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Abstract—Measuring the Time delay of Arrival (TDOA) be-
tween a set of sensors is the basic setup for many applications,
such as localization or signal beamforming. This paper presents
the set of TDOA matrices, which are built from noise-free
TDOA measurements. We prove that TDOA matrices are rank-
two and have a special SVD decomposition that leads to a
compact linear parametric representation. Properties of TDOA
matrices are applied in this paper to perform denoising, by
finding the TDOA matrix closest to the matrix composed with
noisy measurements. The paper shows that this problem admits
a closed-form solution for TDOA measurements contaminated
with Gaussian noise which extends to the case of having missing
data. The paper also proposes a novel robust denoising method
resistant to outliers, missing data and inspired in recent advances
in robust low-rank estimation. Experiments in synthetic and real
datasets show significant improvements of the proposed denoising
algorithms in TDOA-based localization, both in terms of TDOA
accuracy estimation and localization error.

Index Terms—TDOA estimation, TDOA denoising, skew-
symmetric matrices, matrix completion, missing data

I. INTRODUCTION

T IME delay of arrival (TDOA) estimation is an essential
pre-processing step for multiple applications in the con-

text of sensor array processing, such as multi-channel source
localization [1], self-calibration [2] and beamforming [3]. In
all cases, performance is directly related to the accuracy of
the estimated TDOAs [4].

Estimating TDOA in noisy environments has been subject
of study during the last two decades [5]–[7], and is still an
active area of research, benefiting from current advances in
signal processing and optimization strategies [8]–[11].

Typically, the TDOA between a single pair of sensors is
obtained by measuring the peak of the generalized cross-
correlation (GCC) of the received signals on each sensor [12],
which are assumed to be generated from a single source. Many
factors, such as the spectral content of the signal, multipath
propagation, and noise contribute to errors in the estimation
of the TDOA.

Given a set of sensors, TDOA measurements can be ob-
tained for every possible pair of sensors. This is commonly
known as the full TDOA set or spherical set [13]. This paper
studies how to reduce noise and errors from the full TDOA set.
The intuition behind this denoising is to exploit redundancy
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of the full TDOA set. For n sensors, the full set of n(n−1)/2
measurements can be represented by n − 1 values, which
are referred to as the non-redundant set. This problem has
been studied in the past, showing that one can optimally
obtain the non-redundant set when TDOA measurements are
contaminated with additive Gaussian noise. This is known as
the Gauss-Markov estimator [14]. However, in more realistic
scenarios errors are not Gaussian and some of the TDOA
measurements may contain outliers. In these cases the Gauss-
Markov estimator performs poorly.

This paper presents the TDOA matrix, which is created by
the arrangement of the full TDOA set inside a skew-symmetric
matrix, and studies the algebraic properties of this matrix,
showing that it has rank 2 and a SVD decomposition with
n− 1 degrees of freedom.

These algebraic properties are used in this paper to perform
denoising under different scenarios, that include the presence
of missing TDOA measurements and outliers. These denoising
algorithms are tested in the context of speaker localization with
microphone arrays, using synthetic and publicly available real
datasets. Our denoising algorithms are able to recover accurate
TDOA values for high rates of missing data and outliers,
significantly outperforming the Gauss-Markov estimator in
those cases.

The main contributions of this work are threefold: i) Def-
inition of TDOA matrices and their properties. ii) A closed-
form solution for TDOA denoising for Gaussian noise and the
presence of missing data. iii) Novel robust-denoising methods
for handling additive correlated noise, outliers and missing
data.

A. Notation

Real scalar values are represented by lowercase letters
(e.g. δ). Vectors are by default arranged column-wise and are
represented by lowercase bold letters (e.g. x). Matrices are
represented by uppercase bold letters (e.g. M). Upper-case
letters are reserved to define vector and set sizes (e.g. vector
x = (x1, · · · , xN )> is of size N ), and x> denotes transpose of
vector x. Calligraphic fonts are reserved to represent generic
sets (e.g. G) or functions applied to matrices (e.g. P(X)).
The l2 norm ‖ · ‖2 will be written by default as ‖ · ‖ for
simplicity, and ‖ · ‖F is the Frobenius norm, while |.| is
reserved to represent absolute values of scalars. A ◦ B is the
hadamard product between A and B, defined as the entrywise
multiplication of the corresponding matrices. tr(·) is the trace
function.

We also define the normalized unitary vector 1̂ as
1̂ = (1, . . . , 1)

>
/
√
n, the null vector 0̂ as 0̂ = (0, . . . , 0)

>.



2

Finally, 1 = n 1̂ 1̂> is a n×n matrix with all elements equal
to 1, Dx is a n× n diagonal matrix where its main diagonal
is the vector x, and I is the identity matrix.

B. Paper Structure

The rest of the paper is distributed as follows. Section II
describes related work. In section IV TDOA matrices are
described along with a derivation of their properties. TDOA
denoising in the white noise case is addressed in section V,
also providing a closed-form solution. In sections VI and VII
we propose algorithms for robust handling of noise and
missing data, respectively, and in section VIII we combine
them. We also provide an extensive experimentation to validate
the proposed algorithms using both synthetic (Section IX)
and real data (Section X). Finally, conclusions are drawn in
section XI.

II. RELATED WORK

TDOA estimation is an essential first step for multiple
applications related to localization, self-calibration and beam-
forming, among others.

TDOA based localization is widely used in radar, sonar and
acoustics, since no synchronization between the source and
sensor is needed. The TDOA information is combined with
knowledge of the sensors’ positions to generate a Maximum
Likelihood spatial estimator made from hyperbolas intersected
in some optimal sense. A linear closed-form solution of the
former problem, valid when the TDOA estimation errors are
small, is given in [15].

Since knowing the position of sensors is mandatory for lo-
calization techniques, some strategies have been also proposed
in order to calibrate them using only TDOA measurements. In
[2], [16], the TDOA problem is converted in a Time of Arrival
(TOA) problem estimating the departure time of signals. Then,
self-calibration techniques for TOA can be employed. The
main drawback of this approach is that the conversion step
from TDOA to TOA is very sensitive to outliers and correlated
noise.

A precise TDOA estimation is also critical for beamforming
techniques and its applications. In [3], for example, additional
steps are proposed for selecting the appropriate TDOA value
among the correlation peaks, and also dealing with TDOA out-
liers. These steps include a Viterbi decoding based algorithm
which maximizes the continuity of the estimation in several
frames, but their approach is mainly empirical, not attempting
to benefit from the redundancy of the TDOA measurements.

Hence, an accurate estimation of TDOA is essential for a
good performance of any of the former applications based in
these measurements.

Typically, when only two sensors are employed, the peak
of the generalized cross-correlation (GCC) function of the
signals of two sensors is a good estimator for the TDOA,
for reasonable noise and reverberation levels [12].

When more than two sensors are used (n > 2), there are
n(n − 1)/2 different TDOA measurements from all possible
pairs of sensors, forming the full TDOA set or spherical

set [13]. However, all those TDOA measurements are redun-
dant. In fact, usually one sensor is considered the reference
sensor, and only the subset of n − 1 TDOA measurements
which involve that sensor are considered. That non-redundant
set is the set of measurement used by the majority of TDOA-
based positioning algorithms proposed in the literature [15],
[17]–[21]. Nevertheless, an optimal (denoised) version of the
non-redundant set can be estimated from the redundant set
using a Bayesian Linear Unbiased Estimator (BLUE), also
known as the Gauss-Markov estimator [14].

A closed-form solution for the BLUE estimator is provided
in [22], also proving that it is equal to the standard least
squares estimator, and that it reaches the Cramer-Rao lower
bound for positioning estimation. However, all the results in
that work are based on the assumption of additive Gaussian
noise, which is unrealistic in many practical applications [23],
and doesn’t yield good results when correlated noise is present
as consequence, for instance, of multipath propagation. Addi-
tionally, the experimental results shown in their work are only
applied to synthetic data, thus severely limiting its application
in real scenarios.

Since periodicity in correlated signals, coherent noise and
multi-path due to reverberation are the major sources of non-
Gaussian error in TDOA estimation, different approaches have
been proposed to deal with them. A basic method consists
in making the GCC function more robust, de-emphasizing
the frequency-dependent weighting. The Phase Transform
(PHAT) [24] is one example of this procedure which has
received considerable attention as the basis of acoustic source
localization systems due to its robustness in real world scenar-
ios [25], [26]. Other approaches are based in blind estimation
of multi-path (room impulse response) [27] but they need a
good initialization to perform well.

Some previous works have also proposed more complicated
structures in order to represent TDOA redundancy, while not
imposing strong assumptions on the noise distribution. In [28]
a representation based in graphs allows to disambiguate if a
peak in correlation was generated by the direct path or by
reverberation applying an efficient search algorithm among all
possible combinations. However, they do not explicitly attempt
to provide improved TDOA estimations by exploiting their
redundancy. On the other hand, [29] presents and studies a
structure based in multivectors, with a tensor notation that
allow them to also denoise TDOA estimations. Unfortunately,
they still keep the Gaussian noise assumption and the experi-
mental analysis is only based on simulated data. Additionaly,
those works do not face the problem of outliers and missing
measurements in the TDOA values.

Also different matrix representations have been used in
the bibliography regarding TDOA formulation. For example
[30] uses a representation slightly different to the TDOA
matrices we describe here, but such representation does not
have the algebraic properties that TDOA matrices have, and
their authors do not address an study in this sense.

So, to the best of our knowledge, there are no previous
reported work dealing with improving TDOA estimations by
exploiting their redundancy, while not imposing Gaussian
noise restrictions, and being able to deal with the presence of
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outliers and missing measurements. These errors will severely
impact the performance of applications based in TDOA mea-
surements. In this paper we show that TDOA matrices are a
powerful tool that combined with recent advances in robust
low-rank estimation, are able to generate novel solutions for
these problems.

III. PROBLEM STATEMENT

Hereafter, we assume only one source located at the
position r = (rx, ry, rz)

>, and n sensors synchro-
nized between them and placed in different positions
si = (six, siy, siz)

>, i ∈ [1, n].
Given this setup, let’s assume that the source is emitting an

unknown signal x(t). Then, the signal received by the sensor i,
xi(t), is without loss of generality, a delayed and attenuated
version of x(t) (direct propagation) in addition to a signal
gi(t) which summarizes all the adverse effects, i.e. noise,
interference, multipath, etc. Thus, xi(t) = x(t − τi) + gi(t),
where τi = ‖r − si‖2/c is the time of arrival (TOA) of the
signal x(t) at the sensor si, being c the velocity of propagation.

Assuming that TOA cannot be estimated directly, the time
delay of arrival (TDOA) between the sensors i and j is
estimated by correlating the received signals xi(t) and xj(t)
(typically using the Generalized Cross-Correlation GCC [24]).

IV. TDOA MATRICES

In this section we define TDOA matrices, and develop their
main properties. In a nutshell, given any TDOA matrix M,
we show that: i) M is rank 2 (Theorem 1) and ii) M can be
decomposed as M =

(
x 1̂> − 1̂ x>

)
with x = M 1̂ (Theorem

2).
These properties are the foundations of the denoising algo-

rithms that we present in sections V and VI, and the missing
data recovery proposal described in section VII, plus their
combination described in section VIII.

A. Definition of TDOA matrices

Definition 1. A TDOA matrix M, is a (n×n) skew-symmetric
matrix where the element (i, j) is the time difference of arrival
(TDOA) between the signals arriving at sensor i and sensor
j:

M = {∆τij} =


0 ∆τ12 · · · ∆τ1n

∆τ21 0 · · · ∆τ2n
...

...
. . .

...
∆τn1 ∆τn2 · · · 0

 (1)

with
∆τij = (τi − τj) , (2)

where τi is the time of arrival of the signal x(t) at the sensor
si.

We will also express M in terms of its
columns as M = (m1,m2, · · · ,mn), being
mi = (∆τ1i,∆τ2i, . . . ,∆τni)

>.
We denote as MT (n) to the set of TDOA matrices of size

n× n.

Notice that there is a bijection between the full TDOA set
and the corresponding TDOA matrix. Nevertheless expressing
TDOA measurements as a matrix has important advantages,
that we will discover throughout this article.

B. Algebraic properties of TDOA matrices

1) Rank Properties:

Theorem 1. Let M ∈MT (n), then M is rank 2.

Proof: The matrix M can be expressed as:

M = T−T>, (3)

where T is a rank 1 matrix defined as:

T =

τ1 · · · τ1
...

. . .
...

τn · · · τn

 . (4)

Applying the well known inequality:

rank(A + B) ≤ rank(A) + rank(B), (5)

we can deduce that rank(M) ≤ 2.
Moreover, since the rank of any skew-symmetric matrix

must be even, rank 1 is not feasible. So we can conclude that,
excepting the case that M is the zero matrix (trivial case), the
rank of M is 2. This completes the proof.

Rank deficiency of TDOA matrices means that their rows
and columns are linearly dependent. That is consistent with
the fact that, in the noise-free case, the full TDOA set can be
generated from the non-redundant set using linear equations
[22]. In fact, in a TDOA matrix, the column j is the TDOA
non-redundant set when the sensor j is the reference for TDOA
measurements.

Lemma 1. The normalized unitary vector 1̂ can be expressed
as a linear combination of any two column vectors of M ∈
MT (n).

Proof: Indeed, from (1) and (2), given any two column
vectors of M, namely mi and mj with i 6= j, the relation:

mi −mj

(τj − τi)
√
n

= 1̂ (6)

is satisfied. This completes the proof.
2) Singular Value Decomposition: Because M ∈ MT (n)

is a skew-symmetric matrix of rank 2, it has the following
singular value decomposition (SVD) [31, Supplementary ma-
terial]:

M = (û2,−û1)

(
σ 0
0 σ

)
(û1, û2)

>
= σ (û2,−û1) (û1, û2)

>
,

(7)
where û1 and û2 are orthonormal vectors and σ ≥ 0. Note
that the SVD decomposition of M is not unique. Given any
orthogonal 2×2 matrix R, the vectors (v̂1, v̂2) = (û1, û2) R
represent also a valid SVD decomposition:

M = σ (v̂2,−v̂1) (v̂1, v̂2)
>

= σ (û2,−û1) (û1, û2)
>
. (8)

Among all possible SVD decompositions of M we show next
that there always exists one where û1 = 1̂. This leads to a
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parametric representation of M that has important properties
that we will exploit later for TDOA denoising.

Theorem 2. Given M ∈MT (n), it admits the following SVD
decomposition:

M = σ
(
û,−1̂

) (
1̂, û

)>
with û =

M 1̂

‖M 1̂‖
σ = ‖M 1̂‖

(9)

Proof: According to Theorem 1, the column space of M,
lies in a linear subspace of rank 2. Besides, lemma 1 states that
vector 1̂ belongs to such subspace. Therefore, an orthonormal
basis of two vectors

{
1̂, û

}
must exist for the column space of

M. The vector û = u/ ‖u‖ can be calculated by selecting any
column, mi with i = 1, . . . , n, and applying Gram-Schmidt
as follows:

u = mi − (1̂>mi)1̂. (10)

Operating, we get u = (u1, · · · , un)
>, with

ui = τi − τ̄ and τ̄ =
n∑
j=1

τj/n. (11)

Note that u has the same value independently of the column
chosen in (10).

As {1̂, û} is a basis of the column space of M, there exist
two vectors c1, c2 such that:

M = (c1, c2)
(
1̂, û

)>
, with c1 = M 1̂ c2 = M û.

(12)
By substituting (11) and (1) into (12), we verify that:

c1 =
√
n ‖u‖ û and c2 = −

√
n ‖u‖ 1̂. (13)

As a consequence of (13) we express M as:

M =
√
n ‖u‖

(
û,−1̂

) (
1̂, û

)>
. (14)

Therefore, from (14) we have:

û =
M 1̂∥∥M 1̂

∥∥ , σ =
√
n ‖u‖ =

∥∥M 1̂
∥∥ , (15)

from which it follows (9). This completes the proof.

Corollary 2.1. Any M ∈MT (n) can be expressed as:

M =
(
x 1̂> − 1̂ x>

)
, x = M 1̂ (16)

The derivation of (16) follows by substitution of x = σû
in (14).

Corollary 2.2. Vectors x and 1̂ are orthogonal.

Corollary 2.3. M can also be expressed as:

M =
1√
n

(Dx 1− 1Dx) , 1̂ ⊥ x̂, (17)

since x 1̂> = Dx 1/
√
n and 1̂ x> = 1Dx/

√
n,

V. TDOA DENOISING

In this section we propose a denoising strategy to deal
with Gaussian noise in the estimated TDOA measurements,
deriving a closed form solution for the proposed optimization
problem. This solution is also compared with the Gauss-
Markov Estimator.

A. Denoising Strategy

We assume now that each TDOA measurement is contami-
nated with uncorrelated Gaussian noise nij = −nji, such that
∆τ̃ij = ∆τij + nij . Therefore, the measured TDOA matrix
M̃ = {∆τ̃ij} is also a skew-symmetric matrix, sum of a noise-
free M ∈ MT (n) and a skew-symmetric matrix containing
noise N = {nij}:

M̃ = M + N. (18)

Because of the noise, M̃ /∈ MT (n) and thus Theorem 1
is no longer satisfied. Consequently, the rank of M̃ may be
higher than two. Nevertheless, we will show that we can
take advantage of the structure of TDOA matrices in order
to denoise the measured data.

For denoising, we propose finding the closest
M∗ ∈MT (n), to the measured matrix M̃, in the sense of the
Frobenius norm. This approach yields the following convex
optimization problem:

M∗ = arg min
M∈MT (n)

∥∥∥M̃−M
∥∥∥2
F
. (19)

B. Closed-Form Solution

Theorem 3. Problem (19) has the following closed form
solution: M∗ = (M̃1+ 1 M̃)/n

Proof: From Corollary 2.1, the denoising problem (19) is
equivalent to the following constrained optimization problem:

minimize
x

∥∥∥M̃− (x 1̂> − 1̂ x>
)∥∥∥2
F

subject to 1̂> x = 0.
(20)

Using the definition of Frobenius norm ‖A‖2F = tr(AA>),
and trace properties tr(AB) = tr(BA) and tr(A) = tr(A>)
we rewrite the cost as:

∥∥∥M̃− (x 1̂> − 1̂ x>
)∥∥∥2
F

=

= tr

([
M̃−

(
x 1̂> − 1̂ x>

)] [
M̃−

(
x 1̂> − 1̂ x>

)]>)
= 2

(
x> x− x> 1̂ 1̂> x− 1̂> M̃> x + 1̂> M̃ x

)
+

+ tr
(
M̃ M̃>

)
= f

(
x; M̃

)
. (21)

To solve the constrained problem (20) we use the method of
Lagrange multipliers, resulting in the following unconstrained
equivalent:

x∗ = arg min
x,λ

[Λ (x;λ)] , (22)

where λ is the Lagrange multiplier and

Λ (x;λ) = f
(
x; M̃

)
+ λ1̂> x. (23)

We find extrema in (23) by taking first derivatives with
respect to both x and λ and solving the following system:

∇Λ (x;λ) = 0̂ ⇒{
2x>

(
I− 1̂ 1̂>

)
+ 1̂>

(
M̃− M̃>

)
+ λ1̂> = 0̂>

1̂> x = 0



5

x∗ =

(
M̃− M̃>

)
1̂− λ1̂

2

λ∗ =
1̂>
(
M̃− M̃>

)
1̂

21̂> 1̂
. (24)

Since M̃ is skew-symmetric (M̃−M̃>) = 2M̃. Therefore,
(24) becomes:

x∗ =
2M̃ 1̂− λ1̂

2
= M̃ 1̂ (25a)

λ =
21̂> M̃ 1̂

21̂> 1̂
= 21̂> M̃ 1̂ = 0. (25b)

In (25b) we use the fact that 1̂>A 1̂ = 0 for A being a skew-
symmetric matrix. Also, it is interesting to note from (25a) that
x∗ follows the same expression as the one stated in Corollary
2.1 for x in the noise-free case.

A compact expression for M∗ can be easily derived from
(25a) via (16):

M∗ =
(
1̂, M̃ 1̂

)(
−M̃ 1̂, 1̂

)>
= M̃ 1̂ 1̂> + 1̂ 1̂> M̃ =

= (M̃1+ 1 M̃)/n. (26)

This completes the proof.

C. Equivalence with the Gauss-Markov Estimator

By operating in (26), each element (i, j) of the denoised
matrix M∗ is obtained as follows:

M∗ = {∆τ∗ij} =

{
1

N

(
n∑
k=1

∆τik + ∆τkj

)}
. (27)

The closed-form in (27) is identical to the one reported in
[22, eq.(14)] as the Gauss-Markov estimator of the TDOA
measurements, so that all the properties there can be extrapo-
lated to this work.

VI. ROBUST TDOA DENOISING

In some application scenarios, the assumption of uncorre-
lated white noise made in section V is fully unrealistic. In such
cases where noise is correlated and measurements are prone
to contain outliers in the TDOA measurements, a better model
for the measured matrix is:

M̃ = M + N + S, (28)

where M ∈ MT (n), N is a skew-symmetric matrix contain-
ing Gaussian noise, much like in (18), and the new matrix
S models the addition of all the outliers. Since the number
of outliers is usually small as compared with the number of
measurements, we will assume S to be sparse and unknown.

In order to denoise M̃, we propose solving the following
optimization problem, finding both matrices M and S:

minimize
M,S

∥∥∥M̃−M− S
∥∥∥2
F

subject to M ∈MT (n)

card(S) < 2k,

(29)

where k is the maximum number of outliers supposed to be
present in the TDOA measurements.

Robust denoising in (29) is a non-convex optimization
problem with constraints that are not even differentiable. This
kind of optimization problems have been explored in Robust
PCA (RPCA) [32] or robust low-rank factorizations such
in GoDec [33]. Despite TDOA matrices are low-rank, these
algorithms are not well suited here as they do not include all
the algebraic constraints in TDOA matrices.

In order to solve (29), we propose an iterative algorithm, in-
spired in GoDec. It consists of an alternation method in which
M and S are obtained in turns, with close-form solutions for
these two steps (we use a subindex t to denote the iteration
count): 

Mt = arg min
M∈MT (n)

∥∥∥M̃−M− St−1

∥∥∥2
F

St = arg min
card(S)<2k

∥∥∥M̃−Mt − S
∥∥∥2
F

(30)

The first sub-problem of (30) is the same as our denoising
problem in (19), therefore Mt can be updated via (26). Then,
St is updated via entry-wise hard thresholding of M̃ −Mt.
Thus:

Mt =
(
M̃− St−1

)
1̂1̂> + 1̂1̂>

(
M̃− St−1

)
St = P2k

(
M̃−Mt

) (31)

where Pl(X) is an function which generates a matrix with the
same size of X, preserving the l elements of X with the largest
absolute value, and making the rest of elements zero. Note
that, since X is skew symmetric in our application, the result
provided by P2k(·) is also skew symmetric. The convergence
to a local minimum of this algorithm is guaranteed in similar
circumstances as GoDec [33], as the solutions to both sub-
problems in (31) are solved globally.

So, the proposed robust denoising algorithm is:
Require: M̃, k, ε
Ensure: M ∈MT (n), card(S) < 2k,

1: M0 = M̃ ; S0 = 0 ; t = 0
2: while ‖M̃−Mt − St‖2F /‖M̃‖2F < ε do
3: t = t+ 1
4: Mt = (M̃− St−1)1̂1̂> + 1̂1̂>(M̃− St−1)
5: St = P2k(M̃−Mt)
6: end while
7: return Mt, St
From now on, we will refer to this algorithm as Robust

DeN.

VII. MISSING DATA RECOVERY

A. Recovery Strategy

In real scenarios, there may be situations where some of
the elements of M̃ might not be available (for instance, due
to sensor failure) or even when they are available, there are
reasons to avoid using them (for example, due to a priori
knowledge of unreliable measurements for some conditions).
In such cases, we want to be able to avoid some measurements,
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thus performing estimations when part of the values in M̃ are
missing.

In this section, we address the TDOA matrix completion
problem. We assume that in a measured TDOA matrix M̃,
some of its elements are unknown, an the rest are contami-
nated with additive Gaussian noise. We take advantage of the
redundancy present in TDOA matrices to estimate a complete
denoised TDOA matrix including the missing entries.

The matrix completion problem is stated as follows:

M∗ = arg min
M∈MT (n)

∥∥∥L ◦ (M̃−M
)∥∥∥2

F
, (32)

where L is a symmetric binary matrix whose element (i, j) is
1 if the TDOA between the sensor i and j is known, being 0
otherwise. For convenience and without loss of generality, the
elements on the main diagonal of L will be set to 1.

Solving (32) is equivalent to finding the full TDOA matrix
whose elements best fit the available elements of M̃. Note that,
L ◦ (M̃−M) = (M̃L −L ◦ M), where M̃L = (L ◦ M̃) is
the result of setting the unknown elements of M̃ to zero.

B. Closed-Form Solution

Theorem 4. The problem (32) has the following closed form
solution: M∗ =

(
Dβ + L̄

)−1
M̃L 1 + 1M̃L

(
Dβ + L̄

)−1
where Dβ =

(
I ◦ LL>

)
is a n × n diagonal matrix with

βββ =
(
n− β̄1, · · · , n− β̄n

)>
=
√
nL 1̂ as its main diagonal.

β̄i is the number of missing measurements with the sensor i.

Proof: Using Corollary 2.3, problem (32) is rewritten as

minimize
x

∥∥∥∥M̃L −
L ◦ (Dx1− 1Dx)√

n

∥∥∥∥2
F

subject to 1̂> x = 0.

(33)

Since 1 is the identity element of the hadamard product and
Dx is a diagonal matrix, we can rewrite (33) as:

minimize
x

∥∥∥∥M̃L −
(DxL− LDx)√

n

∥∥∥∥2
F

subject to 1̂> x = 0.

(34)

Operating in a similar manner to (21) we get:∥∥∥∥M̃L −
(DxL− LDx)√

n

∥∥∥∥2
F

=
2

n
tr
(
DxLL>Dx

)
−

− 2

n
tr (DxLDxL) +

2√
n

tr
([

M̃L − M̃>
L

]
DxL

)
+

+ tr
(
M̃LM̃>

L

)
. (35)

Using the identity x∗ (A ◦ B) y = tr
(
Dx
∗ADyB>

)
we get:∥∥∥∥M̃L −

(DxL− LDx)√
n

∥∥∥∥2
F

=
2

n
x>

(
I ◦ LL>

)
x

− 2

n
x>

(
L ◦ L>

)
x + 2 1̂>

([
M̃L − M̃>

L

]
◦ L>

)
x+

+ tr
(
M̃LM̃>

L

)
= g

(
x; M̃, L

)
(36)

and finally:∥∥∥∥M̃L −
(DxL− LDx)√

n

∥∥∥∥2
F

=

2

n

(
x>Dβ x− x> L x + n 1̂>

(
M̃L − M̃>

L

)
x
)

+

+ tr
(
M̃LM̃>

L

)
= g(x; M̃, L). (37)

It is important to note that equations (21) and (37) are iden-
tical when there is no missing data in M̃ (i.e L = 1 = n 1̂ 1̂>

and Dβ = n I).
We use the method of Lagrange multipliers to express (33)

as the following unconstrained optimization problem:

Λ (x;λ) = g
(
x; M̃, L

)
+ λ1̂> x. (38)

By taking derivatives we obtain the following system:

∇Λ (x;λ) = 0̂ ⇒{
2
nx> (Dβ − L) + 1̂>

(
M̃L − M̃>

L

)
+ λ1̂> = 0̂

1̂>x = 0.
(39)

Since 1̂>x = 0 implies that 1x = 0, we substitute in (39)
obtaining:

2

n

(
Dβ + L̄

)
x =

(
M̃L − M̃>

L

)
1̂− λ1̂, (40)

where
(
L̄ = 1− L

)
(logical not operator over all elements of

L). Note that: (Dβ + L̄) is symmetric and, furthermore, 1̂ is
one of its eigenvectors.(

Dβ + L̄
)
1̂ =

βββ + β̄̄β̄β√
n

= n1̂. (41)

Therefore, if the two terms of (40) are multiplied on the right
by 1̂> we get:

2 1̂>x = 1̂>
(
M̃L − M̃>

L

)
1̂− λ. (42)

Then applying to (42) the fact that

1̂>x = 0 and 1̂>(M̃L − M̃L)1̂ = 0, (43)

we can conclude that λ = 0. Thus, the solution of (33) is:

x∗ = n
(
Dβ + L̄

)−1
M̃L1̂. (44)

Finally, the solution of problem (32) can be calculated from
(44) using (16):

M∗ =
(
Dβ + L̄

)−1
M̃L 1 + 1M̃L

(
Dβ + L̄

)−1
(45)

This completes the proof.
From now on, we will refer to this algorithm as MC. It

is noteworthy to comment that the matrix (Dβ + L̄) contains
important information about the recoverability of missing data:
if it is full-rank, then the solution of (32) is unique and if
(Dβ + L̄) is rank-deficient, missing data is not recoverable
uniquely without any further assumption.

Furthermore, in the absence of missing data,
n(Dβ + L̄)−1 = I, hence the matrix completion solution in
(45) becomes the solution of the denoising problem stated in
(26).
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VIII. ROBUST TDOA DENOISING WITH MISSING DATA

In this section we aim to combine the results of sections VI
and VII, addressing the more general case in which both out-
liers and missing data are considered. Therefore, the problem
is a combination of (29) and (32) defined as:

minimize
M,S

∥∥∥L ◦ (M̃−M− S
)∥∥∥2

F

subject to M ∈MT (n)

card(S) < 2k

S = L ◦ S.

(46)

In the same way as in section VI, (46) can be solved
by alternatively solving the following two subproblems until
convergence:

Mt = arg min
M∈MT (n)

∥∥∥L ◦ (M̃−M− St−1

)∥∥∥2
F

(47a)

St = arg min
card(S)<2k

∥∥∥L ◦ (M̃−Mt

)
− S

∥∥∥2
F
. (47b)

The subproblem (47a) is equivalent to the missing
data problem solved in section VII but considering
M̃L = (L ◦ M̃ − St−1). Therefore, according to theorem 4,
it has a closed form solution:

M∗
t = (Dβ + L̄)−1(L ◦ M̃− St−1)1+

+ 1(L ◦ M̃− St−1)(Dβ + L̄)−1. (48)

Since (47b) is of the same form as the second subproblem in
(30), it can also be solved by entry-wise hard thresholding of
L ◦ (M̃−Mt).

The following pseudocode summarizes the proposed algo-
rithm for the general case:
Require: M̃, L, k, ε
Ensure: M ∈MT (n), card(S) < 2k,

1: Dβ = I ◦ LL>

2: Q = (Dβ + L̄)−1

3: M0 = M̃ ; S0 = 0 ; t = 0
4: while ‖M̃−Mt − St‖2F /‖M̃‖2F < ε do
5: t = t+ 1
6: Mt = Q(L ◦ M̃− St−1)1+ 1(L ◦ M̃− St−1)Q
7: St = P2k(M̃−Mt)
8: end while
9: return Mt, St
Note that in line 2 the matrix Q = (Dβ + L̄)−1 can be

precalculated in order to get an efficient implementation of
the algorithm.

From now on, we will refer to this algorithm as Robust
DeN+MC.

IX. EXPERIMENTS WITH SYNTHETIC DATA

In this section computer simulations will be used to compare
the proposed algorithms with some of the alternatives existing
in the state of the art.

For evaluating the proposed algorithms (robust TDOA de-
noising and TDOA matrix completion), two different metrics
will be used:

• The Signal-to-Noise-Ratio SNR [dB] of the
non-redundant set referenced to the first sensor
(10 log(

∑n
i=1 ‖∆τi1‖2/

∑n
i=1 ‖∆τ̃i1 −∆τi1‖2)). This

is an application independent metric, that will allow
assessing the proposal improvements in the TDOA
measurements per se.

• The localization error, measured as the average distance
between the source ground truth position and the position
estimated using any given localization algorithm based on
TDOA estimations (such as [15] in our case). This is an
application dependent metric, that will allow assessing
the actual benefits of the proposal in a real task.

A. Experimental setup

For all the synthetic data experiments, a set of 10 sensors
and 1 source were randomly located. Therefore, 45 different
TDOA measurements were generated per experiment, with
additive independent Gaussian noise and the same variance
for all of them.

The sensor locations were uniformly distributed in a cube
of 1 meter side, and the source positions were uniformly
distributed in a 2 meter side cube. The propagation speed of
the signal was set to 343.313 m/s. To increase the statistical
significance of the results, they are provided as averages of 20
independent runs.

B. Evaluation of Robust TDOA Denoising

In this first experiment to evaluate the performance of the
algorithm proposed in section VI, we also imposed that some
TDOA values were outliers. To simulate this, we randomly
chose some measurements (between 0 and 10) and replaced
them with a zero-mean Gaussian distributed noise, with a
standard deviation of 0.1 ms. It is worth mentioning that the
outlier values calculated that way are not related at all to
the real TDOAs, thus being true outliers. The parameter k
of the proposed algorithm, which fixes the maximum number
of identifiable outliers, was set to 8.

1) SNR Improvements Evaluation: Fig. 1a shows the SNR
values for the proposed robust denoising algorithm when
modifying the noise standard deviation and the number of
outliers, compared with that obtained by the Gauss-Markov
estimator (Fig. 1b), and also when only the non redundant set
is used, i.e. not using he redundancy of TDOA measurements
(Fig. 1c).

As predicted in section V, when no outliers are present, the
performance of the proposed algorithm is the same as Gauss-
Markov (see the first row in Figs. 1a and 1b), hence it reaches
the Cramer-Rao Bound [22], while being much better than
using no redundancy. Nevertheless, the proposed algorithm
clearly outperforms the other two approaches when outliers
are present in the measurements (rows 1 through 10 in the
graphics of Fig. 1).

2) Source Localization Improvements Evaluation: The op-
timized non redundant set provided by the algorithms applied
in Section IX-B1 were used in a localization algorithm using
[15]. The average localization errors (in mm) are shown
in Fig. 2. Again, the proposed robust denoising algorithm
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Fig. 1: Robust denoising in synthetic data: SNR in dB (higher is better).
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Fig. 2: Robust denoising in synthetic data: Localization error in mm (using
[15], lower is better).

performs as Gauss-Markov when there are no outliers, but
is clearly superior when outliers are present.

It is also worth mentioning that the behaviour of the robust
denoising keeps the improvements at roughly the same level
for increasing number of outliers present, thus validating
the ability of the algorithm to pinpoint and eliminate their
presence.

C. Evaluation of Missing Data Recovery

In this second experiment, we evaluated the capability of the
algorithm proposed in section VII to recover missing values.
For our purposes, the missing TDOA measurements were also
chosen randomly but, in contrast to the previous experiment,
the matrix positions of the missing measurements were known.

Fig. 3 and Fig. 4 show, respectively, the SNR values,
and the localization error for the proposed matrix completion
algorithm, when modifying the noise standard deviation and
the percentage of missing TDOA values in the TDOA matrix,
as compared with using only the non-redundant set.

From the figures, it can be clearly seen that the proposed
algorithm can take advantage of the knowledge about which
measurements were missing, achieving even better results than
when the positions of the outliers were unknown. For example,
removing 50% of the TDOA measurements implies 24 missing
values, much more than the maximum of 10 outliers evaluated
in Fig. 1, while keeping good performance.

D. Evaluation of Robust TDOA Denoising with Missing Data

In this third experiment, we evaluated the capability of the
algorithm proposed in section VIII to face both outliers and
recover missing values.
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Fig. 3: Missing data recovery in synthetic data: SNR in dB, higher is better.
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Fig. 4: Missing data recovery in synthetic data: Localization error in mm
(using [15], lower is better).

To provide a wide range of evaluation scenarios, we defined:
i) Two conditions related to noise, namely low and high.
The former corresponds to a standard deviation of 10−3 ms.,
and the latter to 0.2 ms. ii) Two conditions related to the
presence of outliers, imposing 2 or 6. iii) A variable number
of missing TDOA measurements, defined as a percentage of
missing TDOA values in the TDOA matrix.

Fig. 5 and Fig. 6 show, respectively, the SNR values, and
the localization error for different algorithms, and for different
evaluation scenarios.

As it can be seen in Fig. 5a, 6a, 5c and 6c when there
are a low number of outliers (2 in this case), the best results
are obtained for lower k values. However, when the number of
outliers increase, (Fig. 5b, 5d, 6b and 6d, low k values perform
worse. So, we can conclude that k must be a number as low
as possible, but higher than the number of actual outliers.

Nevertheless, it is worth to observe the behaviour of Fig. 5b,
5d, 6b and 6d (with more outliers) when the percentage
of missing data increases. It can be clearly seen that the
lines corresponding to different values of k are crossing
among them. This seems to indicate that as the missing data
percentage increases, the number of outliers that we are able
to detect decreases.

Anyway, the results obtained by the Robust DeN+MC
algorithm outperforms the Gauss-Markov estimator, asymp-
totically approaching it when the noise is very high. Note also
that for high values of noise, the noise and the outliers are
practically indistinguishable.
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Fig. 5: Algorithm evaluation in synthetic data: SNR in dB.

0 10 20 30 40 50
0

100

200

300

400

500

% of missing measurements

E
rr
o
r
[m

m
]

(a) Localization error with
low noise and 2 outliers

0 10 20 30 40 50
0

200

400

600

800

1000

% of missing measurements

E
rr
o
r
[m

m
]

(b) Localization error with
low noise and 6 outliers

0 10 20 30 40 50
200

300

400

500

600

700

800

% of missing measurements
E
rr
o
r
[m

m
]

(c) Localization error with
high noise and 2 outliers

0 10 20 30 40 50
300

400

500

600

700

800

900

1000

1100

% of missing measurements

E
rr
o
r
[m

m
]

(d) Localization error with
high noise and 6 outliers

Gauss−Markov 
(No missing measurements)
Matrix Completion (MC)

Robust DeN+MC (k=3)

Robust DeN+MC (k=5)

Robust DeN+MC (k=7)
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8
,2

0
 m

3,60 m

Microphone
Arrays

Table

(a) IDIAP room layout showing the
centered table, and the microphones

arranged in two circular arrays.

(b) Positions evaluated in
the real data experiments.

Only the relevant room
section is shown.

Fig. 7: IDIAP Smart Meeting Room: experimental details.

X. EXPERIMENTS WITH REAL DATA

The aim of this section is to evaluate whether the improve-
ments obtained in section IX using synthetic data are actually
found in real environments.

A. Experimental Setup

The proposed algorithms have been evaluated using audio
recordings from the AV16.3 database [34], an audio-visual
corpus recorded in the Smart Meeting Room of the IDIAP
research institute, in Switzerland.

The IDIAP Meeting Room (shown in Fig. 7) is a 8.2m ×
3.6m× 2.4m rectangular space containing a centrally located
4.8m× 1.2m rectangular table, on top of which two circular
microphone arrays of 10cm radius are located, each of them
composed by 8 microphones. The centers of the two arrays are
separated by 80cm and the origin of coordinates is located in
the middle point between the two arrays. A detailed description
of the meeting room can be found in [35].

The audio recordings are synchronously sampled at
16 KHz, and the complete database along with the corre-
sponding annotation files containing the recordings ground
truth (3D coordinates of the speaker’s mouth) is fully accessi-
ble on-line at [36]. It is composed by several sequences from
which we are using sequence 01, with a single male speaker
generating digit strings in 16 positions (which can be seen as
small circles in figure 7b), distributed along the room. The
sequence duration accounts for 208 seconds in total, with 823
ground truth frames.

The TDOA measurements ∆τ̃ij , from which the measured
TDOA matrix M̃ is built, where estimated using the highest
peak of the GCC-PHAT function [24].

As in a real scenario outliers are common but difficult to
anticipate or enforce, the sweep over noise levels and the
number of outliers that we performed with synthetic data are
not feasible. Therefore, in our experiments with real data,
we will only provide the SNR values and localization errors
obtained after using each algorithm.

B. Evaluation of Robust TDOA Denoising
In this experiment, all the microphone pairs have been

considered, hence 120 TDOA values have been computed for
each frame.

In table I we show an example of the results for the
Robust DeN with k = 10 (set as a reasonable value to
face real conditions). As it also happened with synthetic data,
in this case the proposed algorithm outperforms the Gauss-
Markov estimator, yielding great improvement in both SNR
and localization precision.

These results are the baseline for the experiments with
missing data described in the next subsection.

C. Evaluation of Robust TDOA Denoising with Missing Data
In the second experiment with real data, we randomly

remove a set of TDOA measurements. Fig. 8 shows the ob-
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TABLE I: Robust denoising performance in real data

SNR (dB) Average Localization error (mm)

Robust DeN 27.46 354
Gauss-Markov 23.19 515
Only non-redundant set 17.83 858
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Fig. 8: Results for real data with missing TDOA measurements.

tained results. The doted lines correspond to the performance
(SNR and localization error) achieved by the Gauss-Markov
estimator when there are no missing measurements. The solid
lines with circular marks are the results obtained by the matrix
completion algorithm (MC) described in section VII.

On the other hand, the solid lines with
squared/triangular/diamond marks correspond with the
results of the Robust DeN+MC algorithm presented in
section VIII. The different colors/shapes indicate different
values of the hyperparameter k.

Fig. 8 highlights the relevance of the proposed robust-
denoising algorithm in real-scenarios, with important improve-
ments over the non robust version of our algorithm: higher than
4dB absolute improvement in terms of SNR, and around 30%
relative improvement (15 cm absolute) in terms of localization
precision.

We again observe that as the percentage of missing data
increases, the lines corresponding to different values of k are
crossing among them. This behaviour is very similar to that
found in the synthetic experiments above (refer to Fig. 5 and
Fig 6) for a high number of outliers, what makes us think
that this is the case in the real experiment, also serving as a
validation for our simulation conclusions.

It is also noteworthy that,in order to get the better result,
the maximum number of outliers k should be decreased when
the number of missing measurements increases.

XI. CONCLUSIONS

This paper has studied the properties of TDOA matrices,
showing that they can be effectively used for solving TDOA
denoising problems. In particular, the paper has investigated
challenging scenarios where the TDOA matrix is contaminated
with Gaussian noise, outliers and where a percentage of the
measurements are missing. The paper shows that denoising
in the presence of Gaussian noise and missing data can
be solved in closed-form. This result is important, as it is
the basis of an iterative algorithm that can also cope with
outliers. The paper has tested the proposed algorithms in the

context of acoustic localization using microphone arrays. The
experimental results, both on real and synthetic data have
shown that our algorithms successfully perform denoising (up
to 30% of improvement in localization accuracy) with a high
rate of missing data (up to 50%) and outliers. Interestingly, in
real datasets our robust denoising algorithm is systematically
better than the Gauss-Markov estimator even when there
is no missing data and no large outliers are, in principle,
contaminating the data. This is an important result as it proves
that the assumption of Gaussian noise does not hold in real
cases, while our robust model is capable of automatically
discard erroneous measurements. As for future work, we plan
to further test our denoising algorithms in applications where
the position of the sensors is unknown in advance, such in
self-localization and beamforming.
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authored more than 60 research papers; some in high-impact vision journals
such as IEEE PAMI, IJCV, IMAVIS or CVIU and top ranking vision
conferences, CVPR, ICCV or ECCV. He has participated in several research
projects from public fundings from Spain and Europe and has leaded several
technological transfer projects with Spanish companies.

Javier Macias-Guarasa received his Telecommu-
nication Engineering Degree and PhD both from
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