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ABSTRACT
We address the problem of body communication retrieval
and measuring in seated conversations by means of marker-
less motion capture. In psychological studies, the use of au-
tomatic methods is key to reduce the subjectivity present in
manual behavioral coding used to extract these cues. These
studies usually involve hundreds of subjects with different
clothing, non-acted poses, or different distances to the cam-
era in uncalibrated, RGB-only video. However, range cam-
eras are not yet common in psychology research, especially
in existing recordings. Therefore, it becomes highly relevant
to develop a fast method that is able to work in these con-
ditions. Given the known relationship between depth and
motion estimates, we propose to robustly integrate highly
appearance-invariant image motion features in a machine
learning approach, complemented with an effective tracking
scheme. We evaluate the method’s performance with exist-
ing databases and a database of upper body poses displayed
in job interviews that we make public, showing that in our
scenario it is comparable to that of Kinect without using
a range camera, and state-of-the-art w.r.t. the HumanEva
and ChaLearn 2011 evaluation datasets.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioral sci-
ences; G.3 [Mathematics and Computing]: Miscella-
neous; D.2.8 [Image Processing and Computer Vision]:
Metrics—Scene analysis

General Terms
Monocular motion capture; optical flow; social computing;
job interviews
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1. INTRODUCTION
Nonverbal communication can influence how we are so-

cially perceived, therefore this subject has been intensively
analyzed in social psychology and cognitive science [14]. In
these domains, however, there has traditionally been the
need for an interpreter. That is, a person that emits a judg-
ment on the perceived traits of the analyzed subject, or that
codes specific behaviors from hours of video recordings. This
judgment always carries a degree of subjectivity, which can
lead to inconsistencies across different evaluations.

Figure 1: Data flow overview. (a) Original image. (b) Pro-
posed 4-channel image. (c) Body part classification and confi-
dence scores. (d) Obtained pose. Please view in PDF.

Markerless motion capture from monocular images is a
good solution to this problem (as markers placed in the body
can alter the behavior), but remains a challenge in computer
vision. This is a consequence of many factors, such as the
high-dimensionality of the data, camera projection distor-
tions, appearance variability (e.g. clothing, skin, hair...) or
external and self-occlusions. In the last few years range cam-
eras have appeared in the mass market, largely solving the
depth perception and color appearance problems. Other dif-
ficulties remain, however, such as clothing, the many differ-
ent contexts in which the same body part can appear, and
the high dimensionality of the articulated motion. The work
in [25] presented a solution to human pose estimation with
a machine learning approach: a classifier was trained with
a very large database from simple offset features capturing
depth differences between near pixels. Invariance to cloth-
ing, body types, and part appearances was therefore learned.
This resulted in a very robust solution with previously un-
seen performance levels, assuming that depth is available.

In psychological studies, however, there is still a clear need
for processing and analyzing in RGB-only images: most of
the historical material and even newer studies [34] use tradi-
tional video, as psychology tends to be a discipline in which
technological changes take time to be widely adopted. In



RGB images, the approach of [25] is not directly transfer-
able: simple color differences as features would depend on
the background and person appearance. In motion capture,
several techniques have been proposed in order to get in-
variant features from RGB images. HOG-based Body Part
Detectors (BPDs) in particular are able to obtain a rough
estimate of the pose, later refined with a number of different
solutions such as global coherence [30] or symmetry analysis
[21]. However, the output of BPDs is often very noisy, with
several parts interfering with one another. BPDs are also
sensitive to changes in the background.

In this paper, we present a robust method to extract the
body pose from sequences of seated conversations, applicable
to RGB video data. Our main contributions therefore are:
(1) our method provides a high degree of appearance and
scale invariance while using only an uncalibrated RGB cam-
era. To this end, we obtain a depth estimate through image
motion, given the relationship between both [32]. The scale
and spatial context problem is tackled with a single human
body detector [9][7], thus avoiding the clutter of using many
part detectors. To overcome the lack of information when
there is no movement present, we integrate a Kanade-Lucas-
Tomasi (KLT) tracker [29]. (2) We evaluate the method’s
performance with two existing databases and a database of
upper body poses displayed in job interviews that we make
public, showing that in our scenario it is comparable to that
of [25] without using a range camera, and state-of-the-art in
the HumanEva [26] and ChaLearn 2011 [1] datasets, used
for motion capture system evaluation.

2. RELATED WORK
As explained, given all the challenges that recovering hu-

man pose generates, the single camera approach is consid-
ered the most elusive. The literature of monocular motion
capture can be organized in many ways, but given the latest
developments in the field, we classify it into methods that
make use of BPDs and those who use other techniques.

Non BPD-based methods: The first BPD-based meth-
ods [8] were largely appearance-dependent, leaving the need
for more robust solutions with alternative approaches. In
[28], biological motion analysis is performed with graphs
and motion capture data in order to infer and detect hu-
man movements. Using a similar idea, [15] applies optical
flow in constrained situations to recover the position of the
body limbs. In [12], a strong body model prior and a track-
ing method are coupled with optical flow recognition for bi-
ological motion perception and 3D lifting. The work in [2]
also uses strong motion priors to get 3D from 2D images by
mapping silhouette descriptors to body pose configurations.
Doing so, no explicit body model is required. Instead of a
strong motion prior, [3] uses a detailed upper body mesh
model coupled with contours and optical flow to recover the
pose. Finally, in [24] a range camera is used, and optical
flow distinguishes the limbs in moments where depth fails to
output reliable geodesic extrema.

BPD-based methods: A number of HOG-based meth-
ods have arisen, solving long-standing problems like auto-
matic initialization. In [30] the co-occurrence relations and
spatial tree-structured relationships between part detectors
are modeled to improve global coherence. Coherence can
also be improved with HOG co-dependent body-part Ran-
dom Forests regressors [6], whereas [21] relies on symmetry
analysis. In [11], HOG detectors are improved with skin

color, contours, and contextual cues. In [27], 2D and 3D in-
ference are simultaneously done with a generative Bayesian
framework and discriminative HOG-based BPDs. In [33], 3D
poses are retrieved in unconstrained videos through BPDs,
action classification, and pose regression with spatial-temporal
features. Finally, in [22] global and local pose cues are in-
cluded and a convex objective and joint training for mode
selection and pose estimation is used to improve the state-
of-art performance-to-computing time ratio.

Closest techniques to ours: In [4], upper body motion
capture is performed for language sign classification in long
videos. Arm detections are used in order to disambiguate
difficult hand detections. The torso shape is also inferred
from a series of heuristics. However, this method assumes
that the hands are generally visible, and the clothing is not
problematic. In [23], optical flow and color are used to de-
tect hands, with body part detectors being one of the image
features, while [10] relies on optical flow and a precise 2D
silhouette body model. In [35] a hand detector is trained
with optical flow to then interpolate between correct guesses.
However, they use image contours, which are prone to errors
in certain situations. In [16] a hand detector is also used, but
includes appearance-dependent features such as skin color.
To conclude, in [13] multiple body part detectors are trained
with Random Forests and per-pixel HOG features, which
still inherits some of the appearance-dependence problems
that edges entail.

In summary, the current tendencies for monocular RGB
motion capture can be grouped into using multiple BPDs
(where problems like overlap, interference, or background-
appearance dependency arise), the use of strong motion mod-
els, strong body models, appearance-relying methods with a
torso detector. In contrast, in the present work we combine a
single torso detector with largely appearance-invariant fea-
tures, while improving the best performance-to-computing
time ratio of the state-of-the-art.

3. OVERVIEW
An overview of our method can be seen in Figure 2. Given

two input consecutive frames It−1 and It, we compute the
dense optical flow IOF [5] and the subject torso bounding

box �b = [ �uo, bw, bh], where �uo is the top left pixel of the
bounding box, bw is its width and bh is its height. We define
a 4-channel (4-C) image as IC = [IOF , Ibw, Ibh], where Ibw
and Ibh images derived from the torso detection, that aim
to give spatial context (see Section 4.1 for details). We then
extract per-pixel offset features �uδ from IC from a training
set (the only prior used) in a similar fashion to [25]. In
order to predict the body part classification label image IL, a
Random Forest classifier is used. The label image IL and its

associated confidence scores I
′
L are used to train a Random

Forest regressor that outputs the final body configuration.

4. OBSERVATION SYSTEM

4.1 Largely appearance-invariant features
As explained in Section 3, we aim to extract a series of

features from the image that encode as much information
as possible while maintaining a high appearance-invariance:
they should be robust to clothing and skin color. Thanks to
recent advances, dense optical flow and upper body detectors
are good candidates. Therefore, we compose a 4-C image



Figure 2: Pipeline of our proposal: (a) Image feature extraction, from the original RGB data and set of body part labels. (b)
Offline training of the body part classifier and pose regressor, from sparsely labeled data. (c) Online usage: once the 4-C features have
been computed, they are fed into the classifier. In turn, its output is used as input for the regressor, which estimates the body joints
configuration. (d) Torso context: horizontal (center) and vertical (bottom) context images Ibw and Ibh. Best viewed in PDF.

that merges the information that those low-level features
provide. These channels are:

Optical flow modulus IOF,ρ: as mentioned in the in-
troduction, depth and motion in an image are closely re-
lated. Therefore, the magnitude of the optical flow vector is
a strong cue for positioning the body pose.

Optical flow orientation IOF,φ: we hypothesize that in
certain situations, such as when the hands move close to each
other, the optical flow orientation is a useful cue in order to
differentiate them.

Torso vertical context Ibh: We use the torso detector
output to place and estimate the size of the person in the
image, adding contextual information. Given the bounding

box �b, we encode relative height in the image Ibh (see Figure
2d). In Ibh pixels range from 0 to 1, from the bottom to the
top within the bounding box, and are set to -1 outside the
bounding box.

Torso horizontal context Ibw: Analogous to Ibh, while
providing horizontal information.

4.2 Body part classification
At this point, highly appearance-invariant images IC are

obtained. Similar to [25], we use an offset sampling idea and
a Random Forest classifier in order to associate every pixel
with a body part label. A set U of pixel offset features is
built: U = { �uδi}nδ

i=1 = {(uδi, vδi)}nδ
i=1. For a given pixel �u,

the feature response is computed with feature parameters �uδi

that describe a number of nδ 2D pixel offsets (uδi, vδi). In
[25], features are normalized with the distance to the camera
in order to make them depth-invariant. In our case however
it is not possible, as we use RGB only images. As a proxy for
size of the person, we use the height of the torso bounding
box bh. We then extract the per-pixel features from each
channel in a different way.

Optical flow modulus: both the offset distance and op-
tical flow value are normalized with bh, since motions that
take place far from the camera result in a lower optical flow
modulus value. Let L(�u, �uδi, I

1) be a lookup function that
returns the feature associated with pixel �u, given a single-
channel image I1 and an offset �uδi. An optical flow modulus
feature becomes:

fOF,ρ(�u| �uδi) = L(�u,
�uδi

bh
, IOF,ρ)

1

bh
− IOF,ρ(�u)

1

bh
(1)

It encodes the speed difference between pixel �u and its
associated offset �uδi, after normalizing the offset distance
and image speed with the torso size bh.

Optical flow direction: in order to better differenti-
ate parts of the body moving with similar speed modulus,
but with different orientations, we also take the optical flow
direction into account. For each pixel, we compute the di-
rection similarity in relation to its offset features:

fOF,φ(�u| �uδi) = L(�u,
�uδi

bh
, IOF,φ)− IOF,φ(�u) (2)

Therefore, given the optical flow angle for pixel �u, the
angle difference respective to the offset is computed. The
discontinuity between 0 and 360 degrees is addressed so that
the angle difference is less than or equal to 180 degrees.

Position relative to the torso: the feature is obtained
in an identical way to that of the optical flow direction:

fbh(�u| �uδi) = L(�u,
�uδi

bh
, Ibh)− Ibh(�u) (3)

fbw(�u| �uδi) = L(�u,
�uδi

bh
, Ibw)− Ibw(�u) (4)

where equations fbh(�u| �uδi) and fbw(�u| �uδi) correspond to
the vertical and horizontal context, respectively. With this
approximation, each feature gives an idea of where the pixel
is positioned in relation to the main portion of the torso.

The feature vector for classification Xtr,class is formed by
concatenating all the features, providing information about
the speed, direction, and position relative to the torso of
every pixel of the image, hence forming a rich representation
of human motion. We demonstrate its capabilities in the
results section.

4.2.1 Training the forest for classification
A subset of data from the real job interview dataset is

annotated in order to serve as a training set (see Section
7). For classification, annotations consist of a number of
manually-labeled pixels in the image, in which the nature of
each label corresponds to a given body part. We then com-
pute the previously introduced per-pixel offset features for
each labeled pixel in the training subset. As our method de-
pends on the amount of movement in the image, we discard
the pixels with low flow modulus. We then train a Random
Forest (of depth 20) with the extracted pixel offset features
and the associated body part labels. Given an unseen 4-



C image, the classifier outputs the per-pixel predicted body
part and an associated confidence score (see Figure 2).

4.3 Body pose regression
The next step is to obtain the final body configuration

Po (defined as the pixel position in the image for every
joint) from the output of the body part classifier: Po =

Ω(IL, I
′
L, β), where Ω is the regression model with β param-

eters. Therefore, we use a Random Forest regressor that
takes information extracted from an image of densely clas-

sified body parts IL and classification scores I
′
L, resulting

in the regression training set Xtr,reg, through a process de-
scribed below.

4.3.1 Obtain images IL and I
′
L to train the regressor

In order to train the classifier, sparse labels are used. This
responds to two reasons. First, to reduce annotation time:
it can be reduced to less than half of the time required for
dense labeling. Second, to force the classifier to generalize:
as during training only a few (∼100) pixels per image are
labeled, the trained forest is shown later the same training
images, obtaining the classification output for every pixel in
the image. In this process, the provided classification scores

I
′
L picture more realistically the confidence that the classifier
will have in unseen images. This property is important when
training the body pose regressor, as it is forced to learn from
the mistakes that the body part classifier makes.

4.3.2 Body part histograms from IL and I
′
L

In order to capture more explicitly the characteristics of
the predicted body parts placement in the image, we propose
the use of vertical and horizontal per-class histograms of

IL and I
′
L. We build three sets of histograms. The first

one, Ml, measures the frequency in which each body part
appears in the vertical and horizontal axis of the image, and
it is defined as Ml = [ �ml,v, �ml,h], where �ml,v and �ml,h are

the vertical and horizontal histograms. The second one, M′
l

adds the scores I
′
L in the pixels of the image that belong

to the relevant body part, along the vertical and horizontal

axis of the image, and it is defined as M′
l = [ �m

′
l,v,

�m
′
l,h].

The third one, M′′
l , is the product of the previous two:

M′′
l = [ �ml,v

�m
′
l,v, �ml,h

�m
′
l,h] (5)

This results in the body part frequency histogram Ml to

be weighted with its associated confidence scores M′
l . The

effect can be seen in Figure 3: the resulting histogram M′′
l

shows better where the most confident predictions are lo-
cated in the image, for a given body part. In order to reduce

the dimensionality of the histograms, the images IL and I
′
L

are down-sampled to a resolution of 128x96 pixels. There-
fore, a given vertical histogram becomes 96-dimensional, and
a horizontal histogram becomes 128-dimensional. Since there
are 10 different body parts classes, 10 different set of his-

tograms M′′
l are obtained (one for each body part). This

results in a 2240-dimensional feature vector Xtr,reg for re-

gression Xtr,reg = {M′′
l,i}nj

i=1, where nj is the number of
body parts (classes). For each feature vector Xtr,reg there is
an associated annotated body pose, consisting in the pixel
position of 6 joints: shoulders, elbows and wrists. It is there-
fore 12-dimensional. Both the feature vector and the labels
are used to train the regression model Ω.

As a summary, in order to obtain the body pose from a
unseen pair of It, It−1 images, the associated 4-C image IC is
first composed, and then input into the body part classifier.
The resulting densely-labeled image and confidence scores

(I
′
L and IL) are fed into the body pose regressor, which

outputs the predicted final pose configuration Po as pixel
positions of every joint.
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Figure 3: Body part histogram example. Left and right:
�ml,v and �ml,h for the left hand. Center: classifier output. The

confidence weighting helps to maintain the detection peak in the
right position. Best viewed in color.

5. TRACKING
In order to reliably obtain the body pose in every situa-

tion, we propose a tracking method where hands are tracked
using the KLT framework when the body part classifier is
not reliable. We then impose temporal smoothness to avoid
sudden changes in the pose.

Tracking the hands. The main drawback of our pro-
posal is the need for movement in the image, as the classifier
needs optical flow measurements in order to classify differ-
ent body parts. We extend the pose retrieval framework
by adding a KLT tracker, based on image features. KLT
trackers work better with slow motion, as motion blur and
quick appearance changes become a problem when obtaining
good features to track. On the other hand, it has shown to
be very reliable when small motions are present. Since our
pose detection method is most confident when movement is
present, the KLT functions in a natural, complementary way
with the pose regressor.

Taking this into account, a detection followed by track-
ing framework is proposed to obtain the body pose along a
whole video. As finding the hands’ position removes a high
degree of uncertainty in the pose [17], we employ this ap-

proach only in them. When the scores image I
′
L falls under

a manually set threshold for a hand region, the detection is
deemed unreliable, and the last reliable detection is used to
initialize a KLT tracker, that takes control of the hand po-
sition until a new reliable detection is found, usually when
the hand starts to move again. An example can be seen in
Figure 4. Since both hands are considered separately, two
KLT trackers are used, one for each hand.

Stabilizing the body pose. At this point, a body pose
configuration Po is available. Given that the ultimate goal
of our method is to serve as information to later analyze
nonverbal communication, a further post-processing step is
needed. When a subject stands still, ideally the output pose
would remain perfectly still too. However, as the system
involves a high degree of tracking by detection, Po slightly
fluctuates along time.

In order to compensate this effect, a simple yet effective
approach is followed. If the joints stay within some radius
for a certain period then they are frozen in that position.
Especifically, for each body joint a small pixel radius κm is
defined. If the predicted body joint falls under the radius



longer than a small pre-defined time tm, then the joint is
defined as the center of the static circle that is configured
with κm. The timing parameter tm is necessary in order to
avoid the discretization of continuous movements, as they
would evolve in κm steps otherwise.

6. DATASETS
6.1 Upper body pose interview database
We construct a case-relevant database (that we make pub-

lic) from a set of one-shot, non-consecutive color and depth
images extracted from a series of real job interview videos
(kindly shared by [19, 20]), containing 34 different subjects
(8 male, 26 female), as Figure 7 shows. The interviewee
is sitting in front of a table, and a Kinect device is point-
ing frontally at him/her, therefore only the upper-body is
visible. As the images have been extracted from real job in-
terviews, the appearance, clothing, or movement of the par-
ticipants are not restricted or acted in any way. We selected
1420 frames with a resolution of 640x480 both for RGB and
depth, in which the subject is moving at least a part of the
body. As shown by previous works with Random Forests, a
large amount of training data is required, therefore we dis-
tributed the frames as 1100 for training and 320 for testing.
Even if the amount of data is significatively lower that one of
[25], given the similarity of the underlying methods, it still
allows comparison in generalization capabilities. In addition,
as only the upper-body is considered, the degrees of freedom
of the body configuration is much lower. The data will be
made publicly available with blurred faces due to privacy
reasons.

6.1.1 Annotation
Test images ground-truth is obtained by manually labeling

every pixel of the testing images with 10 labels: right and
left hands, right and left forearms, right and left arms, head,
torso, neck and background (see Figure 2). For the training
images, manual sparse labeling has been followed. That is,
we only label a few (around 100) pixels per image, in the
parts that carry less uncertainty. For example, if there is
a self-occlusion, only the pixels in which the different parts
of the body are clearly distinguished are labeled. Manual
sparse labeling carries two main advantages: first, the label-
ing time is greatly reduced; secondly, it allows us to choose
the parts of the image that better represent each part. With
the aid of a purpose-built script, labeling takes an average
of only 25 seconds per image, with a speed close to 5 pixels
per second. In contrast, dense labeling would take almost 1
minute per frame.

As seen in Figure 2, if enough data has been sparsely la-
beled, it is possible to get an approximate dense labeling
by using the method in [25] on the sparse labels, which can
be manually corrected later. Also, we effectively double the
amount of training data by mirroring each image, both dur-
ing classification and regression. Finally, the groundtruth
for the regression task is obtained by annotating the joint
positions of the wrist, elbow and shoulder position in every
image.

6.2 Additional datasets
In order to validate our methods, show generalization of

performance, and allow for comparisons, we test our pro-
posal in two publicly-available datasets. We choose the sub-
sets of experiments that are most relevant to our scenario:

similar upper body movements to those that are found in
conversations.

ChaLearn 2011 contains 437 non-consecutive, 320×240
color and depth frames, in which body joints have been man-
ually annotated. The environment is uncontrolled, and dif-
ferent backgrounds, high variance of poses, clothing, posi-
tioning and lighting appear. In some of the frames, there is
no movement at all.

HumanEva-I contains 7 calibrated video sequences (4
grayscale and 3 color) that are synchronized with 3D body
poses obtained from a motion capture system. The database
videos contain 4 subjects (S1-S4) performing a 6 common
actions (e.g. walking, jogging, gesturing, etc.). The dataset
contains training, validation and testing sets. We chose se-
quences ’gestures’ and ’box’ sequences of S1 and S3 for eval-
uation.

7. RESULTS
We evaluate the effects of different parameters in our sys-

tem’s performance, and compare it with the current state-
of-the-art. For the one-shot-detection part of the approach,
we define two experiments: one for classification and one
for regression. For classification, we compare the output of
our method to annotations of every body part. The result
is given in per-pixel accuracy for each class. For regression,
we compare the output pose that we get with manual anno-
tations of the database we used, measuring joint detection
rate. A joint is defined as detected if the predicted point
falls within a given distance threshold.

7.1 Classification
The performance is evaluated in our job interview database.

We train both our algorithm and [25] with the same num-
ber of images. As our method depends on the amount of
movement in the image, we discard the pixels that fall be-
low a motion threshold. This results in fewer but reliable
data points. In total, more than 110k pixels were used for
depth training, and 88k for optical flow training. The same
classifier parameters were used in both cases: 75 trees, an
offset window of 250 pixels and 700 features. We generate
320x240 classified images in order to have a reasonable reso-
lution while maintaining a competitive processing time. The
results can be seen in Figure 4 for the different cases.

Using depth, a 67.7% accuracy is achieved for the pix-
els associated with the person, which is consistent with the
previous findings of [25], when taking into account the much
lower training information. Over the whole image, the accu-
racy is 92.3%. Using optical flow and torso detections, the
accuracy for the person is 63%, and 87.7% for the whole
image. This shows that our method can achieve similar re-
sults to depth when there is body movement. An interesting
finding is that our method outperforms [25] in hand detec-
tion. As the reviewed literature shows, hand position is a
very good proxy in order to infer the rest of the body pose.
The usefulness of optical flow in hand and arm detection is
confirmed, as when combining depth and optical flow mod-
ulus, the body accuracy increases to 70%, with the whole
image at 92.2%.

Sensitivity to parameters results can be seen in Figure 5.
When considering offset window size before scale normaliza-
tion, it is found that a size of 200x200 improves the body-
related detections, but introduces more background noise
than 250x250 sizes, making the regression system more prone
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Figure 4: Left: Results of our method versus [25], when trained with the same number of images: Reported as classification rates
for every body segment. Performance is asymmetrical as the camera is slightly off-center. Right: Integration with the KLT tracker
example. Reliable detections are represented with a thick box. The good features to track are shown as white crosses.

to errors. Surprisingly, using a very low number of offset fea-
tures did not cause big performance drops. Already with 150
pixel offset features, very competitive results are obtained,
as a result of the rich contextual information that the torso
detector provides. As for the number of trees used, it is
found that after 5 trees, there is only a slight performance
increase to be found. Finally, when considering the amount
of training data, competitive results can already be obtained
with 300 training images (effectively 600, since they are mir-
rored). This highlights the generalization capabilities of the
proposed features.

7.2 Regression
Performance is measured with two different datasets: our

upper-body interview dataset, and ChaLearn 2011, which
is non-conversational, but allows to show generalization of
performance. Rates of correct detected parts can be found
in Figures 5. We found 40 pixels to be the limit of a reliable
guess while using 640x480 images.

Job interview dataset. Our method performs similarly
to [25], and outperforms [9] and [22]. The latter work had
been trained with their FLIC database, and is considered as
the best method in terms of performance to processing time
ratio. Wrists are the hardest body part to detect, and our
method achieves close to 20% higher performance than [22].
When compared against [25], our method is less than 10%
behind. Using the classification weights scores, accuracy is
improved by almost 5% for the hands. In Figure 7 some
qualitative results can be found.

ChaLearn 2011 We perform leave-one-out after dividing
the data in 10 arbitrary groups. As it can be seen in Figure 5,
the trends shown in our job interview dataset are reproduced
when there is enough movement available. The gap to [25]
appears larger due to several factors: (a) less training data:
only 57% of the total labeled points are used in our approach
as we only use points that contain movement information in
order to train the forest. This also gives an idea of the little
movement information present in the dataset. As Figure 7
top right shows, in the left hand there is a higher amount of
movement, greatly reducing the gap with [25]. (b) Some
subjects move out of frame (the head or one arm is not
visible), making it a hurdle for the torso detection to be
correctly placed, and reducing the accuracy of shoulders and
elbows. (c) In some cases the subject casts shadows in the
background wall, producing spurious optical flow detections.
Despite this, we found that in some instances the context
provided by the torso detector is able to filter errors out.
In any case, our method performs clearly better than the
RGB-only baselines, and given the challenging conditions,
remarkably close to [25] when there is movement present.
Also, it shows that our system performs well with different
body scales.

7.3 Tracking
In order to evaluate the tracking proposal, we define three

experiments. The experiment #1 evaluates hand posi-
tioning, as it is a very good proxy for the global pose [17].
During two minutes of video from 4 subjects, the hand posi-
tion was manually annotated. The experiment #2 follows
the same approach, but containing a very challenging 30
second sequence (see column 3 of Figure 7 left), as she has
no sleeves (therefore a lot of skin exposed, which produce
appearance-dependence situations when using a skin seg-
mentation scheme), moves her hair which is a similar color to
that of the skin, and displays a series of unusual movements
(such as the shoulders being closer to the camera than the
hands at some points). Finally, the experiment #3 uses
the HumanEva I database.

The baseline for the experiments #1 and #2 is a state-
of-the-art hand detection measure [31]. Hand saliency is de-
fined as IH,t = IS,t ·IF,t ·(κ1IOF,ρ,t+κ2ID,t), where IS,t is the
skin segmentation, IF,t is the face region subtraction, ID,t

is the distance to the camera, and κ1 and κ2 are manually
set constants. For comparison purposes between RGB-only
methods, we use the same saliency measure without the ad-

dition of ID,t, denoted as I
′
H,t. We apply a best path tracking

scheme to the local maxima of IH,t and I
′
H,t.

The results of our tracking method applied for hand po-
sition can be seen in Figure 6. In experiment #1, the hand
detection rate is 78.6%, marginally higher than the base-
line obtained with IH,t (78.2%), even though no depth in-
formation is used in our approach. When compared to the

performance of I
′
H,t, our framework shows a clear increase of

performance. In the challenging experiment #2, we found
that our approach significantly increases the performance
gap with respect to the IH,t baseline, which uses depth, ob-
taining a detection rate of 66%, compared to 31%. This
clearly shows that our method does not simply label body
parts that move the fastest as hands, but rather takes the
actual shape of the body part movements into account in the
learning process. It also carries the extra advantage of being
able to explicitly distinguish between right and left hands.

As Figure 6 shows, we obtain state-of-the-art performance
in HumanEva I (in [18] an average of 12.6 pixel error is re-
ported). The largest errors occur when the performed pose
substantially differs to those contained in the training set.
Given the very few data samples that HumanEva I makes
available for training (we use an average of 46 sparsely la-
beled frames per sequence), and the fact that our method re-
quires large training sets [25], we find the performance very
encouraging overall. See Figure 7 for qualitative results.

7.4 Computing time
Computing time is key in psychological studies, given the

large amount of data. In [22], there appears an analysis
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Figure 5: a: Parameter sensitivity of the classifier. b: Accuracy of the regressor in our job database, compared against [9] (blue) and
[22] (magenta). c: Results in ChaLearn2011, compared against [9] (blue) and [22] (magenta). Best viewed in PDF in high zoom.

Figure 6: Tracking results. Left graph: first experiment.
Right graph, using a specially challenging sequence. Table: Av-
erage error in HumanEva. Best viewed in color.

of the state-of-the-art performance versus computing time,
with their work being the best placed. Using the code they
provide, our database is computed on a laptop with an Intel
i7 processor in an average of 5.18 secs per frame (standard
deviation 0.16 secs).

In our case, assuming that pre-computed optical flow is
available (it can be comfortably processed in real time with
modern GPUs), the average processing time from input fea-
tures to body pose is 1.59 secs per frame (standard devi-
ation 0.11 secs), using the same hardware. Our per-pixel
feature retrieval implemented in Matlab takes most of the
running time. Since regression needs the output of the clas-
sifier with a resolution of 128x96 pixels in order to build the
histograms, we obtain features for every fifth pixel of the 4-
C composed image. If only classification results are needed,
we obtain comparable processing times to [22] by using a
resolution of 320x240 for Il, recording a mean of 5.05 secs
and (standard deviation 0.14 secs). This offset feature-based
approach is implemented on an XBox 360 in [25] at 200 fps.
Finally, an average of an extra 0.027 secs per frame is re-
quired in order to track the hands with the KLT approach.

Limitations: Our method requires a static camera and
static background, but optical flow based methods in the lit-
erature have shown to overcome that problem by tracking
background features. As the torso bounding box misplace-
ments are one of the main sources of error, our approach
can highly benefit from an elaborated torso bounding box
tracking technique.

8. CONCLUSIONS
We proposed a fast, largely appearance-invariant method

for upper body monocular motion capture of people engaged
in conversation, which integrates detection and tracking. De-
tection was achieved through optical flow and body detec-
tors, providing a proxy for depth information, visual context,
and scale. This information was used to classify body parts
in the image with a Random Forests classifier. The classi-
fication output and per-pixel confidence was later used to
build per body part image histograms, and were fed to a
regressor in order to infer the body pose. The integration of
a KLT tracker allowed to follow the body pose when there
are no reliable detections, thus resulting in a complementary
framework.

We evaluated our method with three different datasets,
showing very close performance to that of the best depth-
based method, while using only monocular information. We
also clearly outperform the state-of-the art in the ratio ac-
curacy to processing time. Our method is therefore attrac-
tive to process video data in typical psychology lab studies,
where depth data is not yet available. Our database of static
upper-body poses in interviews will be made public, provid-
ing a reliable benchmark for real-world performance.
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imaging. JMIV, 2011.



Figure 7: Qualitative results. Left: comparison with the baselines [9] and [22]. Top center: failure cases. From left to right: untrained
pose, not enough movement information, torso detection failure. Bottom center: HumanEva I results for S1 and S3. Failure cases, from
left to right: untrained pose, torso detection failure. Top right: speed histograms for each hand. Bottom right: examples of obtained
poses in ChaLearn 2011. Best viewed in PDF in high zoom.

[6] M. Dantone, J. Gall, C. Leistner, , and L. V. Gool. Human
pose estimation using body parts dependent joint
regressors. In IEEE CVPR, 2013.

[7] P. Dollar, R. Appel, and W. Kienzle. Crosstalk cascades for
frame-rate pedestrian detection. In IEEE ECCV, 2012.

[8] P. Felzenszwalb and D. Huttenlocher. Efficient matching of
pictorial structures. In IEEE CVPR, 2000.

[9] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Pose
search: Retrieving people using their pose. In IEEE CVPR,
2009.

[10] K. Fragkiadaki, H. Hu, and J. Shi. Pose from flow and flow
from pose. In IEEE CVPR, 2013.

[11] G. Gkioxari, P. Arbelaez, L. Bourdev, and J. Malik.
Articulated pose estimation using discriminative armlet
classifiers. In IEEE CVPR, 2013.

[12] N. R. Howe. Flow lookup and biological motion perception.
In International Conference on Image Processing (ICIP),
2005.

[13] V. Kazemi, M. Burenius, H. Azizpour, and J. Sullivan.
Multi-view body part recognition with random forests. In
British Machine Vision Conference (BMVC), 2013.

[14] M. Knapp and J. Hall. Nonverbal Communication in
Human Interaction. 2009.

[15] D. Kulic, D. Lee, and Y. Nakamura. Whole body motion
primitive segmentation from monocular video. In IEEE
ICRA, 2009.

[16] A. Marcos-Ramiro, D. Pizarro-Perez, M. Marron-Romera,
L. Nguyen, and D. Gatica-Perez. Body communicative cue
extraction for conversational analysis. In IEEE FG, 2013.

[17] E. Marinoiu, D. Papava, and C. Sminchisescu. Pictorial
Human Spaces. How Well do Humans Perceive a 3D
Articulated Pose? In IEEE ICCV, 2013.

[18] V. Morariu, D. Harwood, and L. Davis. Tracking people’s
hands and feet using mixed network and/or search. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
35, 2013.

[19] L. Nguyen, A. Marcos, M. Marron, and D. Gatica-Perez.
Multimodal analysis of body communication cues in
employment interviews. In ACM ICMI, 2013.

[20] L. S. Nguyen, D. Frauendorfer, M. Schmid Mast, and
D. Gatica-Perez. Hire me: Computational inference of
hirability in employment interviews based on nonverbal
behavior. IEEE Transactions on Multimedia, 2014.

[21] V. Ramakrishna, T. Kanade, and Y. Sheikh. Tracking
human pose by tracking symmetric parts. In IEEE CVPR,
2013.

[22] B. Sapp and B. Taskar. Modec: Multimodal decomposable
models for human pose estimation. In IEEE CVPR, 2013.

[23] B. Sapp, D. Weiss, and B. Taskar. Parsing human motion
with stretchable models. In IEEE CVPR, 2011.

[24] L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab.
Estimating human 3d pose from time-of-flight images based
on geodesic distances and optical flow. In IEEE FG, 2011.

[25] J. Shotton, T. Sharp, A. Kipman, A. W. Fitzgibbon,
M. Finocchio, A. Blake, M. Cook, and R. Moore. Real-time
human pose recognition in parts from single depth images.
In IEEE CVPR, 2011.

[26] L. Sigal, A. Balan, and M. Black. Humaneva: Synchronized
video and motion capture dataset and baseline algorithm for
evaluation of articulated human motion. IJCV, 87(1), 2010.

[27] E. Simo-Serra, A. Quattoni, C. Torras, and
F. Moreno-Noguer. A joint model for 2d and 3d pose
estimation from a single image. In IEEE CVPR, 2013.

[28] Y. Song, L. Goncalves, and P. Perona. Learning
probabilistic structure for human motion detection. In
IEEE CVPR, 2001.

[29] C. Tomasi and T. Kanade. Detection and tracking of point
features. IJCV, 1991.

[30] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. In IEEE CVPR, 2011.

[31] Y. Yin and R. Davis. Gesture spotting and recognition
using salience detection and concatenated hidden markov
models. In ACM ICMI, 2013.

[32] A. Yoonessi and C. L. Baker. Contribution of motion
parallax to segmentation and depth perception. Journal of
Vision, 11, 2011.

[33] T.-H. Yu, T.-K. Kim, and R. Cipolla. Unconstrained
monocular 3d human pose estimation by action detection
and cross-modality regression forest. In IEEE CVPR, 2013.

[34] X. Yu, S. Zhang, Y. Yu, N. Dunbar, M. Jensen, J. Burgoon,
and D. Metaxas. Automated analysis of interactional
synchrony using robust facial tracking and expression
recognition. In FG Workshops, 2013.

[35] S. Zuffi, J. Romero, C. Schmid, and M. J. Black. Estimating
human pose with flowing puppets. In IEEE ICCV, 2013.


