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Abstract
Phonological features extracted by neural network have

shown interesting potential for low bit rate speech vocoding.
The span of phonological features is wider than the span of
phonetic features, and thus fewer frames need to be transmitted.
Moreover, the binary nature of phonological features enables a
higher compression ratio at minor quality cost.

In this paper, we study the compressibility and structured
sparsity of the phonological features. We propose a compres-
sive sampling framework for speech coding and sparse recon-
struction for decoding prior to synthesis. Compressive sampling
is found to be a principled way for compression in contrast to
the conventional pruning approach; it leads to 50% reduction
in the bit-rate for better or equal quality of the decoded speech.
Furthermore, exploiting the structured sparsity and binary char-
acteristic of these features have shown to enable very low bit-
rate coding at 700 bps with negligible quality loss; this coding
scheme imposes no latency. If we consider a latency of 256 ms
for supra-segmental structures, the rate of 250 − 350 bps is
achieved.
Index Terms: Very low bit rate speech coding, Phonologi-
cal features, Compressive sampling, Structured sparsity, Binary
representation.

1. Introduction
Current conventional low bit rate speech coders operate on
1–2 kpbs (bits per second) bit rate, achieving an annoying
speech degradation. To achieve lower bit rates, parametric
speech coders were proposed, and cascaded phone-based au-
tomatic speech recognition (ASR) and text-to-speech (TTS), as
described, e.g., by [1], [2] and [3], became popular. We have
recently contributed to the very low bit rate coding by our pro-
posal of syllable-context phonetic decoding [4]. The system
operates on 200–300 bps incrementally with a syllable latency.

Recently we have proposed to use phonological vocoder in-
stead of phonetic one [5], based on modelling of the abstract
segmental phonological features, such as defined by [6] or [7].
The motivation was to benefit from wider temporal span of the
phonological features, and the underlying phonology mecha-
nisms that define the phonological features as binary. For exam-
ple, a sound [m] is realised as a binary combination of [+ante-
rior], [+voice] and [+nasal] phonological features. Considering
multilingual parametric speech coding, the use of these features
seems to be also promising. The recognition/synthesis system
operates on 1–3 kpbs, and it is based solely on neural networks,
rather than on hidden Markov models.

The research leading to this result is supported in part by SNSF
project on “Parsimonious Hierarchical Automatic Speech Recognition
(PHASER)” grant agreement number 200021-153507.

The quantisation and compression of the phonological fea-
tures are the main factors that determine the operating bit rate
and speech quality. In [5], we proposed to prune the phonologi-
cal features smaller than a certain (empirically tuned) threshold
to attain higher compression. Although this pruning scheme
seems to be effective, it is not suitable for codec implementa-
tion as it introduces bursts of features and highly variable code
length that could impact the latency of speech coding. This
paper focuses on compression of the phonological features. Re-
lying on sparsity of these features, we propose to apply a com-
pressive sampling method to provide a low-dimensional projec-
tion of these features. This approach leads to fixed length codes
for transmission so it is very convenient for codec implemen-
tation. At the decoding state, the sparse phonological features
are reconstructed using sparse recovery algorithm. The com-
pressive sampling and sparse reconstruction scheme define a
principled way for phonological vocoding. The experimental
analysis demonstrates up to 50% bit-rate reduction compared to
the conventional pruning approach for better or equal quality of
the decoded speech.

Furthermore, we study the structured sparsity of the phono-
logical features. The intuition is that the phonological features
lie on low-dimensional subspaces. The low-dimension pertain
to either physiology of the speech production mechanism or the
semantic of the supra-segmental information. At the physiology
level, only certain (very few) combinations of the phonological
features can be realized through human vocalization. This prop-
erty can be formalized by constructing a codebook of structured
sparse codes for phonological feature representation. Likewise,
at the semantic level, only certain (very few) supra-segmental
(e.g. syllabic) mapping of the sequence of phonological fea-
tures is linguistically permissible. This property can be ex-
ploited for block-wise coding of these features with a slower
(supra-segmental) dynamic. We demonstrate that structured
sparse coding of the binary features enables the codec to op-
erate at 700 bps without imposing any latency or quality loss
with respect to the earlier developed vocoder [5]. By consider-
ing a latency of about 256 ms, the bit rate of 250 − 350 bps
is achieved without requirement for any prior knowledge on
supra-segmental (e.g. syllabic) identities.

The rest of this paper is organized as follows: some back-
ground information on compressive sampling (CS) is briefly
stated in Section 2. In Section 3, we analyze the compressibility
of the phonological features from the CS perspective. The CS-
based vocoder is described in Sections 4. We study the struc-
tured sparsity of the phonological features and its implications
for designing an efficient vocoder in Section 5. The experimen-
tal results are presented in Section 6 and the conclusions are
drawn in Section 7.



2. Compressive Sampling Principles
Compressive sampling relies on sparse representation to re-
construct a high-dimensional data using very few linear non-
adaptive observations. A data representation α ∈ RN is K-
sparse if only K � N entries of α have nonzero values.
We call the set of indices corresponding to the non-zero en-
tries as the support of α. The CS theory asserts that only
M = O(K log(N/K)) linear measurements, z ∈ RM ob-
tained as

z = D α (CS coder) (1)

suffice to reconstruct α, where D ∈ RM×N is a compressive
measurement matrix which preserves the pairwise distances of
the sparse features α in the compressed code z. Given an ob-
servation vector z, and the measurement matrix D, the sparse
representation α is obtained by the optimization problem stated
as

min
α
‖α‖0 subject to z = Dα (Sparse decoder) (2)

where the counting function ‖.‖0 : RM −→ N returns the
number of non-zero components in its argument. The non-
convex objective ‖α‖0 is often relaxed to ‖α‖1 =

∑
i |αi|

which can be solved in polynomial time [8]. Recent advances in
CS exploits inter-dependency structure underlying the support
of the sparse coefficients in recovery algorithms to reduce the
number of required observations and to better differentiate the
true coefficients from recovery artifacts for higher quality [9].

3. Compressibility of Phonological Features
To investigate how the Phonological features fit a common met-
ric for sparsity, we analyze the power-law decay of these repre-
sentations [10]. For the features to be closely approximated as
sparse thus compressible, the coefficients α must have a rapid
power-law decay when sorted:

|αi| ≤ γ i
−1
r r ≤ 1, (3)

where αi, ∀i ∈ {0, . . . , N} denotes the coefficients of α when
sorted from largest to smallest. Plotting the sorted value of the
phonological features vs. their index is illustrated in Figure 1.
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Figure 1: Compressibility of the phonological features conforming to
the power-law decay.

We can see that the decay of the coefficients satisfies equa-
tion (3). Based on this observation, the phonological represen-
tation of speech signal is considered to be compressible and the
compressive sampling can be effectively used to reduce the di-
mension of the features for coding while sparse recovery guar-
antees reconstruction of the original sparse coefficients at the
decoding. In this study, N = 25. In addition, the PCA analy-
sis of the phonological features reveals that only 12 coefficients
(out of 25) capture above 95% of the variability.

4. CS-based Phonological Vocoding
Relying on the compressibility of the phonological represen-
tation of speech signal, we propose to apply compressive sam-
pling to reduce the dimension of these features. Earlier work [5]
used pruning based on a threshold value which has to be tuned
for different conditions. This approach is not practical as the re-
sulting code has a variable length and leads to burst of features
and latency for codec implementation. In contrast, compressive
sampling lays out a principled way for dimensionality reduc-
tion of sparse representation and it is a practical framework for
coding. Figure 2 shows the functional blocks of the proposed
speech coder.
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Figure 2: CS-based phonological vocoder split into (a) encoder and (b)
decoder. Compressed features are recovered at the receiver side where
the decoder generates speech spectra lines LSPs and source parameters
for speech re-synthesis.

The proposed CS-based phonological vocoding consists in
two steps: (i) CS-coder as expressed in (1) and (ii) Sparse re-
covery for decoding as presented in its general form in (2).

4.1. CS Coder

At the coding step, the choice of compressive measurement ma-
trix D is very important. A sufficient but not necessary con-
dition on D to guarantee decoding of the sparse representation
coefficients is that all pairwise distances betweenK-sparse rep-
resentations must be well preserved in the observation space
or equivalently all subsets of K columns taken from the mea-
surement matrix are nearly orthogonal. This condition on the
compressive measurement matrix is referred to as the restricted
isometry property (RIP). The random matrices generated by
sampling from Gaussian or Bernoulli distributions are proved to
satisfy RIP condition [11]. To generate D in the Gaussian case,
we generate samples from a multivariate Gaussian distribution.
On the other hand, we can create a binary matrix D by setting
around 50% of the components of each column at random per-
mutations to 1 [12]. We study the empirical difference between
the two compression mechanisms, i.e. Gaussian vs. Bernoulli
in Section 6 where a choice of Bernoulli matrix is demonstrated
to achieve higher robustness to quantization.

Given the compressed codes, there are infinitely many so-
lutions to reconstruct the original high-dimensional represen-
tation which satisfy (1). Relying on the two principles of (1)
sparse representation and (2) incoherent measurement, we can
guarantee to circumvent the ill-posedness of the problem and
recover the K-sparse data stably from the compressed (low-
dimensional) observations through efficient optimization algo-
rithms which search for the sparsest representation that agrees
with those observations. This step is implemented at the de-
coder [11].



4.2. Sparse Decoder

At the decoder, the high-dimensional phonological features are
reconstructed using constrained LASSO sparse recovery algo-
rithm [8] expressed as

α̂ =argmin ‖α‖1 + λ‖z −Dα‖2
subject to 0 < α < 1

(4)

where λ is the regularization parameters. The first term ‖.‖1
is a relaxed (convex) version of the `0 semi-norm sparse re-
covery problem stated in (2). This term promotes the sparsity
of the recovered representation. This term can be replaced by
‖.‖∞ standing for the `∞-norm defined as the maximum com-
ponent of α. It is shown that `∞-norm leads to de-quantization
effect [13].

The second term in (4) accounts for the reconstruction er-
ror. Regularization on the `2-norm is equivalent to the solving
the constrained optimization, z = Dα if the measurements are
not quantized. The constraint 0 < α < 1 is set for the phono-
logical features as they are neural network estimated posterior
probabilities for each individual phonological class. Having the
prior knowledge of the bound of the features, eliminate the need
for `∞-norm as verified empirically in the experimental analy-
sis presented in Section 6.

5. Structured Sparse Binary Coding
The phonological features are indicators of the physiological
posture of the human articulation machinery. Due to the phys-
ical constraints, only few combinations can be realized in our
vocalization. This physical limitation leads to a small number
of unique patterns exhibited over the entire speech corpora. We
refer to this structure as physiological structure which is exhib-
ited at a frame level.

In addition, there is a block (repeated) structure underlying
a sequence of phonological features. This structure is exhibited
at the supra-segmental level by analyzing a long duration of the
features. This structure is associated to the syllabic informa-
tion underlying a sequence of phonological features. We refer
to this structure as semantic structure. Figure 3 illustrates the
structured sparsity and binary characteristic of the phonological
features.

The structured sparsity of the phonological features enables
us to construct a codebook for very efficient coding. To this
end, we consider binary phonological features that have been
shown efficient for very low bit rate speech coding [5]. As a
case study, we use the features generated for an audiobook with
the length of 21 hours speech. The total number of unique struc-
tures emerging out of total number of 4746186 frames is only
12483 which is about 0.26% of the whole features. By identify-
ing all the unique binary structures, a codebook is constructed
for phonological feature representation. It is evident that only
14 bits are enough for transmitting a code. Given that the num-
ber of frames per second for phonological vocoding is 501, this
coding scheme leads to 50 × 14 = 700 bits per second trans-
mission rate.

Furthermore, from a supra-segmental view, there is strong
correlation between the adjacent features due to limited permis-
sible linguistic combinations. The supra-segmental linguistic

1It may be noted that in the phonological vocoding system, a neural
network is trained for silence detection [5], thus the silence/pause inter-
vals are coded efficiently with a small overhead. Because around 20%
of the transmitted speech is detected as silence (valid for our training
data), we obtain the effective speech frame-rate as 62.5× 0.2 = 50.
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Figure 3: Left: Phonological features exhibit structured sparsity at two
distinguished levels: (1) Physiological structure: The histogram shows
activation of phonological features at (2,12,17,18,20,21); this pattern
encodes a particular shape of the vocal tract. Since a limited number
of these shapes can be created for human speech, the number of unique
patterns is very small. (2) Semantic structure: The histogram shows that
activations of the phonological pattern (2,12,17,18,20,21) is persistent
through time as it gets repeated in consecutive frames. This pattern
encodes the duration of each physiological shape leading to a supra-
segmental capturing of syllabic information. This property encourages
structured sparse coding of these features. Right: Phonological features
have a binary nature in which most of components have either very large
values close to one or very small values close to zero. This property
encourages binary approximation of these features.

units may correspond to the syllabic identities or stressed re-
gions. While exploiting the supra-segmental information has
been shown to yield significant bit-rate reduction [4], in prac-
tice, providing the syllabic information requires additional pro-
cessing which can impose higher cost on the codec. On the
other hand, constructing a codebook of structured sparse bi-
nary patterns as described above is straightforwards and re-
quires less analysis. The supra-segmental information can be
captured by imposing a latency and transmitting the blocks re-
peated patterns. As a case study, investigating the features ob-
tained for the audiobook reveals that the number of blocks is
less than 36% of the total number of frames and 4 bits is suf-
ficient to transmit the number of repeated codes. That amounts
to 0.36 × 50 × (14 + 4) = 328 bps transmission rate with no
loss in the quality of the reconstructed speech. If the duration
information is dropped, then the bit rate is only 250 bps; further
analysis is required to evaluate the extent of distortion that ig-
noring the temporal duration can impose on ineligibility of the
reconstructed speech.

6. Experimental Analysis
The experiments are conducted to study the performance of the
proposed phonological vocoding systems at different bit-rates
in terms of objective and subjective quality measures. Different
bit-rates are achieved through linear quantisation of the trans-
mitted codes.

6.1. Phonological Encoder and Decoder Setup

The experimental setup used in this work follows the setup used
in [5]. Briefly, at the encoder, a bank of phonological classi-
fiers is realised using neural network to generate the posterior
probability of the input acoustic vector belong to the individual
phonological classes. Overall N = 25 phonology classes are
considered and 25 separate neural networks are trained to gen-
erate the binary phonological posterior for each individual class.
The French speech database Ester [14] of standard French radio
broadcast news was used for training of the encoders. The archi-
tecture of the neural network was determined empirically that
led to 3-hidden layer of dimensions 2000x500x2000, trained on
the 16 kHz speech signals, framed by 25-ms windows with 16-



ms frame shift, using temporal context of 9 successive frames
of PLP features, and softmax output function.

At the decoder, a DNN is used to learn the highly-complex
regression problem of mapping phonological features to speech
parameters for re-synthesis. While phonological encoders
are speaker-independent, the phonological decoder is speaker-
dependent because of speaker dependent speech parameters. As
a target voice, we selected a French audio book 2, around 21
hours long. Recordings were organised into 57 sections, and
we used the sections 1 − 50 as a training set, 51 − 55 as a
development set and 56 − 57 as a testing set. The develop-
ment and testing sets were 2.1 hours and 29 minutes long, re-
spectively. The DNN was initialised using 4x1024 deep belief
network (DBN) pre-training by contrastive divergence with 1
sampling step (CD1) [15]. The DNN with a linear output func-
tion was then trained using a mini-batch based stochastic gra-
dient descent algorithm with mean square error cost function
of the KALDI toolkit [16]. Finally, speech was re-synthesised
using an open-source LPC vocoder based on minimum-phase
complex cepstrum glottal model estimation [17]. The evalua-
tion did not include F0 transmission, as we found that the DNN
did not model the pitch stream adequately. It may be due to
a (sub-)phonetic nature of the phonological features, while F0
modelling requires supra-segmental features as well. Therefore
we used in further evaluation the original F0. If we consider
pitch transmission and a latency of 256ms that corresponds to
an average syllable duration, we can use the syllable-based pitch
coding [18], operating on 30–40 bps.

6.2. Reconstructed Speech Quality

To evaluate the reconstructed speech quality, signal to noise ra-
tion (SNR) and Mel cepstral distortion (MCD) [19] are used as
objective metrics. In addition, the overall quality of the pro-
posed speech coding is evaluated subjectively using the degra-
dation category rating (DCR) procedure [20] quantifying the
degradation mean opinion score (DMOS). This method pro-
vides a quality scale of high resolution, due to comparison of
a distorted (synthesized) signal with a (natural/original) refer-
ence. The test consisted of 8 sentences randomly chosen from
the 57th (testing) section of the audio book, with length of at
least 2 seconds. Twelve listeners were asked to rate the degra-
dation of encoded speech samples compared with reference sig-
nals based on their overall perception. According to the DCR
procedure, it is not fair to build a pair associating two encoded
samples since it would have implied that the first encoded sam-
ple outclasses perception of the second one. Therefore natural
speech was selected as a reference sample in the test. Listeners
had to describe degradation within the following five categories:
[1]: Very annoying, [2]: Annoying, [3]: Slightly annoying, [4]:
Audible but not annoying, [5]: Inaudible.

The evaluated synthesis systems operate at different bit
rates by applying the linear quantisation at 8-level (Q=8), 4-
level (Q=4), 3-level (Q=3) using the compressive sampling and
sparse reconstruction scheme (Section 4). In addition, the struc-
tured sparse binary coding scheme as described in Section 5 is
evaluated which operates at two bit rates for transmission of bi-
nary features at no latency (Q=1) and 256 ms imposed latency
(Q’=1). According to the G.114, the users are “satisfied” as
long as latency does not exceed 280 ms [21]. Table 1 lists all
the results. A t-test confirmed that the differences between the
coding schemes are statistically significant (p < 0.05). We
can see that the phonological vocoder can achieve very low bit

2
librivox.org/scenes-de-la-vie-privee-tome-1-by-honore-de-balzac-0812

Table 1: Quality evaluation results for reconstructed speech for dif-
ferent transmission bit rates obtained for various linear quantisation
regimes; Q indicates the number of quantization bits. All the systems
impose no latency except for (Q’=1) that requires a latency of 256 ms.

Quantz SNR MCD DMOS Bit rate [bps]
Q’= 1 10.4 3.8 2.20 328
Q = 1 10.4 3.8 2.20 700
Q = 3 9.60 4.04 2.08 2300
Q = 4 13.3 3.68 2.35 3050
Q = 8 20.2 2.87 2.84 6050

rate at a minor quality loss thanks to their binary characteris-
tic and strong physiological and semantic structure underlying
their sparse representation. Furthermore, the compressive sam-
pling scheme leads to 50% bit-rate reduction compared to the
pruning approach employed in [5]. Although at the fine quanti-
sation regime (e.g. Q=8), the objective and subjective quality of
the reconstructed speech is far better than the pruning method,
compressive sampling and sparse reconstruction is found sen-
sitive to quantization of the measurements so at the Q = 3
quantization level, the quality of both approaches are indistin-
guishable while CS leads to higher compression. Hence, com-
pressive sensing and sparse recovery demonstrate high sensi-
tivity to quantization. Although the use of `∞-norm has been
shown to yield some level of de-quantization, it did not have
any significant impact on our phonological vocoding system.
It can be justified due the binary nature of these features and
bounded constrained optimization defined in (4). On the other
hand, the choice of compressive sensing matrix is crucial for
robustness against quantization. Table 2 shows the quality of
the reconstructed speech in terms of SNR (dB) for the choice of
Bernoulli contrasted with Gaussian random matrices.

Table 2: Impact of compressive measurement matrix on reconstructed
speech quality quantified in terms of SNR (dB).

Quantization Bernoulli Gaussian
Q=8 20.2 17.6
Q=4 13.3 9.5
Q=3 9.60 5.37

We can see that the Bernoulli compressive measurements
lead to smaller degradation. The differences are more pro-
nounced at highly quantized regimes such as Q = 3.

7. Conclusions
Compressive sensing and sparse recovery are found to be the
systematic way of compression and recovery of the sparse
phonological features. Moreover, structured sparsity along with
binary approximation of the phonological features are exploited
for construction of a phonological codebook that encapsulates
the postures of human vocalisation. This coding scheme oper-
ates at 700 bps with very small subjective degradation in the
quality of the reconstructed speech. Considering the supra-
segmental information by imposing some latency at the codec,
very low-bit rate of 324 bps is achieved. While the compress-
ibility of the phonological features is impressive, utilizing a
DNN at the decoder and the LPC vocoder have a great impact on
the quality of the reconstructed speech. Adaption of the DNN
along with a better vocoder can diminish some effect of recon-
struction and yield higher speech quality.



8. References
[1] J. Picone and G. R. Doddington, “A phonetic vocoder,” in Proc.

of ICASSP. IEEE, May 1989, pp. 580–583 vol.1. [Online].
Available: http://dx.doi.org/10.1109/icassp.1989.266493

[2] K. Tokuda, T. Masuko, J. Hiroi, T. Kobayashi, and T. Kitamura,
“A very low bit rate speech coder using HMM-based speech
recognition/synthesis techniques,” in Proc. of ICASSP, vol. 2.
IEEE, May 1998, pp. 609–612 vol.2. [Online]. Available:
http://dx.doi.org/10.1109/icassp.1998.675338

[3] K.-S. Lee and R. Cox, “A very low bit rate speech coder based on
a recognition/synthesis paradigm,” IEEE Trans. on Audio, Speech,
and Language Processing, vol. 9, no. 5, pp. 482–491, Jul 2001.

[4] M. Cernak, P. N. Garner, A. Lazaridis, P. Motlicek, and X. Na,
“Incremental Syllable-Context Phonetic Vocoding,” IEEE/ACM
Trans. on Audio, Speech, and Language Processing (to appear),
2015. [Online]. Available: http://publications.idiap.ch/index.php/
publications/show/2987

[5] M. Cernak, B. Potard, and P. N. Garner, “Phonological Vocoding
Using Artificial Neural Networks ,” in Proc. of ICASSP, Apr.
2015. [Online]. Available: http://publications.idiap.ch/index.php/
publications/show/3070

[6] N. Chomsky and M. Halle, The Sound Pattern of English. New
York, NY: Harper & Row, 1968.

[7] J. Harris, English Sound Structure, 1st ed. Wiley-Blackwell,
Dec. 1994. [Online]. Available: http://www.amazon.com/exec/
obidos/redirect?tag=citeulike07-20\&path=ASIN/0631187413

[8] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disci-
plined convex programming,” 2008.

[9] A. Asaei, H. Bourlard, and V. Cevher, “Model-based compressive
sensing for multi-party distant speech recognition,” in IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2011.

[10] V. Cevher, P. Indyk, L. Carin, and R. G. Baraniuk, “Sparse signal
recovery and acquisition with graphical models,” Signal Process-
ing Magazine, IEEE, vol. 27, no. 6, pp. 92–103, 2010.

[11] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” Signal Processing Magazine, IEEE, vol. 25, no. 2, pp.
21–30, 2008.

[12] R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. J. Strauss,
“Combining geometry and combinatorics: A unified approach to
sparse signal recovery,” in Communication, Control, and Com-
puting, 2008 46th Annual Allerton Conference on, 2008, pp. 798–
805.

[13] L. Jacques, D. K. Hammond, and M.-J. Fadili, “Dequantizing
compressed sensing: When oversampling and non-gaussian con-
straints combine,” IEEE Transactions on Information Theory,
vol. 57, no. 1, pp. 559–571, 2011.

[14] S. Galliano, E. Geoffrois, G. Gravier, J. f. Bonastre, D. Mostefa,
and K. Choukri, “Corpus description of the ester evaluation cam-
paign for the rich transcription of french broadcast news,” in In
Proceedings of the 5th international Conference on Language Re-
sources and Evaluation (LREC 2006, 2006, pp. 315–320.

[15] G. E. Hinton, S. Osindero, and Y. W. Teh, “A Fast
Learning Algorithm for Deep Belief Nets,” Neural Comput.,
vol. 18, no. 7, pp. 1527–1554, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1162/neco.2006.18.7.1527

[16] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” in Proc. of ASRU. IEEE SPS, Dec. 2011, iEEE
Catalog No.: CFP11SRW-USB.

[17] P. N. Garner, M. Cernak, and B. Potard, “A simple continuous
excitation model for parametric vocoding,” Idiap, Tech. Rep.
Idiap-RR-03-2015, Jan. 2015. [Online]. Available: http://
publications.idiap.ch/index.php/publications/show/2955

[18] M. Cernak, X. Na, and P. N. Garner, “Syllable-Based
Pitch Encoding for Low Bit Rate Speech Coding with
Recognition/Synthesis Architecture,” in Proc. of Interspeech,
Aug. 2013, pp. 3449–3452. [Online]. Available: http://www.
isca-speech.org/archive/interspeech\ 2013/i13\ 3449.html

[19] R. F. Kubichek, “Mel-cepstral distance measure for objective
speech quality assessment,” in Proc. of ICASSP, vol. 1.
IEEE, May 1993, pp. 125–128 vol.1. [Online]. Available:
http://dx.doi.org/10.1109/pacrim.1993.407206

[20] ITU-T Rec. P.800, “Methods for subjective determination of
transmission quality,” (Geneva, Switzerland) 1996.

[21] ITU-T Rec. G.114, “One-way transmission time ,” (Geneva,
Switzerland) 2003.


