-Attack Database. However, in sattaek scenarios, the motion patterns were
harder to explore using small values &f. Therefore, we now study how the used temporal window
size affects the performance when the facial appearancéyanaanics information are accumulated over
time. The face description of the single resolution and madblution methods can be accumulated
over longer time periods either by averaging the featurelkinva time window or by classifying each
subvolume and then averaging the scores within the currerdomw. In this manner, we are able to
provide dense temporal sampling over longer temporal wisdeithout excessively increasing the size
of the feature histogram.

To follow the method used in previous experiments, we begauating the two averaging strategies
with the LBP—TOI%?&&LM operator and a SVM classifier with RBF kernel. In order to detee the
video-based system performance, we applied both the avefagatures and scores on the first valid



time window of NV frames from the beginning of each video sequence. It shoelddied that the
following access attempt-based analysis is based on th@abffirotocol of each database. Thus, the
results on Replay-Attack Database are reported in termJ &R whereas the performance on CASIA
Face Anti-Spoofing Database is described using EER.

The access attempt-based performance of both averagatggés on the two databases is presented
in Figure 12. The results indicate that when the amount opteal information increases, the better
we are able to discriminate real faces from fake ones. Thiseicase especially on the CASIA Face
Anti-Spoofing Database in which the distinctive motion slusuch as the excessive shaking of the
display medium, cannot be exploited. However, when longéeos sequences are explored, we are
more likely to observe other specific dynamic events, sudifiesent facial motion patterns (including
eye blinking, lip movements and facial expression changesyidden characteristic reflections of planar
spoofing media which can be used for differentiating read$afcom fake ones. It is also interesting to
notice that by averaging features, more stable and robosfisg detection performance is achieved on
both databases. The averaging scores of individual suimasiitseem to suffer from outliers; thus, more
sophisticated temporal processing of scores might leacbte stable behaviour.

Figure 12 Access attempt-based evaluationDifferent time window sizes were evaluated using mean
of features and mean of scores with LBP—T@@LM. (a) Replay-Attack Database (HTER %ib)
CASIA Face Anti-Spoofing Database (EER %).

According to the official test protocol of CASIA Face Anti-&fing, also the DET curves and the EERs
for the seven scenarios should be reported. Based on thegseanalysis, we chose to use the average
of features within a time window of 75 frames which corregioio 3 s of video time. As it can be seen
in Figure 13 and Table 2, the use of only facial appearancéjll@ds to better results compared to the
baseline method (CASIA baseline). More importantly, whas temporal planeX T andYT" are also
considered for spatiotemporal face description (LBP-T,@Rignificant performance enhancement is
obtained (from 16% to 10% in terms of EER), thus confirminghlibaefits of encoding and exploiting
not only the facial appearance but also the facial dynamicgmation.

Figure 13 Overall test protocol on the CASIA Face Anti-Spoofig Database. Overall performance
of LBP-TOR% 5 ; 1 ; Using the average of features compared to the DoG baselitiochand LBR? .

Table 2 Comparison of EER (%)

Scenario Low Normal High Warped Cut  Video Overall
DoG baseline [6] 13 13 26 16 6 24 17
LBPg?1 11 17 13 13 16 16 16
LBP-TOR% 5111 10 12 13 6 12 10 10

This table shows comparison between the DoG baseline mettf#}3 and LBP-TOR% 5, ; ; using
the average of features on the CASIA Face Anti-Spoofing Resab

More detailed results for each scenario are presented urd-itd and in Table 2. The results indicate
that the proposed LBP-TOP-based face description yielsisrbsults in all configurations except under
cut-photo attacks. As described in [6], the DoG filteringdbm® method is able to capture the less
variational nature of the cut eye regions well. Howeverdifierence in the motion patterns seems to be
too small for our LBP-TOP-based approach as mainly eye inignkccurs during the cut-photo attacks
and no other motion is present. The EER development presémtEable 3 supports this conclusion
since the performance under cut-photo attacks does nobimghat much if longer temporal window
is applied compared to the other scenarios.



Figure 14 The different test protocols of the CASIA Face AntiSpoofing Database.Performance of
LBP-TOR% 5 1 1.1 Using the average of features compared to the DoG baselittechand LBR3.

Table 3 Effect of different time window sizes on CASIA Face Ati-Spoofing Database

Frames Low Normal High Warped Cut Video
1 17 27 23 29 16 20

5 13 20 20 19 14 14

10 14 20 19 18 16 14
25 13 13 10 10 14 12
50 13 11 10 7 13 10
75 10 12 13 6 12 10

.....

On the other hand, the spatiotemporal face descriptionléstabmprove the major drawbacks of DoG-

based countermeasure. Unlike the baseline method, ouoagpperforms almost equally well at all

three imaging qualities. Furthermore, the performanceeumncrped photo and video attacks is signif-
icantly better. Especially the characteristic speculiecéons (flickering) and excessive and distorted
motion of warped photo attacks can be described very well.

6.6 Summary

Tables 4 and 5 summarize all the results obtained for eactidse following their provided protocols.
In order to be comparable with still frame analysis preseiite example in [3], the results for the
Replay-Attack Database represent the overall classificaiccuracy considering each frame individu-
ally. The access attempt-based results are reported anlyddCASIA Face Anti-Spoofing Database as
requested in its test protocol.

Table 4 HTER (%) of the best results on the Replay-Attack Datéase

Dev  Test
Motion Correlation [23] 11.78 11.79
LBPY2 + SVM 14.84 15.16
LBP3y«3 + SVM [3] 13.90 13.87
LBP-TOP:Z 5111 + SVM 8.17 851

LBP-TOR g5111 2+ SYM 7.88  7.60

This table shows the HTER of the best results achieved on #palR-Attack Database (following the database protocol)
compared with the provided baseline.

Table 5 EER (%) of the best results on the CASIA Face Anti-Spofing Database

Test
DoG baseline [6] 17
LBPgQ1 + SVM 16

LBP-TOR% 5 11,1 With average of features + SVM 10

This table shows the EER of the best results achieved on treIARace Anti- -Spoofing Database (following the database
protocol) compared with the provided baseline.

Table 4 shows also the results for the LBP (http://pypi.pytbrg/pypi/antispoofing.lbp) [3] and the Mo-
tion Correlation (http://pypi.python.org/pypi/antiggfing.motion) [23] based countermeasures whose
source code is freely available. Table 5 contains the peaviDoG-based baseline and the holistic



LBP-based face description. It can be seen that the propum@&ttermeasure presented the best re-
sults, overtaking the baseline results in both databakes, donfirming the benefits of encoding and
exploiting not only the facial appearance but also the fabjaamics information. Unfortunately, our
comparison is limited to these countermeasures due to¢hefgpublicly available implementations of
other state-of-the-art techniques presented in the fitexa

During these experiments, we observed that the generarpehce of the proposed countermeasure
was consistently better on the Replay-Attack Database aosdpto the CASIA Face Anti-Spoofing
Database. As mentioned in Section 6.1, the nature of thekaffieenarios is different between the
two datasets. In the Replay-Attack Database, our LBP-T@ded face description was able to capture
motion patterns of fixed photo attacks and scenic fake faeelat already when only relatively short
time windows were explored. Performances below 10% (HTE&gvachieved. On the other hand, the
CASIA Face Anti-Spoofing Database turned out to be more ehgihg from the dynamic texture point
of view. Due to the lack of motion, analysis of longer tempevandows was required in order to find
out distinctive motion patterns between genuine faces akel 6nes. As it can be seen in Table 5, by
extending the micro-texture-based spoofing detectionthespatiotemporal domain, an improvement
from 16% to 10% in terms of EER was obtained. The results aldizate that the proposed dynamic
texture-based face liveness description was able to inepgiimey state of the art on both datasets.

7 Conclusion

Inspired by the recent progress in dynamic texture, thelpnolof face spoofing detection was recently
investigated in two independent articles using spatioteaddocal binary patterns. The key idea of the
proposed countermeasures consists of analysing thewsgutd the dynamics of the micro-textures in
the facial regions using LBP-TOP features that provide &oiefit and compact representation for face
liveness description. However, very dissimilar strategieere introduced for exploring the temporal

dimension even though the same features were utilizedh&umnore, the experiments were carried out
using different face normalization techniques and difiei@atabases. In this article, we consolidated
the methods proposed in the previous studies, isolatingiffezent variables and studying the potential

of the different LBP-TOP countermeasures in differentisgét on the two publicly available datasets.

Furthermore, we also provided an open-source framewoitkntla&es our research fully reproducible

with minimal effort.

Experiments carried out with a unified experimental setubexmluation methodology showed that the
dynamic texture-based countermeasure was able to contistetperform prior work on both datasets.
Best results were achieved using a nonlinear SVM classliigr,it is important to note that experi-
ments with a simpler LDA-based classification scheme regutt comparable performance under var-
ious spoofing attack scenarios. Thus, the use of simple amgwutationally efficient classifiers should
be indeed considered when constructing real-world amafpg solutions. In a future work, we will
study the generalization capabilities of the proposed tworeasure using multiple face anti-spoofing
databases. In other words, we plan to perform cross-daadgseriments by training and tuning the
LBP-TOP-based face description solely on one dataset ahdriieanother one.
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