
Available online at www.sciencedirect.com
www.elsevier.com/locate/specom

ScienceDirect

Speech Communication xxx (2015) xxx–xxx
Sparse modeling of neural network posterior probabilities
for exemplar-based speech recognition

Pranay Dighe a,b,⇑, Afsaneh Asaei a, Hervé Bourlard a,b
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Abstract

In this paper, a compressive sensing (CS) perspective to exemplar-based speech processing is proposed. Relying on an analytical rela-
tionship between CS formulation and statistical speech recognition (Hidden Markov Models – HMM), the automatic speech recognition
(ASR) problem is cast as recovery of high-dimensional sparse word representation from the observed low-dimensional acoustic features.
The acoustic features are exemplars obtained from (deep) neural network sub-word conditional posterior probabilities. Low-dimensional
word manifolds are learned using these sub-word posterior exemplars and exploited to construct a linguistic dictionary for sparse rep-
resentation of word posteriors. Dictionary learning has been found to be a principled way to alleviate the need of having huge collection
of exemplars as required in conventional exemplar-based approaches, while still improving the performance. Context appending and col-
laborative hierarchical sparsity are used to exploit the sequential and group structure underlying word sparse representation. This for-
mulation leads to a posterior-based sparse modeling approach to speech recognition. The potential of the proposed approach is
demonstrated on isolated word (Phonebook corpus) and continuous speech (Numbers corpus) recognition tasks.
� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Hidden Markov Model (HMM) based modeling and
template (exemplar) based techniques are the two main
approaches towards automatic speech recognition (ASR).
In the last three decades, HMM-based approaches have
been dominant because of their flexibility and their ability
to be trained and generalized to unseen data. In compari-
sion, exemplar based techniques use labeled speech seg-
ments (called exemplars) directly for speech recognition,
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without a model learning step as done in HMM based sys-
tems. Assuming an “infinite” amount of such exemplars, as
well as the “right” representation space and the “right” dis-
tance measure, “optimal” recognizers could be sought in
theory (Devijver and Kittler, 1982). The trade-off is that
such a system will have a huge space and time complexity.
However, with the ever increasing amount of training data,
as well as the growing computational and memory
resources, the potential of exemplar-based approaches is
currently being explored extensively (Sainath et al., 2012,
2011; Gemmeke et al., 2011; De Wachter et al., 2007).

One of the emerging approaches in exemplar-based ASR
is exemplar-based sparse representation in which a test
speech segment is expressed as a sparse linear combination
of the exemplars in the training dataset. Thus, a large
l network posterior probabilities for exemplar-based speech recognition,
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collection of exemplars is used in practice to capture all
possible variability in the data. The core assumption of this
approach is that any possible realization of the data in the
test set lies in a vector space spanned by a sparse selection
of exemplars already seen in the training set or/i.e. the
exemplars live in low-dimensional manifolds. This
assumption hints towards possibilities of posing the
exemplar-based sparse representation problem as a typical
compressive sensing problem in which the goal is to find an
over-complete set of basis vectors (termed as Dictionary in
CS), a sparse linear combination of which can be used to
generate all the data points. When seen through this per-
spective, the exemplar-based sparse representation task
becomes exposed to the well studied theory and techniques
associated with compressive sensing – namely dictionary
learning and sparse recovery. Further, if the dictionaries
are designed in a particular manner, the compressive sens-
ing procedure can be given a very intuitive probabilistic
interpretation in terms of the speech recognition theory
(as we shall see in Section 3). This paper is an attempt
towards exploring all these possibilities to devise a novel
framework for ASR based on compressive sensing.

It has been shown previously that the acoustic feature
space lies on one or more low-dimensional manifolds
(Stevens, 1998; Jansen and Niyogi, 2006). In case of speech
exemplars, these acoustic features are derived from speech
segments which actually represent sub-word units e.g. syl-
lable, phone or even sub-phones. The occurrence of these
units leads to a sparse event for example in the context
of high-dimensional word representation space. This
enables us to cast the speech recognition problem as recon-
struction of a high-dimensional sparse word representation
from the low-dimensional sub-word acoustic exemplars.

Another inspiration for the CS based approach comes
from some issues faced by conventional exemplar-based
sparse representation systems. Firstly, it has been reported
(Section 5.3 in Gemmeke et al. (2009)) that increasing the
size of exemplar collection improves the ASR performance
only up to a certain limit, after which improvement in ASR
performance is sub-linear. At certain point, the additional
information brought in the collection by new exemplars
is insignificant as they are close to existing exemplars in
the collection. This suggests the need for a better procedure
to find a limited size collection of exemplars that can be
used for sparse representation of data. In this paper, we
propose to use dictionary learning in order to exactly
address this need by finding an over-complete set of basis
vectors which spans the vector space. We demonstrate
experimentally (Section 5) that the dictionary so learned
has a cardinality far smaller than the size of collection of
all exemplars of the training data, but still improves char-
acterisation of the vector space as compared to the collec-
tion of exemplars. This observation confirms that
dictionary learning is a more efficient way for sparse repre-
sentation than exemplar collection.

Secondly, the existing exemplar-based sparse methods
do not have a specific built-in mechanism for exploiting
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the temporal relationships across consecutive exemplars.
Context-appended frames have been used in (Gemmeke
et al., 2011, 2009) to deal with this issue. In our approach,
we propose to utilise techniques like collaborative group
sparsity (Sprechmann et al., 2011) to seek collaboration
among sparse coding of consecutive exemplars. Our idea
is to demonstrate how sparse modeling can lead to a differ-
ent paradigm in pattern matching for speech recognition by
offering a hierarchical structure instead of enforcing the
Markovian inter-dependency.

To the best of our knowledge, all of the proposed
exemplar-based sparse approaches use spectral-based fea-
tures (Sainath et al., 2011; Gemmeke et al., 2011, 2009;
Sainath et al., 2010). In contrast to the state-of-the-art,
we derive a probabilistic interpretation of the problem
(Section 3) that leads to a requirement of posterior
probability-based features in place of spectral features in
our case. We use phone conditional posterior probabilities
as exemplars to build the dictionaries, and sparse coding is
used as a method of recovering the sparse word posterior
probabilities. In our earlier study, posterior features have
been shown to yield promising results in exemplar-based
speech recognition (Bahaadini et al., 2014); where using
the link to the statistical speech recognition formalism,
new derivation of super/sub-phone posterior features are
developed for exemplar-based sparse representation.
Successful reconstruction of the sparse word posterior rep-
resentation requires (1) learning a dictionary to character-
ize the manifold of word sub-spaces and (2) devising an
effective sparse recovery procedure to estimate the word
posterior probabilities from the compressive sub-word
observations. These two subjects are thoroughly studied
in this work.

The remainder of this paper is organized as follows. In
Section 2, we provide a background on posterior features,
compressive sensing and sparse modeling. Section 3
presents a novel compressive sensing perspective towards
posterior based sparse modeling. A speech recognition
framework based on the CS formulation is presented in
Section 4 where we also briefly dicsuss its links to
HMM and DTW techniques. Section 5 presents the
details of the experiments and the conclusions are
drawn in Section 6 along with the directions for future
research.

2. Background

In this section, we discuss some background information
on the use of posterior features in ASR, as well as compres-
sive sensing and sparse signal reconstruction. The nota-
tions used in this paper are as follows

� qk; 8k 2 f1; . . . ;Kg: sub-word units.
� wl; 8l 2 f1; . . . ; Lg: word units.

� xt; 8t 2 f1; . . . ; Tg 2 Rd : spectral speech features at
time t.
l network posterior probabilities for exemplar-based speech recognition,
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� X ¼ ½x1 . . . xT � 2 Rd�T : sequence of spectral speech fea-
tures xt.

� zt ¼ ½pðq1jxtÞ . . . pðqK jxtÞ�> 2 RK : posterior probability
(acoustic) features; :> stands for transpose.

� Z ¼ ½z1 . . . zT � 2 RK�T : sequence of posterior features
zt; 8t 2 f1; . . . ; T g.
� D ¼ ½d1 . . . dL� 2 RK�L: dictionary of exemplars where dl

denotes each column/atom of the dictionary.

� at 2 RL: sparse reconstructed vector corresponding to
posterior vector zt.

� A ¼ ½a1 . . . aT � 2 RL�T : sparse reconstructed matrix cor-
responding to input posterior matrix Z.

2.1. Posterior features

The setup for extracting the phone posterior features is
illustrated in Fig. 1 (Aradilla and Bourlard, 2009). The
spectral features, comprised of 13 MFCC cepstral coeffi-
cients with their first and second order derivatives, are
computed over a sliding window of 25 ms with a shift of
10 ms. A multilayer perceptron (MLP) or (deep) neural
network (DNN) is used to take in a context of spectral fea-
tures as inputs and generate the phone posterior probabil-
ities. The output probability vector can be directly used as
acoustic features for speech recognition, thus referred to as
the posterior features. In our case, a context of 4 frames is
used as input for the neural network. The output layer
includes an additional (phone) unit for representing the
silence/pause along with the other phones.

Obviously and as confirmed in (Asaei et al., 2010), the
posterior features are sparse whereas the conventional
probabilistic modeling framework for speech recognition
is not designed to handle sparse features. The recently
developed Kullback–Leibler HMM (KL-HMM) acoustic
modeling framework have been shown to be more effective
to exploit the characteristics of posterior features (Aradilla
et al., 2008). These features are more robust to speaker and
environmental availabilities, thus outperform spectral fea-
tures in realistic speech recognitions tasks.
Fig. 1. Posterior features are extracted using a neural network taking the
spectral features as input.
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2.2. Compressive sensing and sparse modeling

Compressive sensing relies on sparse representation to
reconstruct a high-dimensional data using very few linear

non-adaptive observations. A data representation a 2 RM

is N-sparse if only N � M entries of a have nonzero values.
We call the set of indices corresponding to the non-zero
entries as the support of a. The CS theory asserts that only

K ¼ OðN logðM=NÞÞ linear measurements, z 2 RK obtained
as

z ¼ D a ð1Þ

suffice to reconstruct a, where K � M and D 2 RK�M is a
measurement matrix which can also be interpreted as an
over-complete dictionary designed/learned for sparse rep-
resentation of a.

A sufficient but not necessary condition on D to recover
the sparse data representation coefficients is that all pair-
wise distances between N-sparse signals must be well pre-
served in the observation space or equivalently all subsets
of N columns taken from the dictionary are in fact nearly
orthogonal. While there are infinitely many solutions to
Eq. (1), relying on the two ingredients (1) sparse represen-
tation and (2) incoherent measurement, CS guarantees to
circumvent the ill-posedness of the problem and recover
the N-sparse data stably from the compressed
(low-dimensional) observations through efficient optimiza-
tion algorithms which search for the sparsest representa-
tion that agrees with those observations.

Given an observation vector z, and an over-complete
dictionary matrix D, the sparse representation a is obtained
by the optimization problem stated as:

min
a
kak0 subject to z ¼ Da ð2Þ

where the counting function k:k0 : RM�!N, returns the
number of non-zero components in its argument. The
non-convex objective of (2) is often relaxed to ‘1-norm
optimization which can be solved in polynomial time; the
‘1 norm, kak1 is defined as sum of the absolute values of
the components of a. Further developments consider alter-
native data reconstruction metrics tailored for a specific
application such as classification. Recent advances in CS
exploit the inter-dependency structure underlying the sup-
port of the sparse coefficients in recovery algorithms to
reduce the number of required observations and to better
differentiate true coefficients from recovery artifacts which
leads to a more robust and efficient recovery (Asaei et al.,
2011).

In the following subsections, we will briefly discuss the
methodologies to learn the dictionary D and solving the
sparse recovery optimization expressed in (2).
2.2.1. Dictionary learning

The goal of dictionary learning is to optimize an over-
complete basis set such that the training feature vectors
can be characterized as a sparse linear superposition of
l network posterior probabilities for exemplar-based speech recognition,
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the basis vectors. This approach assumes that the training
data live in a low-dimensional (non-Euclidean) space that
can be modeled as an union of sub-spaces. An overcom-
plete dictionary, which has more atoms than the dimen-
sions of the subspaces, attempts not only to capture the
broad range of variability that the data can exhibit, but
also helps in decompressing the initial compact
feature-space to a high dimensional sparse space where dis-
crimination between various data phenomena becomes
easier. This favorable property of dictionary learning is
exactly what we need for the task of speech recognition
where the variability comes from countless sources like
gender, age, accent, surroundings etc. The other require-
ment for our task is the efficient scalability of the system
to larger datasets. With availability of huge datasets, an
algorithm which can utilize all the available knowledge will
be preferred.

Given a training set of features Z ¼ ½z1; . . . ; zT � 2 RK�T ,

a dictionary D 2 RK�M and sparse representation
A ¼ ½a1; . . . ; aT � for Z; the ‘1-based sparse recovery based
objective function for classical dictionary learning tech-
niques is defined as

arg min
D;A

1

T

XT

t¼1

1

2
kzt �Datk2

2 þ kkatk1

� �
ð3Þ

where k is the regularization parameter. The first term in
this expression, quantified the reconstruction error whereas
the second term controls the sparsity of at. The joint opti-
mization of this objective function with respect to both D

and at simultaneously is non-convex, it can be solved as a
convex objective by optimizing for one while keeping the
other fixed. In this paper, we study the performance of
two main approaches to dictionary learning using the
posterior-based exemplars. The concept of these techniques
are briefly summarized here.

One of the prominent algorithms for dictionary learning
is K-SVD algorithm developed by Aharon and Elad
(Aharon et al., 2006). It roughly generalizes the idea of
k-means clustering to the task of dictionary learning. The
dictionary is learned atom by atom using the singular value
decomposition (SVD) to minimize the quadratic recon-
struction error associated to each atom. To that end, the
dictionary is initialized and the sparse representation of
the posterior features are obtained. Then, a residual error
Ej is defined when atom dj is removed along with its corre-
sponding coefficients, i.e. jth row of A which is denoted as

a j
T . Hence, each dictionary atom and its associated sparse

coefficients is updated though

dnew
j ; aj new

T ¼ arg min
dj;a

j
T

Ej � dj a j
T

�� ��2

F
: ð4Þ

The SVD is used to find the closest rank-1 decomposition

of Ej to update dj and a j
T . This procedure is repeated for

all atoms of the dictionary. To ensure the sparsity in A,
only those columns of Ej are used for decomposition that
Please cite this article in press as: Dighe, P. et al., Sparse modeling of neura
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correspond to zt’s in Z which use the atom dj in their sparse
representation.

Another important algorithm is a fast online optimiza-
tion proposed by (Mairal et al., 2010) for learning dictionar-
ies based on stochastic approximations. The algorithm
basically alternates between a step of sparse coding for the
current training feature zt and then optimizes the previous

estimate of dictionary Dðt�1Þ to determine the new estimate

DðtÞ using stochastic gradient descent. The algorithm has
been shortly summarized in Algorithm 1.

Algorithm 1. Online Dictionary Learning

Require: Z ¼ ½z1; . . . ; zT � 2 RK�T ; k 2 R :, regularization
parameter, initial estimate for dictionary Dð0Þ 2 RK�M

1: for t ¼ 1 to T do

2: Sparse Coding of zt to determine at:

a ¼ arg min
1 kz �Dðt�1Þak2 þ kkak
� �
l network
t
a 2

t 2 1
3: Updating DðtÞ with Dðt�1Þ as warm restart:

ðtÞ 1Xt 1 2

� �( )

D ¼ arg min

D t
i¼1

2
kzi �Daik2 þ kkaik1
4: end for

5: return DðT Þ
2.2.2. Sparse recovery

The computational methods to solve the sparse recovery
problem expressed in (2) are reviewed in (Tropp and
Wright, 2010). In this paper, we study the performance
of two main approaches to sparse reconstruction of poste-
rior features. The concept of these techniques are briefly
summarized here.

One of the major algorithmic approaches to sparse
recovery relies on greedy pursuit of basis vectors referred
to as the orthogonal matching pursuit (OMP). OMP is
an iterative greedy method which finds a sparse solution
for (2) by repeatedly identifying one or more atoms of
the dictionary that yield the highest improvement in mini-
mization of reconstruction error (Davis et al., 1997; Tropp
and Wright, 2010). A major advantage of this approach is
that it does not need to relax the ‘0 (quasi-) norm crite-
rion, so one can control the sparsity as required. The
stopping criterion can be chosen by fixing the number of
atoms.

An alternative to the greedy sparse recovery is to relax
the problem stated in (2) as a convex objective by replacing
the k:k0-norm with k:k1-norm which is referred to as the
least absolute shrinkage and selection operator (Lasso)
(Tibshirani, 1996). It is known that relaxing the combinato-
rial problem of ‘0 norm to ‘1 constraint leads to (equiva-
lent) sparse solutions for a. While the former is NP-hard,
the relaxed formulation admits efficient polynomial time
algorithms. Furthermore, the solutions of l1-norm
posterior probabilities for exemplar-based speech recognition,

http://dx.doi.org/10.1016/j.specom.2015.06.002


P. Dighe et al. / Speech Communication xxx (2015) xxx–xxx 5
minimization is less sensitive to noise. The standard Lasso
problem can be solved by various convex optimization
techniques. One of the efficient and computationally fast
techniques is LARS implementation (Efron et al., 2004)
which we consider for the present study. We will explain
in Section 3 that the posterior feature space can be very ele-
gantly posed into formulations which lead to hierarchical
group sparsity. Thus, we can leverage the variants of
Lasso which specifically deal with such structured sparsity.
The collaborative hierarchical lasso optimization is consid-
ered for our studies, thus we briefly state its objective for
structured sparse recovery.

In hierarchical group Lasso, sparsity is sought at a
group level as well as for the individual atoms of the dic-
tionary. A set of groups G ¼ ½G1; . . . ;GL� is simply a parti-
tioning over the dictionary. The collaborative hierarchical
group Lasso (C-HiLasso) is developed in (Sprechmann
et al., 2011). This algorithm enables us to incorporate the
dependency among a sequence of posterior vectors zt’s by
defining an objective function for collaboration. By collab-
oration, we mean that the collection of zt’s share the same
non-zero components in at’s. Thus, the collaborative group
problem is formulated as (Sprechmann et al., 2011)

min
a

1

2
kZ�DAk2

F þ k2wGðAÞ þ k1

XT

t¼1

katk1 ð5Þ

where wG is group Lasso regularizer defined as

wGðAÞ ¼
P

G2GkA
GkF and AG is the submatrix formed by

all the rows belonging to group G.
It may be noted that the sparse recovery algorithms sta-

ted above are devised for Euclidean-norm quantification of
data fidelity. The earlier studies on exemplar-based sparse
representation exploits the generalized Kullback Liebler
(GKL) divergence defined as

GKLðzĵzÞ ¼
XK

k¼1

zðkÞ log
zðkÞ
ẑðkÞ � zðkÞ þ ẑðkÞ ð6Þ

for sparse recovery (Gemmeke et al., 2011). This method is
also considered as a benchmark in our experimental analy-
sis in Section 5.
1 In principle, the hidden variable can also correspond to sub-phone
units such as HMM-states (Bahaadini et al., 2014). In this study, we
consider the super-level linguistic units.
3. Compressive sensing perspective to posterior-based sparse

modeling

Speech recognition aims to recover the sequence of
words from the observed acoustic features. The space of

sub-word observation is low-dimensional (e.g. RK�T )
whereas the word transcription requires reconstructing a

high-dimensional representation (e.g. RL�T ; L� K). The
key idea is that the representation of linguistic information
in the form of words for a given utterance is highly sparse.
Hence, we propose to cast the speech recognition problem
as sparse reconstruction of word representation given the
compressed (low-dimensional) acoustic observation. The
dictionary for sparse representation is formed from the
Please cite this article in press as: Dighe, P. et al., Sparse modeling of neura
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sub-word exemplars to characterize the projection of the
word sub-spaces to the space of input posterior features.

To state it more precisely, we define the set of acoustic

units as fqkg
K
k¼1. Given an input feature vector xt at time

t, the posterior probability pðqkjxtÞ, is estimated at the
MLP/DNN output where qk is associated with a phone
(Section 2.1). The set of phone posteriors correspond to
the word level1 posterior probabilities through marginal-
ization over L hidden variables wl as follows:

pðqkjxtÞ ¼
XL

l¼1

pðqk;wljxtÞ ¼
XL

l¼1

pðqkjwl; xtÞpðwljxtÞ

¼
XL

l¼1

pðqkjwlÞpðwljxtÞ; ð7Þ

where the last equality holds due to conditional indepen-
dence of the acoustic observation and input speech given
a super-phone lexical unit such as word.

Considering the observation zt consisting of the phone

posterior features as zt ¼ pðq1jxtÞ; . . . ; pðqK jxtÞ½ �>, an
over-complete dictionary D can be constructed such that
the atoms are exemplars obtained by conditioning the
phone posteriors on a different linguistic unit wl.
Designing the dictionary in this manner, we can now
exploit (2) and (7) to define the sparse posterior-based rep-

resentation at as at ¼ pðw1jxtÞ; . . . ; pðwLjxtÞ½ �>. Eq. (1) now
takes the following form:

pðq1jxtÞ
pðq2jxtÞ

..

.

pðqK jxtÞ

2
66664

3
77775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
zt

¼

pðq1jw1Þ � � � pðq1jwlÞ � � � pðq1jwLÞ
pðq2jw1Þ � � � pðq2jwlÞ � � � pðq2jwLÞ

..

. ..
.

pðqK jw1Þ � � � pðqK jwlÞ � � � pðqK jwLÞ

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dictionary: D¼½d1 ...dl ...dL �

�

pðw1jxtÞ
..
.

pðwljxtÞ
..
.

pðwLjxtÞ

2
666666664

3
777777775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
at

ð8Þ

where

dl ¼ pðq1jwlÞ � � � pðqkjwlÞ � � � pðqK jwlÞ½ �>

Based on (7), if zt and D are composed of posterior fea-
tures, at is also a posterior vector. The hidden variable wl

need not necessarily be associated with a word only; it
can be interpreted as any other linguistic unit. In fact,
Eq. (8) demonstrates how an acoustic feature vector

zt ¼ ½pðq1jxtÞ; . . . ; pðqK jxtÞ�> can be used for recovering the
sparse posterior probabilities in a different linguistically

defined space, at ¼ ½pðw1jxtÞ; . . . ; pðwLjxtÞ�>, using a dic-
tionary D constructed from appropriate exemplars repre-
sentative of the associated labels or hidden variables. In
Fig. 2, we represent this relation using a graphical model
and compare it to the conventional acoustic modeling.
l network posterior probabilities for exemplar-based speech recognition,
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In practice, construction of the dictionary as described
in (8) requires modeling the sub-spaces of each word using
the acoustic features in terms of phone posterior probabil-
ities. To characterize the posterior probabilities of each
word, we learn word-specific dictionaries such that each
column of the dictionary in (8), dl has a sparse representa-
tion stated as

pðq1jwlÞ
pðq2jwlÞ

..

.

pðqK jwlÞ

2
66664

3
77775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dl

¼

pðq1jswwl
1 Þ � � � pðq1jswwl

s Þ � � � pðq1jswwl
Swl
Þ

pðq2jswwl
1 Þ � � � pðq2jswwl

s Þ � � � pðq2jswwl
Swl
Þ

..

. ..
.

pðqK jswwl
1 Þ � � � pðqK jswwl

s Þ � � � pðqK jswwl
Swl
Þ

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Word manifold modeling dictionary:Dwl

�

pðswwl
1 jwlÞ
..
.

pðswwl
s jwlÞ

..

.

pðswwl
Swl
jwlÞ

2
666666664

3
777777775
ð9Þ

where swwl
s denotes the sth sub-word unit of the word

wl; Swl represents the total number of (over-complete)
“bases” to model the sub-space of word wl.

Eqs. (8) and (9) lead us to a very intuitive and natural
representation for continuous speech in terms of posterior
features and word-to-subword hierarchical dictionaries.
Thereby, the posterior-based sparse modeling dictionary
is obtained as

D ¼ Dw1
� � �Dwl � � �DwL½ � ð10Þ

The dictionary D, has an internal partitioning defined by
the boundaries of individual sub-dictionaries Dwl . Ideally,
an input posterior feature zt belonging to a realization of
word wl, when sparse coded using the dictionary above will
have a sparse representation at such that only the atoms
corresponding to the subdictionary Dwl , henceforth
denoted as awl

t , will have non-zero values and awl
t is

expressed as

awl
t ¼ pðswwl

1 jwlÞ . . . pðswwl
s jwlÞ . . . pðswwl

Swl
jwlÞ

h i>
pðwljxtÞ

¼ pðswwl
1 jxtÞ . . . pðswwl

s jxtÞ . . . pðswwl
Swl
jxtÞ

h i>
ð11Þ

and

at ¼ ½aw1
t . . . awl

t . . . awL
t �
> ð12Þ
Fig. 2. Graphical model comparison for (a) the conventional acoustic
modeling and (b) posterior-based sparse modeling framework. The
acoustic unit qt denotes phones and wt corresponds to words/language
transcriptions. In (b) each wt has an associated dictionary Dwt and at is the
sparse latent variable that identifies the mapping between acoustic
observation qt and words wt based on Dwt .
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When a sequence (matrix) of consecutive posterior fea-
ture vectors Z ¼ ½z1; . . . ; zt1 ; . . . ; zt2

; . . . ; zT �, extracted from
a speech utterance, is sparse coded using dictionary D

(Eq. (8)), it yields a sparse representation matrix
A ¼ ½a1; . . . ; at1

; . . . ; at2
; . . . ; aT � that exhibits a collaborative

hierarchical group sparsity structure underlying its compo-
nents. Consecutive posterior feature vectors (zt1

; . . . ; zt2
)

that belong to occurrence of the same word wl excite only
those atoms of dictionary D that correspond to the word
manifold dictionary Dwl . Thus, they collaborate (in time
dimension) to activate a higher level group awl

t (as in Eq.
(12)) corresponding to Dwl . Moreover, the sparse represen-
tation at is sparse at two hierarchical levels: (i) in terms of
the number of groups awl

t activated (which is equal to one
when only one word is spoken at a given time) and (ii) in
terms of the non-zero coefficients of awl

t . This collaborative
hierarchical structure is leveraged to devise the C-HiLasso
algorithm for the objective function formulated in (5)
(Sprechmann et al., 2011) and depicted in Fig. 3. It may
be noted that C-HiLasso forces activation of the same
group(or groups) for all the posterior feature vectors that
are being sparse coded together. Thus, an utterance with
a sequence of words spoken one after another has to be
sparse coded using C-HiLasso in a sliding window fashion.
This ensures activation of a single group (word) in each
position of the sliding window (more details in Sections
4.2 and 5.3).

In the following Section, we describe an application of
the posterior-based sparse modeling formalism for auto-
matic speech recognition task.
4. Posterior-based sparse modeling for speech recognition

The sparse representation, at’s, can be directly used as
posterior features in KL-HMM framework for speech
recognition (Bahaadini et al., 2014) to improve the perfor-
mance. In the present study, we focus on novel speech
recognition paradigm that can be devised based on sparse
modeling of posterior features.

Given a posterior feature zt and the dictionary D defined
in (10), we first obtain the sparse representation at using sparse
recovery methods described in Section 2.2.2.2 Defining awl

t

expressed in (11) as elements of at corresponding to the
word-specific dictionary Dwl , the posterior probability
pðwljxtÞ for word wl is estimated as

pðwljxtÞ :¼ kawl
t k1 ð13Þ

assuming a union of disjoint events due to sparse recovery
over the overcomplete dictionaries.

Consider a sequence of posterior features Z (estimated
from acoustic features X). A sequence of word posterior
2 To obtain the non-negative sparse word posterior probabilities, the
Lasso algorithm is revised to project the coefficients at each iteration onto
the non-negative orthant. These are separable constraints on the coordi-
nates so it does not compromise the convergence of the method. Lastly,
they are ‘1 normalized.

l network posterior probabilities for exemplar-based speech recognition,
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Fig. 3. Given a sequence of acoustic features Z, the sparse representation matrix A will have a sparse block structure associated to the word-specific
dictionaries (Dwl ’s) where the inner block coefficients are sparse as well. This collaborative hierarchical sparsity structure is exploited in (Sprechmann et al.,
2011) to devise an efficient C-HiLasso algorithm for the sparse recovery objective expressed in (5).
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sparse representations A is obtained using the sparse recov-
ery algorithms on Z. Using the frame level word-posterior
probabilities pðwljxtÞ’s from Eq. (13), the maximum-a pos-
teriori word recognition can be obtained for X through

wrecognized :¼ arg max
wl

pðwljXÞ ¼ arg max
wl

YT

t¼1

pðwljxtÞ ð14Þ

where T indicates the length of the test utterance in isolated
word recognition.
4.1. Isolated word recognition

Although the conventional methods often exploit the full
dictionary D for sparse reconstruction (Gemmeke et al.,
2011; Bahaadini et al., 2014), sparse recovery for isolated
word recognition tasks can also be done using
word-specific dictionaries (Dwl ) exploiting the prior knowl-
edge on the dictionary partitioning. In this case, we obtain
awl

t ’s for each Dwl directly, instead of at. This approach leads
to word-wise sparse recovery with a caveat that the word
posterior probabilities stated in (8) as at cannot be directly
obtained. The reason is that for each word wl, a sparse rep-
resentation awl

t is computed through an independent
non-competing sparse coding process using dictionary Dwl .

Instead, word recognition decisions for a sequence of
posterior features Z can now be made using minimization
of least-square reconstruction error over all dictionaries
Dwl . The reconstruction error has been successfully applied
for classification task (Wright et al., 2009) and linear pre-
dictive HMM (Kenny et al., 1990). If the reconstruction
error for sparse recovery of zt using dictionary Dwl is
denoted by

ewl
t ¼ ½etð1Þ . . . etðlÞ . . . etðLÞ�>;where etðlÞ ¼ kzt �Dwlatk2

2

then word recognition for the complete sequence Z can be
done using (14) and following accumulation of errors rule
due to Gaussian noise model:
Please cite this article in press as: Dighe, P. et al., Sparse modeling of neura
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wrecognized :¼ arg min
wl

XT

t¼1

ewl
t ð15Þ
4.2. Continuous speech recognition

The difficulty in continuous speech recognition is rooted
in the unknown word boundaries. Hence, T frames may
encapsulate several classes with pauses in between. We learn
a specific dictionary for sparse representation of the class of
pause/silence. The pause state is already defined in the out-
put layer of the neural network (c.f. Section 2.1) which
makes it straightforward to distinguish the pause acoustic
features from the training data. The neural network is not
perfect in pause detection and learning a pause dictionary
is beneficial for sparse modeling of continuous speech.

For continuous speech recognition, we can either
employ sliding window based analysis or the C-HiLasso
approach discussed earlier. We discuss these two
approaches here.
4.2.1. Block-wise search

Similar to isolated word recognition, sparse recovery
can be done using word-specific dictionaries Dwl ’s. We just
need to convert the reconstruction errors etðlÞ into empiri-

cal word posterior probabilities. Let M denote the maxi-
mum value of ewl

t . The empirical word posterior
probabilities are then obtained through

pðwljxtÞ :¼ M � ewl
t

ketk1

ð16Þ

The empirical probabilities in (16) can be used in a Viterbi
decoder in a similar manner as the probabilities from Eq.
(13).
4.2.2. C-HiLasso

Given test utterance Ztest, a sliding window of appropri-
ate length T 0 can be used to process a collection of frames
l network posterior probabilities for exemplar-based speech recognition,
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Zt...tþT 0�1
test using C-HiLasso. The window length T 0 should be

short enough to separate a single word and long enough to
group the sequence of frames into a single consistent class.
Hence, the choice of T 0 is not trivial and should be learned
during the recognition task. It may be noted that the col-
laborative hierarchical Lasso requires the full dictionary
D for computing sparse representation at. The word poste-
rior probabilities from Eq. (13) are then simply employed
to obtain the word sequence using a Viterbi decoder.

4.3. Modeling temporal information of speech

The mechanism to account for temporal continuity or
sequencing information of the acoustic features in our
posterior-based sparse modeling framework is threefold:

� Context appending: A sequence of input frame-level
posterior features are appended to form a segmental
posterior feature. In other words, a context of c frames

is concatenated in the form of ~zt ¼ ½z>t�c . . . z>t . . . z>tþc�
>

as
the input acoustic feature which is used for dictionary
learning and word posterior sparse reconstruction.3

This mechanism is referred to as context appending

which is a typical approach to incorporate the dynamics
of the features (Gemmeke et al., 2011; Bahaadini et al.,
2014). Context appending incorporates time-dimension
in the process of learning a dictionary.
� Structured sparsity: The collaborative hierarchical

Lasso stated in (5) exploits the hierarchical group spar-
sity structure to activate a single group/word in a collab-
orative fashion for a sequence of input posterior frames.
This mechanism, referred to as structured sparse model-

ing, has not been considered in the earlier literature on
exemplar-based sparse representation.
� Viterbi decoding: When the dictionaries are learned for

smaller speech units like phones/states, Viterbi algorithm
can be used for decoding a word sequence from the phone
posterior lattice given by the dictionary based sparse cod-
ing. Viterbi algorithm enforces the phone/state based lan-
guage model underlying the word sequences.

Fig. 4 illustrates the flow chart of the proposed
posterior-based sparse modeling approach for speech
recognition.

4.4. Relation with HMM and DTW

In this section, we discuss the links between sparse mod-
eling, HMM and DTW sequence matching (acoustic model-
ing). Table 1 summarizes the key features of each approach.
A good comparison between template based approaches and
HMM is also given in De Wachter et al. (2007).
3 As the input of the neural network is already context appended
spectral features (see Fig. 1), this approach is generally capable of
exploiting a larger context than the conventional methods for word
probability estimation.
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The HMM and DTW are devised to find the best match
between the acoustic input and a set of reference exem-
plars. In case of HMM, the training exemplars are
exploited to learn the hyper-parameters of a statistical
model. Assuming that a probability distribution is a good
hypothesis for the underlying generative process of the
data, the HMM framework enables modeling the word
manifold with a Markovian structure through the design
of a parametric dictionary where each atom characterizes
the underlying probability distribution. The parametric
design approach can lead to better generalization of the
model with fewer amount of training data. On the other
hand, DTW is a non-parametric approach where the word
manifold is assumed to be spanned by the exemplars from
the training data and the test acoustic input is characterized
by the closest training exemplar. In that sense, the dic-
tionary is the set of all training exemplars.

The sparse modeling approach relies on modeling the
low-dimensional word manifold through dictionary learn-

ing rather than parametric design developed through
HMM. In essence, the underlying process is assumed to
generate the low-dimensional union of sub-spaces learned
from the training data instead of being a Gaussian or
multinomial distribution.4 We will see in Section 5.3.1 that
this new modeling paradigm can lead to better characteri-
zation of the MLP/DNN posterior features, while it bears
the potential to be integrated with the design strategy of
HMM framework. It is demonstrated that the k-sparse lin-
ear combination yields smaller characterization error for
posterior feature vectors compared to the 1-sparse
(DTW) and averaging (HMM with multinomial emission
distribution) counterparts.

5. Experimental analysis

We perform a series of experiments for empirical evalu-
ation of the proposed approach. The experiments are
devised to provide thorough analysis of the key features
of this work and empirical insights into structured sparsity
and contextual modeling. In addition, different computa-
tional methods to dictionary learning and sparse recovery
are evaluated. Furthermore, we study the performance of
the proposed posterior-based sparse modeling approach
for exemplar-based automatic speech recognition. This task
is studied in the context of isolated word recognition as
well as continuous speech recognition and the performance
is compared with the previous exemplar-based approaches.

5.1. Databases

Two databases are used: (1) Phonebook speech corpus
(Pitrelli et al., 1995) recorded on single microphone channel
at 16KHz, for isolated word recognition task and (2)
4 The multinomial distribution is considered in derivation of KL-HMM
(Aradilla et al., 2008) which has been shown to be a suitable acoustic
modeling framework for posterior features.

l network posterior probabilities for exemplar-based speech recognition,
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Fig. 4. Flowchart of speech recognition system using the proposed posterior-based sparse modeling approach.

Table 1
Comparing HMM and DTW template matching and sparse modeling approaches to speech recognition.

HMM Template-matching Sparse modeling

Theory Data is generated from probability
distribution

Data live in space spanned by all training
templates

Data live in a low-dimensional union of
subspaces

Modeling Gaussian/multinomial fitting Collection of templates Dictionary learning
Algorithm Viterbi decoding DTW matching Sparse recovery
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Numbers database, a subset of Numbers 95 (Cole et al.,
1995), recorded over telephone channel at 8KHz, for con-
nected word recognition task. We perform two sets of
experiments with Phonebook for isolated word recognition
task - an easier 75 words vocabulary task and a more chal-
lenging 600 words vocabulary task. Each word has around
11 utterances, out of which we use 4 for learning dictionar-
ies and the rest for testing. This setup is similar to the
experiments in (Soldo et al., 2011).

For connected word recognition, we work on Numbers
database, which has been created by picking, from
Numbers 95 database, only those utterances that involve
the 10 digits (zero to nine) and oh (alternative pronuncia-
tion for zero). Overall there are around 55 k utterances,
out of which we use 60% for training, 20% as development
set and the rest for testing. Since the amount of training
Please cite this article in press as: Dighe, P. et al., Sparse modeling of neura
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data is small for Phonebook, each dictionary is initialized
with one of the four templates in the training data, and
the rest are used for dictionary learning. Hence, the dic-
tionary size is 25% of the size of training collection. For
Numbers, we use a concatenation of 100 utterances for ini-
tializing the word-specific dictionaries, and the rest of
training data for learning the dictionaries. As there are
	3000 training exemplars per word, the dictionary size is
	3% of the size of training collection. For both databases,
the features used are similar to (Aradilla et al., 2008) as
described in Section 2.1.

5.2. Posterior-based dictionary learning and sparse recovery

In this section, we study different aspects of dictionary
learning for sparse representation of posterior features.
l network posterior probabilities for exemplar-based speech recognition,
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5.2.1. Structured sparsity

The high dimensional sparse representations exhibit
some structures that can be exploited for speech
recognition.
Sequencing pattern

We demonstrate that controlled initialization of the dic-
tionary enables preserving the temporal information during
the learning procedure. Using Phonebook data, the
word-specific dictionary is initialized with an exemplar of
the word. Dictionary learning explained in Section 2.2.1
leads to the atoms being updated such that the temporal
evolution of the word is embedded in the sequence of the
atoms. We can verify this hypothesis from the sparse repre-
sentation of a sequence of acoustic features Z using the
word-specific dictionaries. Fig. 5 illustrates the sparse rep-
resentation obtained for the sequence of the acoustic fea-
tures of the word ‘Accumulation’. We can see that the
sequencing pattern is exhibited when the correct dictionary,
i.e., DAccumulation is used for sparse recovery. On the other
hand, the sequencing pattern is distorted when the wrong
dictionary, e.g. DAlleviatory is exploited.

The sequencing pattern can be justified from (9): Each of
the dictionary columns behaves like the subword probabil-
ities, pðqkjswwl

s Þ which are evolving with time. As a sequence
of sws comprise the word wl, the high dimensional sparse
subword representations corresponding to pðswsjwlÞ exhi-
bits the sequencing pattern. The sequencing pattern
encourages us to look for mechanisms of incorporating
the temporal information. One approach is through the
use of structured sparse recovery based on C-HiLasso (5)
that is studied hereafter.
Collaborative hierarchical sparsity
The collaborative hierarchical sparsity is explained in

Section 3 for posterior-based sparse modeling. We can ver-
ify this intuition using C-HiLasso objective in (5) to obtain
the word posterior probabilities of connected digits. Fig. 6
demonstrates the sparse representation of a test digit
Fig. 5. Sparse representation of the word “Accumulation” when the dictionary
exhibited for the correct word hypothesis.
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sequence 0-2-1-4-4 using C-HiLasso when it is sparse coded
using the complete dictionary D. The results are contrasted
with Fig. 7 where the collaborative hierarchical sparsity
structure is ignored for sparse representation.

We can see that exploiting the structure sparsity of the
sparse coefficients leads to better discrimination of the indi-
vidual classes. The frame-level posterior features are used
for this experiment. An alternative strategy to exploit the
temporal information is devising the context-appended
features.
5.2.2. Context size optimization
To incorporate the contextual information associated

with temporal evolution of the features, one effective way
is to append the posterior features of each frame with its
neighboring posteriors. More specifically, for a context size

of c, a frame-level posterior feature zt 2 RK is mapped to

segmental feature ~zt 2 RKð2cþ1Þ by appending c features on
its right and left accordingly. This technique was success-
fully applied in (Bahaadini et al., 2014). Learning a dic-
tionary this way improves the effectiveness of
word-specific sub-dictionaries significantly as we will see
below.

Fig. 8 and 9 illustrate the improvement in isolated word
recognition rate for different context sizes using Phonebook
and Numbers database respectively. A context size of
c ¼ 20 frames was found to be optimal for Phonebook cor-
pus and the performance drops for larger c. This context
size is applied for the rest of the evaluation on
Phonebook data. On the other hand, we observe a consis-
tent improvement in performance on Numbers recognition
with increasing the context size. The difference can be jus-
tified due to the lack of training data in Phonebook.

The average word length of the Numbers corpus is 	 30
frames. Hence, longer contexts indicates that each feature
vector represents the whole word. Hence, the sparse repre-
sentation models the acoustic features as a linear combina-
tion of the full word exemplars. This concept has been
applied successfully in (Gemmeke et al., 2011). However,
corresponds to (a) DAccumulation and (b) DAlleviatory. The sequencing pattern is

l network posterior probabilities for exemplar-based speech recognition,
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Fig. 6. Sparse representation of connected digit sequence 0-2-1-4-4 using
full dictionary (D) and C-HiLasso sparse recovery.

Fig. 7. Sparse representation of connected digit sequence 0-2-1-4-4 using
full dictionary (D) and Lasso sparse recovery.

Fig. 8. Optimization of context size for Phonebook word recognition
using full dictionary (Gemmeke et al., 2011; Bahaadini et al., 2014) and
word-specific dictionaries for sparse recovery. The best performance is
achieved at context of 20 frames using word-specific dictionaries.

Fig. 9. Consistent word recognition improvement with the increase in
context size for Numbers data. At the context size above 30 frames, the
atoms correspond to full-word exemplars which have been successfully
applied for spectral-based sparse representation (Gemmeke et al., 2011).
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(Gemmeke et al., 2011) use the full dictionary D for sparse
recovery. We can verify that when standard Lasso is used,
the word-specific sparse recovery, using Dwl ’s, yields better
word recognition performance than using the complete dic-
tionary D. The comparison of these two approaches is illus-
trated in Fig. 8.

It may be noted that the use of context appended features
is complementary or even alternative to the collaborative
hierarchical structured sparse recovery. In fact, our experi-
ments on continuous speech recognition presented in
Section 5.3.2 reveals that once the “optimal” context size is
applied, the block-wise sparse recovery using word-specific
dictionaries outperforms C-HiLasso. Nevertheless, the com-
promise for smaller context and structured sparse recovery is
an interesting feature of this work.Comparison of dictionary

learning and sparse recovery algorithms

Dictionary learning and sparse recovery are the two pil-
lars of sparse modeling framework. We conduct some
experiments using the state-of-the-art techniques to learn
the dictionary of posterior-based exemplars and obtain
the word posterior sparse representation for speech recog-
nition. The evaluation is performed on Phonebook
75-vocabulary isolated word recognition task. The results
are listed in Table 2. Bold values in the table refer to the
best performing system.

The best recognition performance is obtained using the
online dictionary learning algorithm with Lasso sparse
Please cite this article in press as: Dighe, P. et al., Sparse modeling of neura
Speech Comm. (2015), http://dx.doi.org/10.1016/j.specom.2015.06.002
recovery (see Mairal et al., 2010) with an accuracy of
97.2%. The online dictionary learning algorithm has been
found to work fast with LARS Lasso (Efron et al., 2004)
with higher accuracies. K-SVD performs poorly in compar-
ison. One of the weakness of K-SVD is that the algorithm
can get stuck in local minima because of the non-convexity
of the problem (Aharon et al., 2006).

5.2.3. Dictionary learning vs collection of exemplars

Finally, we can verify the hypothesis that dictionary
learning performs better than the use of all training exem-
plars for sparse representation. In isolated word recogni-
tion experiment on Phonebook 75-vocabulary dataset, a
single exemplar is used as a warm start for dictionary ini-
tializing. The remaining 3 exemplars in the training set
are then used for updating the dictionary columns using
Algorithm 1. Alternatively, 4 training exemplars are con-
catenated to form a dictionary for sparse representation.
A similar comparison was done for connected digit recog-
nition on Numbers database, where we can either learn
word-specific dictionaries or we can directly represent each
word using all training exemplars (Gemmeke et al., 2011).
The results are listed in Table 3. We can see that the dic-
tionary learning procedure is quite effective; it can benefit
from the abundance of the training data, while it enables
us to keep the dimensionality of the exemplar space small
and at the same time improve the performance.
l network posterior probabilities for exemplar-based speech recognition,
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Table 4
Isolated word recognition accuracies (in %) for Phonebook database on
75-vocabulary (PB75) and 600-vocabulary (PB600) sets.

System PB75 PB600

DTW 84.7 73.5
Sparse modeling 97.8 93.2

Table 2
Word recognition rate (%) on Phonebook 75-vocabulary dataset using
different computational methods to dictionary learning and sparse
recovery. In this study we consider the online dictionary learning
(Mairal et al., 2010) and KSVD (Aharon et al., 2006) algorithms for
learning the dictionary of segmental posterior exemplars (c ¼ 20). The
LARS implementation of LASSO (Efron et al., 2004), OMP (Tropp and
Wright, 2010) and generalized Kullback–Leibler divergence (GKL) (6)
sparse recovery (Gemmeke et al., 2011) algorithms are used for
reconstruction of word posterior sparse representation. The word recog-
nition is obtained through (14)–(16).

Lasso OMP GKL

Online algorithm 97.2 93.5 76.5
KSVD 55.8 88.9 8.4
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5.3. Experiments on automatic speech recognition

In this section, we focus on evaluation of the proposed
system for automatic speech recognition.
5.3.1. Exemplar-based isolated word recognition

The isolated word recognition evaluation is conducted
on Phonebook database. The exemplar-based sparse mod-
eling using spectral features (Gemmeke et al., 2011) yields
less than 50% accuracy on 75-vocabulary recognition data-
base. This observation can be justified as the training data
is really scarce and does not meet the requirement for the
system developed by (Gemmeke et al., 2011).

The prior studies have shown that posterior features
perform well when the training data is limited to a few
exemplars using DTW template matching (Aradilla and
Bourlard, 2009; Soldo et al., 2011). Hence, the
DTW-based word recognition is our benchmark for this
study. We compare the performance of our
posterior-based sparse modeling framework with an equiv-
alent DTW template matching system that uses Euclidean
distance metric. Both systems are given the same training
set of 4 utterances per word and the rest of the utterances
for testing. While dictionary learning approach utilizes
(14)–(16) for decision making, the DTW approach is based
on finding the minimum distance template from the train-
ing sets of all words. Table 4 shows the results for these
experiments on 75-vocabulary and 600-vocabulary sets.
We can see that the proposed posterior based sparse mod-
eling framework outperforms the similar DTW
Table 3
Comparing the speech recognition accuracy (%) on Phonebook (isolated
word recognition) and (connected word recognition – Section 5.3.2) using
dictionary learning versus collection of exemplars. The size of training
data in Phonebook is small. In this case the dimension of dictionary
exemplars (number of learned atoms) is 25% of the full training set. The
size of training data in Numbers corpus is large. In this case the dimension
of dictionary exemplars (number of learned atoms) is 	3% of the full
training set.

Task Dictionary learning Collection of exemplars

Phonebook 97.2 97
Numbers 85.4 78.6
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template-matching system. The online dictionary learning
algorithm along with LARS Lasso sparse recovery
(Mairal et al., 2010) are used for word posterior sparse
reconstruction.

The word recognition accuracy of the HMM/MLP sys-
tem presented in (Pinto et al., 2009)5 is 98.8% for
75-vocabulary set and 96.0% for 600-vocabulary set.
Previous work by (Soldo et al., 2011) showed that the best
results were obtained by DTW template matching using
weighted symmetric KL divergence and it outperforms
the HMM/MLP system. Hence, our future work will con-
sider devising the dictionary learning and sparse recovery
algorithms tailored for this “optimal” distance measure.

Union of subspaces model

We recall our discussion in Section 4.4 on the theoretical
assumption underlying different modeling strategies for
speech recognition. Given a pool of training exemplars,
sparse modeling, HMM and DTW take different
approaches to model the word manifolds. Sparse modeling
assumes a union of subspace model and learns an overcom-
plete “basis” set for sparse representation using the training
data. The test exemplar is characterized as a k-sparse linear
combination of the “basis” vectors. On the other hand,
HMM assumes that data is generated through a specific
probability distribution (e.g. Gaussian or multinomial)
and learns the associated hyper-parameters. This approach
can also be seen as designing a parametric dictionary for
word manifold. DTW assumes that the whole space is
spanned by the training exemplars in which the test exem-
plar is best represented by the closest training data. The
EM procedure for learning the parameters of an HMM
with multinomial emission likelihood indicates that the
average of all training exemplars associated to each state
can characterize the subspace of an HMM state (Aradilla
et al., 2008). In contrast, the DTW approach assumes a
1-sparse characterization of the test exemplar and the
sparse modeling approach employs a k-sparse linear com-
bination of the training data.

Our hypothesis is that sparse modeling is more accurate
in characterization of the training data. More specifically,
representing a posterior exemplar as a k-sparse combina-
tion of the training exemplars is more accurate than
1-sparse (as in DTW) or averaging (as in KL-HMM) char-
acterization. The accuracy in this context is quantified in
terms of weighted symmetric KL divergence as it was
5 This system is task-independantly trained so the scenario is more
difficult than the presented scenario due to unseen words.

l network posterior probabilities for exemplar-based speech recognition,
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shown to be an appropriate distance measure in posterior
feature space (Aradilla et al., 2008).

To validate this hypothesis, we perform a simple experi-
ment of template matching using DTW for 75-vocabulary
set of Phonebook. Out of 11 utterances for each word, we
keep 4 utterances as training templates and use the rest for
testing. All possible averaging of the 4 exemplars, i.e.

4
k; 8k2f1;2;3;4g

� 	
are obtained by DTW matching of the selected

templates followed by averaging the corresponding elements
to obtain a single template. We then quantify the distance of
the test exemplars with the newly constructed templates. The
smaller distance indicates better characterization of the test
templates using the training data. This experiment is run for
all test data. We observe that only 4.9% of the exemplars
have the least characterization error using a single closest
template (DTW assumption). Moreover, only 9.7% are best
characterized by the model obtained from averaging the full
training set (KL-HMM assumption, Aradilla et al., 2008).
On the other hand, all remaining 85.4% of the exemplars
have the least characterization error using the templates
which are obtained as a combination of a few (2 or 3) training
exemplars. This observation confirms the hypothesis of the
effectiveness of the union of subspace approach to model
the posterior feature space.
Table 5
Exemplar-based connected digit recognition on Numbers database. Word
Error Rate (WER) is obtained by Levenshtein distance.

# System WER (in %)

1 Collection of (posterior) exemplars 21.4
2 Word dictionary (block-wise search) 14.6
3 Word dictionary (C-HiLasso) 18.5
4 Phone dictionary (block-wise search) 12.5

5 Phone dictionary (C-HiLasso) 17.7
5.3.2. Exemplar-based continuous speech recognition

The continuous speech recognition evaluation is con-
ducted on Numbers database. As indicated earlier, the
sparse representation, at’s can be directly used as posterior
features in KL-HMM framework for speech recognition
(Bahaadini et al., 2014) and it has been shown to improve
the performance. In this study, we devise a speech recogni-
tion system based on sparse modeling of posterior features.
The prior works (Gemmeke et al., 2009; Gemmeke et al.,
2011) on exemplar-based sparse representation use spectral
features for connected digit recognition task, whereas we
work with MLP/DNN based posterior features.
Moreover we use dictionaries in place of collection-of
-exemplars to estimate word/phone likelihoods and use
them to decode the most likely sequence of digits relying
on Viterbi dynamic programming.

Word-specific dictionary learning

Previous approaches employ a collection of all exem-
plars for sparse representation. However, our preliminary
evaluation (c.f. Fig. 8) suggests the use of word-specific dic-
tionaries for block-wise sparse recovery. We compare both
approaches in this experiment. A sequence of 17 frames
(c ¼ 8) is concatenated to encode the dynamics of the fea-
tures. This analysis window is shifted by one-frame at a
time as it was shown to yield the best recognition results
(Gemmeke et al., 2009). Furthermore, a sequence of
T 0 ¼ 3 such concatenated frames are considered for
C-HiLasso to exploit the collaborative group sparsity
structure underlying the sequence of sparse representa-
tions. Recall the discussions in Sections 4 and 5.2.1,5.2.2,
Please cite this article in press as: Dighe, P. et al., Sparse modeling of neura
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that context appending and collaborative hierarchical spar-
sity are our mechanisms to incorporate the sequencing
information underlying the acoustic features.

The Viterbi decoder as explained in Gemmeke et al.
(2009) is implemented to decode the word sequence. For
each digit, we learn the maximum and minimum durations
from the training set. The Viterbi decoder applies duration
penalties to all the paths where these duration constraints
are violated. No language model is used for this task.
The results are presented in Table 5 (systems 2–3). The
word-based dictionary consists of 	3000 exemplars.
Posterior-based system using word dictionaries performs
better (14.6% WER) as compared to the baseline
exemplar-based approach using collection of exemplars
(system 1). Furthermore, the performance is comparable
to the best results of Gemmeke et al. (2009) on
word-based labeling using a collection of 16,000 spectral
features and context size of 35 frames. This observation
confirms the hypothesis that posterior features are more
suitable than the spectral features for exemplar-based
sparse modeling approach to continuous speech recogni-
tion. Moreover, dictionary learning is central to gain signif-
icant improvement in performance.

In addition, we can see that context appended segmental
features are quite effective in exploiting the temporal infor-
mation. Once again, the dictionary learning outperform the
conventional use of the collection of exemplars signifi-
cantly. The window size for C-HiLasso is an important
parameter optimizing which can lead to better recognition
results. However, the C-HiLasso approach performs worse
than the block-wise search. The reason can be associated to
downsampling of the sparse recovery problem by a factor
of 12 in the block-wise approach.

A major problem with the word-based labeling of the
training exemplars is associated with the occurrences of
the repeated words, e.g. 4-4-4. In such cases, distinguishing
among the same classes is hard if there is no pause in
between and the word durations are relatively short. To
tackle this problem, we use phone-based labeling and
decoding.

Phone-specific dictionary learning

For the training set, we generate the phone alignments
for the digit sequences using 27 phones using a Viterbi
decoder. Each digit is expressed by a sequence of 3 to 5
phones except ‘oh’ which constitutes of a single phone.
Phone-based dictionaries are learned from the training set
l network posterior probabilities for exemplar-based speech recognition,
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using these alignments. We label the same phone in two dif-
ferent digits with a different tag so as to learn two indepen-
dent dictionaries for it from its occurrence in two different
contexts. With this procedure, we learn a total of 36 phone
dictionaries. A pause dictionary is used in this case as well.
For phone-based evaluation, a sequence of 5 frames are
concatenated (c ¼ 2) and we use the similar sliding window
mechanism for analysis as in the previous experiment. We
generate phone probabilities for each input feature vector
and pass them to a Viterbi decoder. Viterbi paths here
are restricted to valid phone sequences using topology of
the possible transitions. Penalties associated with word
transitions and duration penalties for phones are also used.
The results are presented in Table 5 (systems 4–5). We get a
WER of 12.5% with phone-based dictionaries. Handling
repeated digits becomes a trivial issue with phone-based
dictionaries. The phone-specific dictionary is also applica-
ble to model the unseen words.

Hybrid exemplar-based/probabilistic HMM decoding

A major difference from the previous exemplar-based
sparse representation approaches (Gemmeke et al., 2009,
2011) comes from the fact that they are hybridized with a
conventional HMM. A state label matrix for each exemplar
(obtained from a conventional HMM system) is rescored
using sparse recovery based likelihoods before Viterbi decod-
ing. In contrast, system 2 to system 5 in Table 5 decode the
obtained sparse recovery based likelihoods directly without
using any HMM based state labels. A hybrid dictionary-
based/HMM decoding system was also implemented exactly
analogous to hybrid exemplar-based/HMM in (Gemmeke
et al., 2011). In this experiment, we get state labels for each
frame using a conventional GMM-HMM system (Povey
et al., 2011). State labels assigned to the training data are
used to learn the state-specific dictionaries. In total, there
are 111 states including 3 states for pause. On the test data,
these state-specific dictionaries generate sparse state likeli-
hood scores which are hybridised with the HMM state label-
ings for Viterbi decoding thereafter. This hybrid system
works at a WER of 10.0% and does not show improvement
upon the GMM-HMM system (9.4%). This observation is in
line with the results of (Gemmeke et al., 2011) in clean con-
dition experiments. The HMM-MLP system (Aradilla, 2008)
works at 7.2% WER.

6. Conclusions

The present work demonstrates a novel study of
exemplar-based sparse modeling for speech recognition
using neural network based posterior features. In this con-
text, the posterior features outperform the conventional
spectral features. In addition, we show that exemplar-
based speech recognition systems can benefit from dic-
tionary learning algorithms to reduce the dimension of
the training exemplars into a small learned “basis” compo-
nents for characterizing the low-dimensional manifolds
associated to the linguistic units (e.g. words, phones). We
Please cite this article in press as: Dighe, P. et al., Sparse modeling of neura
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confirm the hypothesis that the posterior features can be
effectively characterized using a union of subspace model.
The theory of exemplar-based sparse modeling is tightly
related to the theory of statistical speech recognition.

We observe that the temporal sequencing information
can be exploited by using either segmental features or col-
laborative hierarchical sparse recovery. The advantage of
structured sparse reconstruction is that the sequencing
Markovian structure underlying both DTW and HMM
based systems can be replaced by a more relaxed structure
in sparse modeling framework where the representation
coefficients collaborate to activate a sparse set of linguistic
units (e.g. words or phones). The choice of an appropriate
group size for structured sparsity is a parameter dependent
on speech units being recognised. This framework can
bring us different advantages in continuous speech recogni-
tion system by alleviating the requirement for identifying
the inter-dependency of the acoustic features prior to
recognition. Still we acknowledge that capturing temporal
properties of speech using dictionary-based sparse repre-
sentation approaches is an open issue for further investiga-
tion. Future work lies in integrating the proposed system
with other components of a traditional automatic speech
recognition system. Since we obtain the sparse representa-
tion as a posterior space, we can construct HMMs with
states corresponding to the dictionary atoms where the
emission probabilities are characterized as a union of sub-
spaces model. This sparse-HMM formalism can integrate
the qualifications of exemplar modeling and HMM to ben-
efit from the strengths of both systems, in particular the
power of dictionary learning in better characterization of
the posterior features compared to the alternative methods
(Section 5.3.1-Union of Subspaces Model). Furthermore,
alternative distance measures in posterior feature space
such as weighted symmetric KL have been shown to better
capture the relation of these acoustic features. Hence, our
future plan will consider devising the dictionary learning
and sparse recovery algorithms tailored for this “optimal”
distance measure.

Previous work based on exemplar-based sparse repre-
sentations (Gemmeke et al., 2011) has been shown to give
promising results on ASR in noisy conditions especially
at lower signal-to-noise ratio environments. This provides
motivation for developing a noise robust ASR system using
the proposed posterior features and dictionary learning
based framework. Possible applications of such a system
can also include other mismatched conditions like accented
speech or multi-lingual ASR.
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