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Abstract
Progressive apraxia of Speech (PAoS) is a progressive mo-
tor speech disorder associated with neurodegenerative disease
causing impairment of phonetic encoding and motor speech
planning. Clinical observation and acoustic studies show that
duration analysis provides reliable cues for diagnosis of the dis-
ease progression and severity of articulatory disruption. The
goal of this paper is to develop computational methods for ob-
jective evaluation of duration and trajectory of speech artic-
ulation. We use phonological posteriors as speech features.
Phonological posteriors consist of probabilities of phonological
classes estimated for every short segment of the speech signal.

PAoS encompasses lengthening of duration which is more
pronounced in vowels [1, 2]; we thus hypothesize that a small
subset of phonological classes provide stronger evidence for
duration and trajectory analysis. These classes are determined
through analysis of linear prediction coefficients (LPC). To en-
able trajectory analysis without phonetic alignment, we exploit
phonological structures defined through quantization of phono-
logical posteriors. Duration and trajectory analysis are con-
ducted on blocks of multiple consecutive segments possessing
similar phonological structures. Moreover, unique phonological
structures are identified for every severity condition.
Index Terms: Progressive apraxia of speech (PAoS), Phono-
logical posterior features, Phonological structures, Linear pre-
diction coefficient (LPC).

1. Introduction
Dysarthria and Progressive Apraxia of Speech (PAoS) are two
common speech motor disorders observed in neurodegenerative
diseases. While automatic processing (for assessment and as-
sistive applications) of dysarthric speech is getting considerable
attention in the speech community [3, 4, 5, 6], acoustic and au-
tomatic processing studies of PAoS are rather rare. It might be
due to increased complexity of speech degradations of patients
with PAoS, where production errors are more inconsistent and
unpredictable [7].

PAoS is a speech motor disorder associated to several neu-
ropathological conditions, which causes progressive degrada-
tion of the main speech characteristic and of speech intelligibil-
ity. The main symptoms of PAoS are phonetic distortions and
phonemic errors, groping and effortful speech initiation with
successive approximations, changes in inter- and intra-syllabic
transitions, increased syllabic duration and decreased speech
rate [6, 7].

PAoS has been associated with impaired phonetic encod-
ing (planning of speech gestures) rather than to impaired motor
execution [7, 2, 8]. Here we hypothesize that analysis of phono-

logical features extracted from the degraded speech signal could
contain clues for assessment of the progressive disruption and
severity levels of PAoS.

One particular contribution of this paper is selection of
phonological classes using linear prediction analysis of phono-
logical posteriors. In addition, we exploit phonological struc-
tures [9] to enable automatic analysis of duration and trajec-
tory without any need for automatic alignment. Prior work
on phonological structures demonstrate their relation to artic-
ulatory postures [9], thus considering the structure of multiple
consecutive segments enables quantification of the dynamic and
trajectory of articulatory movements and co-articulation. The
studies presented in this paper exploit this structural property
of phonological posteriors to obtain speech-based markers of
PAoS severity.

The results obtained in Section 5 demonstrate a significant
increase in duration and less consistency in articulatory move-
ments as the neuro-degeneration thrives. Furthermore, we iden-
tify unique structures per severity condition which indicates
that certain articulatory postures disappear in AoS progression
and are replaced by new postures and trajectory of movements.
This observation can lead to development of a novel auto-
matic assessment method relying on the nearest neighbor rule
of classification. Preliminary studies show the potential of this
method. However, recordings of many patients is required to
validate/endorse its usefulness for clinical applications.

To the best of authors’ knowledge, prior work on applica-
tion of phonological features for objective intelligibility predic-
tion of pathological speech considered statistical measures of
independent processing of segments of speech [10]. In contrast,
we propose ranking ad selection of phonological classes, and
we study the relation between adjacent segments, or trajectory
of articulation. The proposed approach provides simple objec-
tive tools that correlate with higher level speech production be-
haviors such as speaking rate and co-articulation without any
requirement for speech alignment.

The rest of the paper is organized as follows. Section 2
describes the data available from 3 assessment sessions of a pa-
tient diagnosed with isolated PAoS. This data is used for estima-
tion of phonological posteriors through the procedure explained
in Section 3. We used linear prediction analysis to rank the
phonological classes for trajectory analysis in Section 4. The
trajectory analysis methods are explained in Section 5 where
selection of phonological classes is found an effective approach
to obtain more distinct markers of severity. Moreover, distinct
structural patterns are observed for every severity condition.
This observation leads to devising a classifier for detection of
the level of severity which is elaborated in Section 6. The con-
clusions are drawn in Section 7.



2. PAoS Data
The data used for evaluation of the methods proposed in this
paper consist in 3 recordings over A 28-months period of a
67 year-old french speaking woman diagnosed with isolated
PAoS. The patient has been recorded for about 2 minutes while
reading the same text (“La bise et le soleil” [11]). The total
duration is thus about 7 minutes. Across the 3 sessions the
severity of speech disruption progresses from mild, to medium
and to severe impairment according to clinical assessment by
speech and language therapists and to normative acoustic data.
Diadochokinetic rate assessed with standard diadochokinetic
tasks [12] and articulation rate are reported in Table 1.

Table 1: Clinical PAoS pattern: speech rate and diadochoki-
nesic rate (syll/sec) across the assessment sessions. The num-
bers in parenthesis shows the relative reduction in rates with
respect to the mild condition. The patient’s production im-
pairment in medium condition is assessed after 16 month from
the mild condition; the severe impairment is evaluated after 12
month from the medium condition.

Condition Mild Medium Severe
Articulation rate 2.73 2.39 (13%) 2.06 (25%)

Diadochokinesis rate 2.85 2.22 (22%) 1.58 (45%)

The clinical and acoustic durational measurements show
that this patient after 16 months from its initial mild AoS, ex-
hibits increased impairment where the articulation rate is de-
creased by 13% and diadochokinetic rate is decreased by 22%.
In the follow up assessment session after 28 months from the
diagnosis of mild AoS, the patient reaches more severe impair-
ment manifested in 25% reduction in articulation rate and 45%
reduction in diadochokinetic rate.

In the rest of the paper, our goal is to quantify speech mark-
ers that correlate with the clinical markers. Motivated from the
intuitive effects of PAoS on articulatory disruptions, and how
the clinical assessments quantify this impairment, we focus our
work on ranking and selection of speech representations, and
their evolution through time in trajectory analysis.

3. Phonological Structures
We use deep neural network (DNNs) to estimate the phonolog-
ical posterior features. As we have already seen in Section 1,
PAoS affects phonetic planning. Hence, phonological posteri-
ors are suitable representation of speech to enable assessment of
these patients. Moreover, phonological posteriors exhibit highly
constrained structures that are consistent for adjacent segments
and change according to the speaking rate. In the next Sec-
tion 3.1, we explain the framework for estimation of phonolog-
ical posteriors.

3.1. Phonological Posteriors

Figure 1 illustrates the process of the phonological analysis
[13, 14]. This process starts by converting a segment of
speech samples into a sequence of acoustic features X =
{x1, . . . ,xn, . . . ,xN} where N denotes the number of seg-
ments in the utterance. Conventional cepstral coefficients
can be used as acoustic features. Then, a bank of phono-
logical class analyzers realized via neural network classi-
fiers converts the acoustic feature observation sequence X
into a sequence of phonological posterior probabilities Z =

Speech
Signal

Acoustic
Feature

Extraction

c1 : Anterior

ck : Coronal

cK : Strident

zn

Figure 1: The process of phonological analysis. Each segment
of speech signal is represented by phonological posterior prob-
abilities zn that consist of K class-conditional posterior prob-
abilities. For each phonological class, a DNN is trained to esti-
mate its posterior probability given the input acoustic features.

{z1, . . . , zn, . . . , zN}; a posterior probability

zn = [p(c1|xn), . . . , p(ck|xn), . . . , p(cK |xn)]> (1)

consists of K phonological class-conditional posterior proba-
bilities where ck denotes the phonological class and .> stands
for the transpose operator. The phonological posteriors Z yield
a parametric speech representation.

Phonological analysis was performed with the PhonVoc:
phonetic and phonological toolkit [16]. Probabilities of K =
24 phonological classes corresponding to the French version of
the Sound Pattern of English [14] were extracted from 25 ms
speech segments, using 10 ms steps [16].

3.2. Structured Sparsity

Phonological posteriors are indicators of the physiological pos-
ture of human articulation machinery. Due to the physical con-
straints, only few combinations can be realized in our vocaliza-
tion. This physical limitation leads to a small number of unique
patterns exhibited over the entire speech corpora [17]. We re-
fer to this structure as first-order structure which is exhibited
at segmental level. These structures can be quantified using bi-
nary (1-bit) quantization or finer quantization levels. We will
compare both binary (Q1) and 2-bit (Q2) quantization levels to
perform trajectory analysis in Section 5. We will see that binary
structures are the best level of structural definition.

In addition to the first-order structures, the dynamic of
the phonological posteriors can be quantified considering the
higher-order structure underlying a sequence (trajectory) of
phonological posteriors. This structure is exhibited at supra-
segmental level which is associated to the syllabic information
or more abstract linguistic attributes. We refer to this structure
as high-order structure.

Previously we have shown that the trajectories of the
articulatory-bound phonological posteriors correspond to the
distal representation of the gestures in the gestural model of
speech production (and perception) [9]. In this paper, we ex-
ploit these structures as markers for objective evaluation and
assessment of the level of severity of speech motor disorder in
patients diagnosed with progressive apraxia of speech. The de-
tails of our analysis are explained in Sections 5.

Unlike previous work on application of phonological pos-
teriors for assessment of pathological speech, we hypothesize
that not all phonological classes are equally important. In
other words, a small subset of phonological classes may pro-
vide stronger cues for diagnosis of the level of PAoS. This hy-
pothesis is supported by clinical investigations confined to the
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Figure 2: Ranking and selection of important phonological classes: The first coefficient of the linear prediction analysis [15] is
computed for the blocks of posteriors consisted on adjacent segments with similar binary structures. The average of the first LPC for
each phonological classes is calculated per recording session. Finally, the mean of class-specific LPCs are computed for all the session
and sorted. The classes with the highest mean values are considered as those contributing the most to the assessment of speech rate
and trajectory in PAoS. The top-4 classes are “Voiced”, “Vowel”, “Unround” and “Mid”. Considering the phonological-phonetic
mapping used for the neural network training [14], these classes capture phonological variation of vowel-like sounds (c.f. Table 2).

vowels and in particular lengthening of the vowels as the PAoS
thrives [1, 2]. In the next section, we elaborate on a method
for ranking and selection of phonological classes using linear
prediction analysis [15].

4. Selection of Phonological Classes
We hypothesize that phonological classes are not equally im-

portant for assessment of PAoS. The focus of the present work
is on trajectory analysis of phonological posteriors; hence, we
rely on linear prediction coefficients (LPC) to measure the de-
pendency and predictability of consecutive phonological poste-
riors.

4.1. Linear Prediction Analysis

The goal of linear prediction analysis is to minimize prediction
error of the current segment using the values of the posteriors
from the past consecutive segments. The predicted posterior at
segment n is thus obtained as

ẑn =

P∑
p=1

αp�zn−p (2)

where αp =
[
α1
p . . . α

k
p

]>
is a K dimensional vector, and �

stands for element-wise product. The LPCs are estimated to
minimize the reconstruction error in mean square sense, i.e.
||ẑn − zn||2.

The procedure for LPC analysis of phonological posteriors
and selection of the most important classes is as follows:

1. Blocking: The posteriors are analyzed in blocks of consecu-
tive segments which possess similar structures after quanti-
zation.

2. Class-specific LPC: The high-order LPC analysis is per-
formed where the LPC order is chosen as the block length,
i.e. number of segments.

3. Ranking: Means of the first LPC coefficient α1
p for all blocks

and recording conditions are computed for every phonolog-
ical class. The means are then sorted and the classes which
exhibit largest means are considered as the most informative
classes for trajectory analysis.

Figure 2 illustrates the average value of the first LPCs for
each phonological posterior per recording sessions correspond-
ing to mild, medium and severe condition. The top-4 most im-
portant classes are identified as “Voiced”, “Vowel”, “Unround”
and “Mid”. We can see the consistent high value of LPCs esti-
mated for these classes throughout progression of AoS.

4.2. Phonological-Phonetic Importance of Vowels

To have a better understanding of what the selection of phono-
logical classes may imply, we refer to the phonological-
phonetic mapping used for neural network training in posterior
estimation [14]. Table 2 shows the mapping between selected
classes and phonemes associated with these classes.

Table 2: Association of selected French phonological classes
and phonemes. The French phoneme set is taken from
BDLex [18].

Class ck Phonemes

Voiced a ã 9 i y u e ẽ ø o õ O @ E œ œ̃ j l m 4 w b N ñ
n v g K d z Z

Vowel i y u e ẽ ø o õ @ E œ O a ã œ̃ 9
Unround a ã i e ẽ E 9

Mid ø ẽ e œ E

We can see that the selected top-4 classes capture phono-
logical variability of all vowel-like speech sounds (all vowels
and voiced consonants). This might indicate that vowel analy-
sis is more important in PAoS than the consonant analysis. This
observation is inline with the clinical assessment of PAoS [8].
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Figure 3: Relative increase in duration illustrated for (i) Q1
and Q2 quantizations to obtain phonological structures, and (ii)
when phonological structures are obtained from all (24) classes
vs. the case that only top-4 classes are used for duration model-
ing. We see clear benefit when Q1 binary structures are used for
duration analysis, and when we use the selective top-4 classes.
In the most distinctive case, using Q1 structure of top-4 classes,
we observe 43% increase in duration in medium AoS and 61%
increase in duration in severe AoS with respect to mild AoS (c.f.
Table 3).

5. Trajectory Analysis
Analysis of trajectory of phonological posteriors is performed
using three metrics defined through (5.1) Duration of phono-
logical structures, (5.2) Predictability of phonological classes
from the previous segments, and (5.3) Dynamic of posteriors
quantified through high-order structures underlying consecutive
segments.

Clinical assessment for diagnosis of PAoS asserts that
speaking rate is reduced and the control over muscle movements
is less consistent as the disease thrives [2, 8]. Accordingly, we
expect to see an increase in duration and less predictability from
mild to severe condition. Complying to the clinical emphasis
put on vowel analysis, focusing our analysis on top-4 classes
(c.f Table 2) is expected to be advantageous in distinction of the
severity conditions.

5.1. Structural Duration

Typically, duration analysis requires automatic alignment of
speech with the actual transcription using automatic speech
recognition (ASR). However, this can be a cumbersome method
that requires ASR resources and expertise. Moreover, automatic
alignment is affected by the ASR errors due to progressive mis-
match between the training and testing conditions.

To alleviate this limitation, we propose to use the phonolog-
ical structures for duration analysis. The structures are obtained
through quantization of posteriors, and they are often similar
for adjacent segments. As the phonological structures can be
related to the articulatory postures of speech production [9],
slower speaking rate indicates a slower dynamic in the struc-
tural changes.

Applying the same blocking procedure as explained in Sec-
tion 4, we quantify the structural duration as the average num-
ber of the segments in one block.

Different level of quantization can be applied to obtain the
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Figure 4: Relative reduction in the second coefficient of high-
order LPC analysis for (i) Q1 and Q2 quantizations to obtain
phonological structures, and (ii) when phonological structures
are obtained from all 24 classes vs. the case that only top-4
classes are used for duration modeling. In the most distinctive
case, using Q1 structure of top-4 classes, we observe 25% re-
duction in the second LPC in medium AoS and 38% reduction
in the second LPC in severe AoS with respect to mild AoS (c.f.
Table 4).

structures. We compare 1-bit (Q1) and 2-bit (Q2) quantization
in our studies. Furthermore, to see the effectiveness of working
on a small subset of phonological classes, we compare the re-
sults when the structures are obtained from all classes or only
from the top-4 most important classes.

The results are illustrated in Figure 3. More details are
listed in Table 3. We can see a clear benefit of binary structures

Table 3: Structural duration measured in terms of the average
number of segments in all blocks of similar structures. The num-
bers in parenthesis show the relative increase in duration with
respect to the mild condition.

Condition Mild Medium Severe
Q1 duration (all) 2.3 3.1 (27%) 3.6 (44%)
Q1 duration (top-4) 4.7 6.7 (43%) 7.6 (61%)
Q2 duration (all) 1.5 1.97 (24%) 2.2 (36%)
Q2 duration (top-4) 2.3 3.3 (41%) 3.6 (55%)

over the 2-bit quantization. Moreover, obtaining the structural
duration using a subset of most indicative phonological classes
leads to higher distinction across different PAoS conditions.

5.2. Long Term Dependency

Similar to the method explained in Section 4, the linear predic-
tion analysis is conducted on blocks of the same phonological
structures. We perform high-order LPC analysis where the or-
der is determined from the length of the block, i.e. number of
segments. We measure the mean of the second LPC for ev-
ery recording session. Less control over the muscle movement
leads to less consistency of the articulation trajectories. Figure 4
illustrates the relative reduction of the second LPC with respect
to the mild condition. The details of the results are listed in
Table 4.

It is evident that high-order dependencies are reduced. This



Table 4: High-order linear prediction analysis: The values for
the second coefficient averaged for all segments are listed at
different recording sessions. The numbers in parenthesis show
the relative decrease in high-order dependency with respect to
the mild condition.

Condition Mild Medium Severe
Q1 LPC (all) 0.53 0.51 (1%) 0.48 (5%)
Q1 LPC (top-4) 0.22 0.17 (25%) 0.14 (38%)
Q2 LPC (all) 0.78 0.74 (4%) 0.75 (5%)
Q2 LPC (top-4) 0.61 0.54 (10%) 0.52 (13%)

effect is much more pronounced if we only consider top-4 most
important phonological classes (c.f. Table 2). Similar studies on
other LPCs larger than the second coefficient shows that those
values are very small and their changes are less distinctive for
PAoS objective evaluation.

5.3. High-order Structures

Relying on the relation between phonological structures and
articulatory postures, the dynamic/trajectory of articulation or
co-articulation can be quantified considering high-order struc-
tures [9]. To that end, we append consecutive phonological
posteriors to define the trajectories through quantization of aug-
mented posteriors. The number of consecutive posteriors deter-
mine the level (order) of trajectory structures. More specifically,
C adjacent posterior vectors are appended to define a new pos-
terior which encode C-order dynamic of features as

zC
n =

[
z>n . . .z

>
n+C

]>
. (3)

As the phonetic planning is disrupted in PAoS [8], we ex-
pect to see unique structures for distinct levels of severity. More
intuitively, certain articulatory postures can only occur at an
specific level of neurodegeneration.

The percentage of unique structures (number of unique
structures / number of all segments) is listed in Table 5. Further-
more, we quantify the percentage of structures that only occur
in one severity condition.

Table 5: Ratio of unique structures (%) per condition. The num-
bers in parenthesis show the ratio of the structures that only
occur in one particular condition, thus indicative of particular
articulatory posture that may only occur at a specific level of
impairment.

Condition Mild Medium Severe
Q1 structures 1-order 7.1 (32) 5.9 (29) 4 (36)
Q1 structures 2-order 28 (60) 21 (59) 17 (63)
Q1 Structures 3-order 44 (76) 34 (74) 28 (74)
Q2 structures 1-order 62 (90) 47 (88) 42 (90)

We can see that the number of distinct structures grow
rapidly as the order is increased. This demonstrates that the tra-
jectories of phonological posteriors exhibit more distinct prop-
erties as we consider larger context (C) or finer structures (Q2).

Nevertheless, even at a segment level (no augmentation,
C = 1), we can see a significant number of structures that only
occur in one specific severity condition: nearly 30% of struc-
tures are unique. This observation on structural differences mo-
tivates us to perform automatic assessment using nearest neigh-

bor rule of classification. The procedure is explained in the fol-
lowing Section 6.

6. Preliminary Automatic Assessment
To visualize the structural differences between phonological
posteriors across recording sessions, we used the t-distributed
stochastic neighbor embedding (tSNE) method [19] for visu-
alization of high-dimensional (posterior) features. Figure 5.2
illustrates the results. Phonological posteriors without augmen-
tation (C = 1 in (3)) are used for visualization. We contrast
the visualization of posteriors where all 24 classes are used vs.
only top-4 selective classes are considered. We can see that the
distinction in posterior distribution is well preserved.

Exploiting the structural differences enables us to perform
automatic assessment via classification. We consider the near-
est neighbor classification rule for this purpose. To that end,
we divide the data in two training and testing splits. Each test-
ing segment is independently labeled based on the label of its
nearest neighbor phonological posterior in the training set.

We use segmental posteriors without augmentation, i.e.
C = 1. The cosine similarity metric is used to find the near-
est neighboring vector which is defined as one minus cosine of
the angle between two vectors; mathematically, it is expressed
as

Scosine(z1,z2) = 1−
∑

k z
k
1 z

k
2√∑

k

(
zk1
)2∑

k

(
zk2
)2 . (4)

where zk1 denotes the kth element of posterior vector z1. This
metric has been found a suitable choice when comparing the
similarity of two posteriors vectors [20].

The segment-level labels are then pulled to make a decision
about the severity of articulatory disruption based on majority
voting. We observe that exploiting about 5 seconds for training
and testing data, enables us to perfectly classify the session of
recording. The training size in all severity conditions is equal.

This suggests that inter-patient PAoS severity might be au-
tomatically assessed using nearest neighbor classifier and the
phonological posteriors as speech features. Of course, this can
not be validated or endorsed clinically unless a sufficiently large
number of patients are recorded and used for exhaustive evalu-
ation of this method.

7. Conclusions
Trajectory analysis of phonological posteriors enables objective
assessment of progressive apraxia of speech. We demonstrated
that a selected set of phonological classes can be considered
as strong indicators of PAoS. In this paper, we performed lin-
ear prediction analysis to select the most important classes for
trajectory analysis. Interestingly, these classes highly correlate
with the clinical observation on importance of vowels in PAoS
diagnosis.

To enable trajectory analysis without any need for auto-
matic alignment of speech, we build on our previous work
on phonological structures obtained through quantization as a
method for quantifying the articulatory postures [9]. Our in-
vestigations on structural duration shows a significant increase
in duration if we consider mainly the top-4 important classes.
This observation is inline with the clinical evidence of speech
rate reduction more pronounced in production and lengthening
of vowels. This has been also verified in scientific studies using
acoustic analyses.
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Figure 5: tSNE visualization of (left) all phonological posteriors and (right) selected top-4 classes (c.f. Table 2).

Furthermore, high-order LPC analysis demonstrate a sig-
nificant decrease in consistency of phonological trajectories.
The dynamic of phonological posteriors can be quantified by
appending multiple adjacent phonological posteriors to form a
super-vector of multiple phonetic classes. This method enables
us to quantify the transitions or co-articulation among articula-
tory postures. The studies presented in this paper confirmed that
unique phonological structures are exhibited for every severity
condition. Exploiting this property can potentially enable us to
perform automatic assessment of the level of severity in PAoS.
Preliminary studies motivate us to explore this direction further.
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