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ABSTRACT

Performing speaker diarization while uniquely identifying the speak-

ers in a collection of audio recordings is a challenging task. Based

on our previous work on speaker diarization and linking, we devel-

oped a system for diarizing longitudinal TV show data sets based on

the fusion of speaker diarization system outputs and speaker link-

ing. Agreement between multiple diarization outputs is found prior

to speaker linking, largely reducing the diarization error rate at the

expense of keeping some speech data unlabelled. To deal with noisy

clusters, a linear prediction based technique was used to label speak-

ers after linking. Considerable gains for both fusion and labelling are

reported. Despite the challenges of the longitudinal diarization task,

this system obtained similar performance for linked and non-linked

tasks under moderate session variability, highlighting the viability of

a linking approach to longitudinal diarization of speech in the pres-

ence of noise, music and special audio effects.

Index Terms— speaker diarization, linking, longitudinal , fu-

sion, clustering, i-vector, ward

1. INTRODUCTION

Automatically structuring multimedia archives containing large

amounts of data is a difficult task. These data sets typically involve

speech with a large variety of speakers, acoustic environment con-

ditions, languages and expressive states. While speaker diarization

systems are currently quite mature, changes in speech expressiveness

and environmental noise typically result in performance drops while

the computational cost can become prohibitive for long recordings

or collections of recordings.

The Multi-Genre Broadcast (MGB) Challenge [1] is an interna-

tional evaluation campaign of speech technologies on TV recordings

from the British Broadcasting Corporation (BBC). This data is espe-

cially challenging for speech technologies as it involves multi-genre

data from the whole range of TV shows of the BBC. For speaker di-

arization, this data set faces systems to frequent overlapping audio,

such as voice over music or applause, and a large variability in ex-

pressive speech, e.g. in soap operas. On the other side, speaker turn

structure is highly variable from show to show, making it difficult

for systems to be tuned to specific speaker interaction patterns. Task

4 in the MGB Challenge is a longitudinal diarization task, asking to

diarize speakers across different recordings of the same show. This

translates into finding start and end times for every speaker while

labelling the speakers globally within the show.
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(SIIP), funded by the European Unions Seventh Framework Programme for
research, technological development and demonstration under grant agree-
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Large scale speaker diarization has been addressed by previous

work on telephone speech and broadcast news data. A speaker link-

ing system using cross-likelihood ratio (CLR) and normalized CLR

(NCLR) scores on Joint Factor Analysis (JFA) compensated mod-

els was proposed in [2, 3], for linking telephone speech and brodcast

news data. Another multi-stage approach [4] targeting large scale di-

arization diarizes chunks of speech data whose clusters are linked in

a later stage. This system scales particurlarly well on large data sets

but still offers variable performance depending on the chunk size.

In this paper, we further develop Idiap’s speaker linking system

for the longitudinal task of the MGB evaluation. We addressed spe-

cific challenges posed by the MGB data by fusing speaker diariza-

tion outputs in order to increase speaker cluster purity and prevent

error propagation to the linking system. A variable threshold prun-

ing approach to speaker labelling was applied to the speaker linking

dendrogram to cope with noisy dendrograms after linking.

The paper is structured as follows: Section 2 gives a system

overview. Sections 3 and 4 describe Idiap’s diarization strategy

to process the MGB Challenge data. Speaker linking, clustering

speaker clusters output in the diarization stage, is described in Sec-

tions 5 and 6. The experimental setup and results are given in

Sections 8 and 9. Section 10 gives conclusion about this work.

2. SYSTEM OVERVIEW

The system submitted to the MGB Challenge was based on the

speaker diarization and linking approaches developed in [5, 6] for

far-field meeting speech data. This approach is well-suited to pro-

cessing a large amount of speech data while modeling speakers

within-recording and across-recording. Diarization is able to pre-

cisely find cluster boundaries within a recording at the expense of

underclustering, while linking is able to link speaker clusters using

knowledge from a large speaker population. If a training data set

with speaker labels is available, speaker models can be compensated

for session variability, e.g. using Joint Factor Analysis (JFA) [7, 8]

or Probabilistic Linear Discriminant Analysis (PLDA). Unfortu-

nately, although the MGB Challenge provides a large training data

set, it does not provide global speaker labels that can directly be

used for training such session variability compensation models.

In this work, we focused on two topics addressing a) the fusion

of diarization system outputs and b) improving the pruning strategy

for speaker labelling after linking. Figure 1 shows a block diagram

of the overall system. The diarization stage uses fused outputs from

two speaker diarization systems. Fusion has the objective of finding

agreement between diarization outputs expecting the purity of the

resulting speaker clusters to increase and hopefully reduce errors in

the linking stage. Therefore, only a portion of the total speech time

is passed on to the linking module. The linking stage hierarchically
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Fig. 1. Block diagram of the full speaker diarization and linking sys-
tem. In red and yellow colors are the IB and HMM/GMM speaker
diarization system modules respectively. In purple, the fusion of
their outputs based on agreement. In blue, the speaker linking mod-
ule. In green, the final realignment module.

clusters the agreed segments using an i-vector representation along

with the i-vector covariance matrices obtained during i-vector ex-

traction, as in [5]. Finally, the speech data for each linked speaker

cluster is used to train HMM/GMM speaker models that are used to

realign the non-labeled speech portions of the recordings.

3. SPEAKER DIARIZATION

The goal of the speaker diarization task is to split a recording into

acoustically homogeneous regions that were spoken by the same

speaker. After feature extraction and speech activity detection, these

systems typically detect boundaries between speaker turns and then

cluster these segments into speaker clusters across the recording, so-

called speaker clustering. Two diarization systems were used:

• IB diarization: This is a fast agglomerative clustering al-

gorithm based on the information bottleneck (IB) principle

[9]. After uniformly segmenting the audio recording into

short segments, the IB framework iteratively merges pairs of

clusters using the Jensen-Shannon divergence, resulting in a

minimum decrease of the objective function F = I(Y,C)−
1
β
I(C,X), where Y are a set of relevance variables, frame

posteriors over the mixtures of a Gaussian Mixture model

(GMM), C is the clustering solution and X are the initial

segments. β is a trade-off between the amount of informa-

tion preserved and the compression from the initial represen-

tation. The stopping criterion is given by setting a theshold

on the Normalized Mutual Information criterion, NMI =
I(Y,C)/I(X,Y ), measuring the fraction of original mutual

information I(X,Y) captured by the current cluster represen-

tation C. Once the clustering has stopped, cluster boundaries

are refined using Viterbi decoding on an ergodic HMM with

a minimum duration constaint.

• HMM/GMM diarization: This is a traditional approach

to speaker segmentation using GMM to characterize each

speaker cluster. Starting from a set of uniform initial seg-

ments, the Bayesian Information Criterion (BIC) [10] is

evaluated for all cluster pairs to determine the best merge

candidate. After each merge, Viterbi decoding on an ergodic

HMM with a minimum duration constraint is used to reseg-

ment the data to refine the speaker cluster boundaries. The

process is iterated until the ∆BIC values for merging are

under a given threshold.
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Fig. 2. Illustration of the fusion process. Only segments for which
both systems agree upon speaker labels are output after fusion. A
new set of labels is created for the fused output. Regions of non-
agreement are marked as such and processed in a later stage.

4. FUSION OF SPEAKER DIARIZATION OUTPUTS

System combination of speaker diarization systems is a poorly stud-

ied topic. Some researchers [11] have cascaded two IB based di-

arization systems, the second algorithm refining the first system out-

put. The same authors combined multiple feature streams in [12].

Frame-by-frame fusion of diarization outputs has been explored in

[13, 14]. In [15], system combination is addressed by finding com-

mon segments in the outputs of two diarization systems while re-

classifying the rest. We used a similar approach using two differ-

ent front-ends together with the two speaker diarization systems de-

scribed in Section 3.

From the outputs of two diarization systems, a new output is

obtained by considering the segment boundaries of both diarization

system outputs simultaneously. As illustrated in Figure 2, for each

cluster of the first system, the cluster with the largest number of

frames in common is found, and the pair of speakers becomes a new

speaker in the output. This process is iterated over all speakers, out-

putting as many new speakers as speakers in the reference diariza-

tion system. Segments that were not assigned to any new speaker are

given a “non-labelled” speaker name and processed separately.

This approach tends to purify the speaker clusters at the price

of missing speaker labels for non-agreed regions. Bootstrapping the

speaker linking system with purer speaker cluster is expected to pre-

vent error propagation across diarization and linking modules.

5. SPEAKER CLUSTER MODELING

In our prior work, speaker clusters were modeled using JFA [7, 8], a

parametric GMM adaptation technique allowing for the disentagle-

ment of speaker and session effects. Although this approach is effec-

tive for observed linear distortion effects due to channel variability,

its effectiveness on additive noise may be questioned. Furthermore,

training data provided in the MGB challenge does not provide global

speaker labels that can be used to train such models.

A single-factor eigenmodeling approach, such as a total vari-

ability (TV) or i-vector approach [7, 16], was used instead. The total

variability model

m̂ = m+Tw (1)

is a parametric map from Gaussian supervectors, m̂ down to low-

dimensional vectors, w, that characterize the acoustics of the seg-

ment. The speaker-independent supervector m is formed by the

mean vectors of a Universal Background Model (UBM) trained us-

ing data from many speakers. Tw is a low-rank term that models

the acoustic variation. After T has been estimated in the maximum-

likelihood sense using a large speech database, only latent variables

are fit to the test, i.e. finding parameter estimates for the posterior

distribution of w, the latter being the objects used in the speaker

linking phase.



6. SPEAKER LINKING

The goal of the speaker linking module is to assign unique identi-

fiers to the clusters output by the speaker diarization output for all

recordings in a TV show, i.e. considering longitudinal speaker link-

ing within a show. Two major steps, agglomerative clustering and

labelling, are discussed in the following:

6.1. Agglomerative clustering

The speech data of each cluster is modeled as a single multivariate

Gaussian with a full covariance matrix, which is indeed a total factor

posterior distribution. Initially, each initial cluster is assigned one

speaker cluster output by the diarization system. The two closest

clusters are then successively merged, until only one cluster remains:

1. Compute the distance matrix for all pairs of speaker clus-

ters, that become the initial clusters.

2. Merge the two closest clusters.

3. Update the distance matrix, from the merged cluster to all

other clusters.

4. Go to 2. If only one cluster remains, stop.

We use Ward’s method [17], merging the two clusters that result

in the minimum increase of the total within-cluster variance after

merging, i.e. it aims at obtaining compact clusters. Ward’s method

is implemented in a recursive manner using the Lance-Williams al-

gorithm [18, 5]. When two clusters ci and cj are to be merged, the

distances between the merged cluster cij and all other clusters ck
are updated using the formula d(ij)k = αidik + αjdjk + βdij . The

values for αi, αj and β can be found in [18]. In [5], we found that

the two-way Hotteling t-square statistic, the multivariate equivalent

of the two-way Student-t statistic, outperformed other distance mea-

sures such as cosine distance or Kullback-Leibler divergence. We

use the squared Euclidean distance term, (wi − wj)
T
C

−1
ij (wi −

wj), for the initial inter-cluster distances, which spherifies the dis-

tance between cluster means with the pooled covariance matrix of

both clusters.

6.2. Speaker labelling

A binary tree can be obtained from all the merging steps performed

during clustering. The tree structure indicates the order in which

merges occurred and each merge node in the tree stores the merge

cost. While we found in [5, 6] that pruning this tree using a single

threshold for all series was enough to give satisfactory results on

meeting data, it was difficult to find an optimal threshold that is valid

for all TV series in the MGB development set.

In a first approach, a TV series dependent threshold was set,

namely a fraction of the largest initial inter-cluster distance between

all speaker clusters from all recordings of that series, making the

threshold larger as more spread the initial data are.

A second approach combined the TV series dependent threshold

with an approach aiming at predicting merging costs at a node in the

tree from merging costs in surrounding nodes, labelling a node as a

speaker if a jump in predictability is found. For each node, a linear

prediction model [19] is fit to each of four possible subtree trajecto-

ries, predicting the parent cost from current, child, and child of child

node costs. If the minimum of the prediction errors, normalized by

the central node distance, is larger than a threshold, the node is la-

belled as a new speaker. This threshold and the TV series dependent

threshold are combined with an AND operation. The sibling nodes

of already labelled nodes are labeled as new speakers if they were

not already labeled as speakers. This ensures that all initial samples

are given a speaker label.

7. REALIGNMENT

After speaker linking, a new set of speaker labels is obtained for

those segments for which agreement was found during system fu-

sion. The rest of the segments have no speaker labels assigned.

The purpose of realignment is to give “agreed” speaker identifiers

to “non-agreed” speech segments. For this purpose, an ergodic

HMM/GMM is trained on the “agreed” speaker speech of each

recording and decoded using the Viterbi algorithm (with a minimum

duration constraint) on the “non-agreed” speech data.

8. EXPERIMENTAL SETUP

The presented speaker diarization and linking system was partially

tuned using the development MGB Challenge data set before eval-

uation. The linked Diarization Error Rate (DER) performance of

this system was compared to systems using no speaker diarization

fusion.

Only audio labelled as speech in the segmentation provided dur-

ing the MGB Challenge evaluation was used, with ground-truth seg-

mentation being available for development and an automatic seg-

mentation being available for evaluation.

The IB diarization system uses a front-end with 19 Mel-

Frequency Cepstral Coefficients (MFCC) and 19 Mel-Filterbank

Slope features (MFS) [20]. This setup used 2.5s uniform initial

segmentation, β = 7, a stopping threshold of 0.3 and a maximum

number of speaker clusters of 10 were used. The minimum duration

for Viterbi decoding was set to 2.5s. The HMM/GMM diarization

system used 19 MFCC features. The initial number of speaker clus-

ters and Gaussian components was set to 10 and 5, respectively, the

BIC threshold was set to 0.7 and the minimum duration constraint

for Viterbi decoding was 2.5s. Only the number of speakers and

the minimum duration for Viterbi decoding were tuned to the MGB

development data, the rest being optimized for meeting data.

For speaker cluster modeling, we used the speech data from the

“train.full” condition of the challenge, over 2000 hours, to train a

gender-independent GMM-UBM with 512 Gaussian components as

well as the the total variability matrix T using 5 and 10 EM itera-

tions of maximum likelihood estimation respectively. The optimal

i-vector dimensionality was found to be 100, after optimization on

the development set. The speaker linking module thresholds were

optimized on the development data set as well, obtaining an optimal

linear prediction threshold of 4, and a maximum absolute threshold

of 0.2 times the maximum intercluster initial distance.

9. RESULTS

We ran longitudinal diarization experiments on the MGB Challenge

data, using the non-linked and linked DER performance measures,

i.e. the amount of time that system output does not agree with the

non-linked and linked references, as performance measures.

Table 1 shows DER for the speaker diarization and linking sys-

tem. In the first block, DER of 43.6% are shown for both IB and

HMM/GMM diarization. Fusing these two systems results in a rel-

ative drop of 33.4% DER, from 43.6% to 29.0%, at the price of in-

troducing 20% of non-labeled speech. This illustrates a trade-off in

the diarization fusion approach: the more reliable the fused speaker

clusters the more speech is not labelled, and viceversa.



Regarding linking, a performance gap can be observed from

non-linked to linked DER due to the increased difficulty of the link-

ing task. The increase is 6% to 16% DER absolute for IB and

HMM/GMM diarization, from 43.6% to 50.4% and 43.6% to 60.6%,

respectively. For fused diarization, the increase stays around 5%,

from 43.6% to 48.9%, after labelling the non-labeled regions using

Viterbi decoding. The latter is able to label 5.4% out of the non-

labeled 20% with correct speaker labels, assuming the same linked

speakers are present in the non-labelled speech obtained after fusion,

which is far from being true in practice for the MGB data. Indeed, we

noticed that the number of speakers correctly labeled was far below

the actual number of speakers. We believe this is due to optimizing

DER in very noisy data, with tuning resulting in correctly labelling

major speakers while dismissing the rest.

All of these systems used the same pruning thresholds during

speaker labelling. Table 2 shows fixed, show-adaptive and linear pre-

diction based threshold optimizations for the fusion system. Using

an adaptive threshold, relative to the maximum intercluster distance,

results in 13% relative improvement over using a fixed threshold

(41.3% vs. 35.9%). Using the linear prediction based thresholding

together with an adaptive threshold brings a 4% additional relative

gain for an absolute linked DER of 34.3%. Non-linked DER is not

optimal at this operating point, but it is slightly better for a fixed

threshold. We believe this might be a byproduct of having corrupted

speech in the speaker clusters being linked.

We consider speaker diarization and linking results as satisfac-

tory given the challenging data and the use of an i-vector front-end

with no session compensation. These results are in line with our pre-

vious work on speaker linking for far-field meeting data [5, 6], where

the increase of difficulty of the longitudinal diarization task barely

affected the DER. However, for the MGB challenge, the starting di-

arization error rates are roughly twice those reported for far-field

meeting data and no JFA session compensation, or PLDA, was used.

These systems were run on the evaluation data, with the differ-

ence that the provided speech/non-speech segmentation is output by

an automatic speech/non-speech detection system. Table 3 shows

the linking system DER as well as missed speech and speaker and

false alarm times. In this case, missed speech gathers non-labelled

speaker time and non-speech. The non-linked DER for the Fusion

system remains in the same range as for the development data set,

30.8%, with a large proportion of the 25.5% missed speech time to

be realigned. However, bootstrapping the linking system with these

diarization outputs results in significantly larger linked DER when

compared to the development data set. Absolute increases in linked

DER are indeed almost 12% (from 30.8% to 42.6%) range compared

to 5% in the development set, suggesting a deviation in behavior of

the linking system, but not the diarization system. The development

set has an average of 3.8 recordings per show whereas the evaluation

data set has 9.5, more than twice as many recordings per show. The

reported results suggest that the linking system is vulnerable to the

large session variability in the evaluation data set while the DER in-

crease was acceptable for the development data set. Such decrease in

linking performance results in more incorrectly labelled data overall

compared to the development data set. For the evaluation set, out of

the 72.1%=100%-25.5%-2.4% of labelled speaker time, 42.6%, i.e.

more than half of it, are incorrectly labeled. These figures are lower

for the development set.

10. CONCLUSION

This paper presented and analyzed the speaker linking and diariza-

tion system used for the longitudinal diarization task of the MGB

System Not-Linked

DER (%)

Linked DER

(%)

Missed Spkr.

(%)

Diarization

IB 43.6 - 0.0
HMM 43.6 - 0.0
Fusion 29.0 - 20.0

Linking

IB 50.4 56.3 0.0
HMM 60.6 69.1 0.0
Fusion 30.6 34.3 20.0
Fusion + Realign 44.6 48.9 0.00

Table 1. Diarization Error Rates (DER) for the speaker diarization
and linking system. DER on not-linked and linked references are
reported as well as the percentage of missed speaker time.

System Not-Linked

DER (%)

Linked

DER (%)

Missed

Spkr. (%)

Linking

Fusion th=5e4 29.2 41.3 20.0
Fusion th=0.2max 29.7 35.9 20.0
Fusion th=0.2max lp=4 30.6 34.3 20.0

Table 2. Diarization Error Rates (DER) for the speaker diarization
and linking system using the labelling strategies described in Section
6.2. DER on not-linked and linked references are reported as well as
the percentage of missed speaker and speech time.

System Not-

Linked

DER (%)

Linked

DER(%)

Missed

Spch+Spkr

(%)

False

Spch.

(%)

Linking

Fusion 30.8 42.6 25.5 2.4
Fusion + Realign 45.1 58.0 6.0 4.0

Table 3. Diarization Error Rates (DER) for the speaker diarization
and linking system on the evaluation data. DER on not-linked and
linked references are reported as well as the percentage of missed
speaker and speech time and false speech time.

Challenge 2015. An agreement-based approach to diarization fusion

reduced the DER by 33% at the price of missing labels for 20% of

the data. The agreed speaker clusters were linked using Ward clus-

tering and a linear prediction based strategy to pruning the cluster-

ing dendrogram. Together with a show-adaptive threshold this ap-

proach resulted in 13% of relative improvement in linked DER with

respect to a fixed threshold strategy, and 4% with respect to a show-

adaptive threshold. Finally, the non-labelled speech was realigned

using speaker models trained on the agreed speaker clusters.

This work shows that, while the task of longitudinal diarization

is more complex than diarizing one recording at a time, the DER for

both tasks can be kept in the same range. This has been possible

on two very noisy data sets and bootstrapping the linking system

using incorrect speaker labels in around half of the initial diarization

output.
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