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Abstract

Acoustic modeling based on deep architectures has recently gained remarkable success, with substantial improvement
of speech recognition accuracy in several automatic speech recognition (ASR) tasks. For distant speech recognition,
the multi-channel deep neural network based approaches rely on the powerful modeling capability of deep neural
network (DNN) to learn suitable representation of distant speech directly from its multi-channel source. In this
model-based combination of multiple microphones, features from each channel are concatenated and used together as
an input to DNN. This allows integrating the multi-channel audio for acoustic modeling without any pre-processing
steps. Despite powerful modeling capabilities of DNN, an environmental mismatch due to noise and reverberation
may result in severe performance degradation when features are simply fed to a DNN without a feature enhancement
step. In this paper, we introduce the nonlinear bottleneck feature mapping approach using DNN, to transform the
noisy and reverberant features to its clean version. The bottleneck features trained on clean signal are used as a
teacher signal because they contain relevant information to phoneme classification, and the mapping is performed
with the objective of suppressing noise and reverberation. The individual and combined impacts of beamforming
and speaker adaptation techniques along with the feature mapping are examined for distant large vocabulary speech
recognition, using a single and multiple far-field microphones. As an alternative to beamforming, experiments with
concatenating multiple channel features are conducted. The experimental results on the AMI meeting corpus show
that the feature mapping, used in combination with beamforming and speaker adaptation yields a distant speech
recognition performance below 50% word error rate (WER), using DNN for acoustic modeling.
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1. Introduction

Automatic speech recognition from distant micro-
phones is a challenging task, because the speech signals
to be recognized are degraded by the presence of inter-
fering signals and reverberation due to large speaker-
to-microphone distance [1]. The conventional multi-
channel enhancement techniques, such as beamform-
ing, are widely employed to suppress noise and rever-
beration from the desired speech when multiple micro-
phones (e.g., microphone arrays) are used to capture au-
dio signals [2, 3].

In the context of ASR, the conventional speech
enhancement methods are typically used as a pre-
processing step to reduce mismatch between a model
trained using clean speech and the noisy features. Since
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these methods are designed to improve signal-to-noise
ratio (SNR), or signal-to-interference-plus noise ratio,
the performance of the speech recognizer will be sub-
optimal. In case of multi-channel ASR, there have been
studies on designing a beamformer with the aim of op-
timizing ASR performance. A technique such as like-
lihood maximizing beamforming (LIMABEAM) [4, 5]
specifically optimizes array parameters using gradient
descent to maximize the likelihood of the recognized
hypothesis under an ASR speech model, given the fil-
tered acoustic data. Recent research on LIMABEAM
suggests no significant improvement using the standard
LIMABEAM on large vocabulary distant speech recog-
nition on the AMI meeting corpus and it is recom-
mended to use a better optimization strategy for any
LIMABEAM implementation [6].

Further, it is also possible to perform recognition
from microphone arrays without employing any pre-
processing steps. For example, each individual chan-
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nel can be separately recognized, and the recognition
hypotheses are combined using a confusion network
combination to select a word sequence with the highest
probability [7, 8]. Channel selection approaches such
as finding the channel producing the maximum acoustic
likelihood [9], or selecting the channel with the maxi-
mum confidence from its decoded sequence [10], may
be particularly useful when microphones are loosely
specified in users’ environments. Since recognition
needs to be performed before any hypothesis is selected
or combined, these decoder-based approaches for rec-
ognizing multiple microphones are computationally de-
manding (i.e., multi-pass-systems) .

Recently, acoustic models based on DNN have been
shown to significantly improve the ASR performance
on a variety of tasks when compared to the conven-
tional Gaussian mixture model hidden Markov model
(GMM/HMM) systems. Several international chal-
lenges have recently been organized to attract re-
searchers’ interest in providing the ASR solution in re-
verberant environments, such as the ASpIRE [11] and
CHiME challenge series [12, 13]. In those challenges,
participants were encouraged to build state-of-the-art
speech recognition systems that are robust to various en-
vironmental factors and recording scenarios, while min-
imizing the impact of mismatch between training and
testing conditions. For example, the recent 3rd CHiME
challenge specifically addressed the far-field recordings
from a mobile tablet device, captured using six mi-
crophones positioned around the tablet frame in real-
world environments. It was reported that one of the
most effective techniques, where significant gains have
been achieved, is to transform the DNN features us-
ing feature-space maximum likelihood linear regression
(fMLLR) [14, 15], and some of the best scoring sys-
tems have used baseline DNN configurations for acous-
tic modeling [13]. Apart from DNN’s superior mod-
eling capacity in acoustic modeling, a DNN which is
trained with context-dependent phonetic targets can be
used to produce neural-network-based features or bot-
tleneck (BN) features. These features have been shown
to be effective in improving the performance of ASR
systems especially when exploited in combination with
traditional short-term spectral features, such as MFCCs
or PLPs [16, 17]. The BN features are usually extracted
from one of the internal layers of DNN (with a small
number of hidden units in comparison to the size of
the other layers) and represent a nonlinear transforma-
tion (while usually reducing dimensionality) of the in-
put features [18, 16]. The stacked BN features which
are extracted from the cascaded DNN structures have
been investigated on several ASR tasks, such as speech

recognition of Cantonese spontaneous telephone con-
versations [19] and speech recognition with minimum
resource [20]. In [21], the BN features were also used
for far-field speech recognition.

This paper introduces a nonlinear BN feature map-
ping approach by using the BN feature of a close-talking
microphone (referred to as the individual headset mi-
crophone (IHM)) as a target for distant speech input.
The DNN is used to map the noisy and reverberant
features to the BN-based features extracted from the
close-talking input. Once the mapping is completed,
the transformed BN features are extracted for training
a new acoustic model [22]. The model-based combi-
nation of multiple microphones using the transformed
BN features is proposed to integrate the multi-channel
inputs for acoustic modeling. For the feature mapping
approach, the fMLLR for speaker adaptation is applied
to the features prior to DNN training and to the trans-
formed BN features in the stacked hybrid fashion [23].
The fMLLR has been shown to be effective in both
hybrid and tandem DNN-based systems for removing
speaker variabilities and variations in the recording pro-
cess, due to speaker-to-microphone distances and the
use of different microphone channels [24, 23, 25]. Al-
though many recent speaker adaptation techniques for
DNN have been proposed such as learning hidden unit
contributions (LHUC) [25], providing speaker identity
vectors (i-vectors) along with regular ASR features as
input to neural nets [26, 27], and incorporating i-vectors
to project the speech features into a speaker-normalized
space [28, 29], it is straightforward to use fMLLR in
DNN/HMM hybrid acoustic models. The GMM/HMM
models which are usually trained to generate the align-
ment with context-dependent phone states for DNN
training can further be used to estimate speaker trans-
forms. This paper investigates the feature mapping ap-
proach for far-field microphones by examining the indi-
vidual and preferably combined impacts of beamform-
ing and fMLLR for robust ASR. The comparison to
multi-condition training is also presented.

This paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the DNN-
based mapping approach. The experimental setup is
described in Section 4. The ASR results, employing
the BN feature mapping approach using far-field micro-
phones, are presented in Section 5. Section 6 discusses
the results. Finally, the study is concluded in Section 7.
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2. Related Work

2.1. Speech Enhancement using DNN
In a noisy and reverberant room, the reverberated

speech x(t) is represented in time domain as the con-
volution of the clean speech signal s(t) and the room
impulse response h(t), corrupted by additive noise n(t),
as

x(t) = s(t) ∗ h(t) + n(t). (1)

The effect of early reflection and late reverberation on
the reverberant signal is considered as a separate process
in many studies. The late reverberation part of the room
impulse response is often modeled as an exponentially
damped Gaussian noise process and treated as additive
noise. Hence, the observed reverberant signal x(t) can
be written by using the notation in [1] as

x(t) = s(t) ∗ he(t) + r(t) + n(t), (2)

where he(t) is the early reflection part of the impulse
response and r(t) is the late reverberation component of
x(t).

The conventional methods to recognize reverberated
speech captured from distant microphones is to first
reconstruct a clean version of the speech. This may
be performed with a blind dereverberation method,
such as estimating the inverse filter solely on the ob-
served signals capable to cancel out the reverberation
effects [30, 31]. Since the late reverberation is often
treated as additive noise, speech enhancement methods,
such as spectral subtraction [32] and minimum mean-
square error (MMSE)-based techniques [33, 34], may
be used to mitigate the impact of reverberation. If two
or more microphones are used to capture speech, multi-
channel speech enhancement techniques such as multi-
channel Wiener filter [35], beamforming followed by
post-filtering [36], or blind speech separation [37] can
be used for improving the quality of speech. One draw-
back of these conventional speech enhancement meth-
ods is that they often fail to track the non-stationary
noise signals in real-world scenarios.

One of the emerging speech enhancement approaches
is based on deep architectures. In [38], the DNN-
based regression model was trained using noisy data and
their corresponding clean speech version. The devel-
oped model was then used to predict the clean speech
features. Improvements were reported across differ-
ent noise conditions where the DNN-based speech en-
hancement was shown to be effective for dealing with
non-stationary noises in real-world environments. The
speech enhancement may be formulated as a binary
classification problem to estimate the ideal binary mask

(IBM), which is used to attenuate the energy within
the noise dominant time-frequency units. For robust
ASR, the ideal ratio mask (IRM), defined as the ratio
of speech energy to total energy (speech and noise) in
each time-frequency unit, has been shown to have a bet-
ter performance compared to using IBM in a large vo-
cabulary speech recognition task [39]. In [40], the DNN
is used to estimate the instantaneous SNR for comput-
ing IRM, subsequently applied to filter out noise from a
noisy Mel spectrogram. The recurrent neural networks
(RNNs), with their ability to model the temporal depen-
dencies in speech, have also been employed to estimate
the time-frequency masks from the magnitude spectrum
of a noisy signal for speech enhancement and recog-
nition [41]. For speech recognition applications, the
speech enhancement approaches are typically exploited
as front- end processing to reconstruct the clean version
of the speech, which is then fed into a speech recognizer.

2.2. Multi-channel integration in acoustic modeling

In speech processing and especially ASR applica-
tions, the use of microphone arrays instead of close-
talking microphones is popular, since they enable nat-
ural interactions between the speaker and devices. The
multi-channel speech-enhancement-based approaches
can be employed for this purpose, where the task of en-
hancement and recognition is performed separately in a
cascaded fashion, instead of being integrated into one
system. A basic technique such as delay-sum beam-
forming works by compensating delays from the in-
dividual microphone channels so that the target sig-
nal from a particular direction synchronizes, while
noises are canceled through destructive interference.
The relative time delays between channels are typi-
cally estimated using generalized cross correlation with
phase transform (GCC-PHAT) [42] and processed us-
ing Viterbi post-processing to select the reliable delays,
while minimizing undesired beam-steering toward in-
terfering events [3]. The beamformed audio may then
be enhanced using post-filtering [36] before it is passed
to a speech recognizer as single-channel speech. Other
sophisticated beamforming methods, such as general-
ized sidelobe canceller, perform spatial filtering while,
at the same time, reduce the influence of noise at the
location of interest. These advanced techniques take
into account the estimated noise or interfering sig-
nal characteristics for superior noise suppression ca-
pability [43, 44]. In the context of ASR, beamform-
ing techniques have been successfully exploited in the
ICSI/SRI [45] and AMIDA [46] systems for transcrip-
tions of meetings [47].
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Figure 1: Block diagram of the DNN-based feature mapping approach. The overall approach comprises two DNNs, first employed in feature
mapping (DNN 1) and the second as an acoustic model in conventional ASR system (DNN 2).

Another research efforts have explored unified multi-
channel-based speech recognition such as LIMABEAM
and multi-channel-based neural networks speech recog-
nizer. In the LIMABEAM approach, a filter-and-sum
beamforming structure is employed in which the pa-
rameters of the beamforming filter are optimized using
the gradient descent technique so that the filtered sig-
nal will generate a sequence of features that maximize
the likelihood of correct transcriptions. On the other
hand, the multi-channel DNN-based speech recognizer
performs a direct concatenation of multi-channel fea-
tures (using standard PLP features [48] or in combina-
tion with BN features [21]). On the AMI corpus, chan-
nel concatenation is shown to perform better than apply-
ing beamforming for a small number of microphones.
This indicates that the DNN is able to learn represen-
tation of distant speech directly by using multi-channel
input [49]. The channel-wise convolution followed by
a cross-channel max pooling using convolutional neu-
ral network (CNN) is proposed in [50] for selecting the
best features within the channels. It was shown that a
CNN with the proposed configuration trained directly
on the output of multiple microphones yields higher
speech recognition accuracy when compared to a CNN
trained on the output of a delay-sum beamformer. Since
the multi-channel features are directly used for acoustic
modeling, these multi-channel integration approaches
are not specifically designed to suppress noise and re-
verberation.

A recent study in advanced acoustic modeling using
deep long short-term memory (LSTM) recurrent neural
networks reported significant improvement for AMI’s
single distant microphone (SDM) task with 47.7%
WER, even though it does not consider multi-channel
inputs [51]. This work may not be directly compared
with our results since it used sequence discriminative
training with dropout and DNN to force align the train-
ing data to generate labels for LSTM training.

2.3. Feature mapping techniques using DNN

Nonlinear modeling techniques such as neural net-
works can be employed to model the complex noise

Figure 2: DNN 2 architecture with four hidden layers.

corruption process by learning the mapping function
between noisy speech and its clean version. The
mapping is performed between features extracted from
noisy and clean speech signals to obtain an optimal
set of parameters through the error backpropagation
algorithm [52, 53, 54]. The goal is to obtain clean
or enhanced speech from the noisy input via a non-
linear transformation using neural networks such as a
deep denoising autoencoder [55] or a multilayer per-
ceptron (MLP) [56]. A recent study [56] considers a
multi-speaker scenario where the nonlinear mapping is
performed with the objective of improving overlapped
speech recognition using beamformed audio from a mi-
crophone array. The mapping is performed in the log
mel-filterbank energy domain by minimizing the mini-
mum mean squared error as an objective function. In or-
der to improve the quality of the estimated clean speech,
the feature mapping can be performed from multiple
beamformed sources. For example, two beamformers
with binary masking post-filters directed to the target
audio signals and to the interfering speech, respectively,
such that the interfering components in the features ex-
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Figure 3: Feature mapping with fMLLR for single distant microphone. The fMLLR transform is applied on the IHM training data prior to training
the DNN 1.

tracted from the desired target signals can be subtracted
by features extracted from interfering speech. While
significant improvements in speech recognition accu-
racy are reported if the new acoustic model is trained
from the estimated clean features, the experiments are
limited to the recognition of digits.

The novelty of our framework in comparison to other
neural net-based mapping is the use of BN features as
the teacher signal, which is obtained from the BN layer
of a DNN. A DNN is trained to estimate the posterior
probability for a set of ASR states called senones (clus-
tered, context-dependent sub-phonetic HMM states
generated by a set of phonetic decision trees) given
acoustic input. In contrast to other feature mapping
approaches, our method does not require reconstruc-
tion of the estimated clean speech features prior to
training a new acoustic model, which are rather de-
signed for speech enhancement. This paper considers
a model-based combination of multiple microphones.
Our previous work of single channel mapping in [22]

is extended, and results are compared with conventional
speech enhancement techniques for distant large vocab-
ulary speech recognition. Further, we investigate fM-
LLR transform for speaker adaptation when it is used
within the feature mapping framework, and show that
the feature mapping is complementary to fMLLR fea-
ture space adaptation. Finally, this work is related to
multi-condition training in which a DNN is trained with
speech signals in multiple conditions, in order to deal
with different acoustic channels and various environ-
mental noises [17, 57]. We hypothesize that features ex-
tracted from the hidden layers from such networks are
inherently robust to noise. A comparison between the
mapping approach and DNN trained using BN features
extracted from the multi-condition network is presented
in this paper.
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3. DNN-based Feature Mapping

The block diagram of the proposed DNN-based fea-
ture mapping is shown in Figure 1. It consists of fea-
ture mapping, the fMLLR transform estimation, which
can be applied on the transformed features, and a
DNN/HMM ASR system. The DNN/HMM hybrid con-
figuration used in this paper is based on a DNN trained
to estimate the emission probabilities of the HMM
states. In the baseline experiments, the DNN comprises
four 1200-neuron hidden layers. Figure 2 shows a DNN
architecture used in this study in more detail.

For the feature mapping approach, the input features
are extracted from the single channel output (either from
a distant microphone or after microphone array beam-
forming). Input features at frame n are denoted as vec-
tors x(n). The aim is to find the estimate of BN fea-
tures of clean speech, ĉ(n), using a multilayer percep-
tron with multiple hidden layers with a set of parame-
ters, θ = {W1, . . . ,WL,b1, . . . ,bL}, which denote all op-
timal weights and bias parameters. We use the notation
from [58], ĉ(n) is obtained as

ul = σ(Wlul−1 + bl), for 1 ≤ l < L

ĉ(n) = WLuL−1 + bL,
(3)

where ul is the input to the l + 1-th layer, Wl denotes the
matrix of connection weights between l − 1-th and l-th
layers, bl is the additive bias vector at the l-th layer, and
σ(.) is the sigmoidal activation function. The θ is ob-
tained by minimizing the mean squared error objective
function

E =
1
K

K∑
k=1

||c(k) − ĉ(k)||2 (4)

over K training examples (i.e., frames), where c(k) de-
notes vectors of teacher BN features generated from
clean speech.

A DNN/HMM hybrid network, which is originally
trained to minimize a negative log posterior probability
cost function over the set of training examples, is used
to provide the optimal parameters θ using Equation 4.
The final BN feature estimates of clean speech ĉ(n) can
be obtained by forward-passing the reverberant feature
vectors through the network with optimized parameters
θ.

Compared to our previous work in [22], the first fM-
LLR transform is applied to the input features prior
to training the first DNN. Hence, we use speaker-
normalized distant-talking speech features as input for
the mapping procedure. In addition, the second fMLLR
transform is also applied to the BN features after fea-
ture mapping. The feature mapping approach consist of
three stages, as shown in Figure 3 and described below:

• First stage: training using IHM data

Using IHM data, the DNN is trained on the
fMLLR adapted features to generate BN features.
For the experiments in this paper, we apply a
DNN with eight layers (i.e., six hidden layers
including the BN layer). The BN layer is placed
just between the 4th and the 6th hidden layer and
has 39 dimensions with linear activation functions.

• Second stage: feature mapping between SDM
features and IHM BN features

The BN features extracted from the previous DNN
are used as a teacher input for a nonlinear feature
transformation of distant-talking speech input.
In other words, the BN features trained on IHM
data are used to transform the parameters of the
reverberated speech to a new space close to clean
speech. To learn this mapping, the network is
trained using the standard error backpropagation
procedure and the optimization is done through
stochastic gradient descent by minimizing the
mean squared error objective function using
Equation 4.

• Third stage: forward passing training and test
data

Once the mapping is learned, the trained network
structure is used to generate new speech features
from the activations of the units of the output layer
for training the new acoustic model. This yields
39-dimensional transformed features (to compare
with 39 MFCCs). The fMLLR transform is applied
on these new features before training the second
DNN. This DNN has four 1200-neuron hidden lay-
ers, as shown in Figure 2. For decoding, test sets
for IHM and SDM are fed to the trained network,
and the transformed features are extracted from the
activations of the output layer.

4. Experimental Data and Setup

The ASR experiments employ both the headset and
their corresponding distant microphone recordings from
the AMI meeting corpus1, which contain meetings
recorded in instrument-equipped meeting rooms at three

1http://groups.inf.ed.ac.uk/ami/download
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sites in Europe (Edinburgh, IDIAP, and TNO). The sin-
gle distant microphone and the multiple distant micro-
phones (MDM) of the primary array were used. The
SDM was represented by the first microphone and the
MDM used either 4 or 8-channel inputs from the pri-
mary microphone array. There are about 67 hours of
training data and around 7 hours of evaluation data
available (after performing voice activity detection). In
addition to the AMI test set, the trained acoustic mod-
els are evaluated on a NIST Rich Transcription (RT-07)
ASR evaluation task to determine if the feature mapping
approach trained on the AMI corpus improves the ASR
performance of unseen condition. The experiments used
the suggested AMI corpus partitions for training and
evaluation sets [46, 47], even though some of the meet-
ing recordings were discarded from the original corpus
when array recordings were missing, to ensure that both
headset recordings and the corresponding synchronized
array recordings are available for training and testing.

Our previous work showed that SDM system trained
using alignment generated from IHM (clean) ASR
system provided significantly better performance [22],
compared to SDM system trained using alignment from
SDM. Since SDM data are synchronized with IHM data
(on a frame-level), the SDM models are trained using
HMM state alignments generated for IHM recordings.

The Kaldi toolkit is used for training DNN/HMM
systems and for generating fMLLR features using the
provided training scripts [59]. The IHM and SDM ASR
configurations are trained on 39-dimensional MFCC
features, including their delta and acceleration versions.
The DNNs for both configurations are trained to es-
timate posterior probabilities of roughly 4K tied-state
(senone) targets. The DNNs use a 9-frame temporal
context, enriched with cepstral mean only and cepstral
mean and variance normalization for fMLLR and non-
fMLLR systems, respectively. The AMI pronunciation
dictionary, of approximately 23K words, is used in the
experiments and the Viterbi decoding is performed us-
ing a 2-gram language model (LM) [60], previously
built for NIST RT-07 corpora [46]. An additional exper-
iment with a stronger LM (4-gram) is performed with
the best system to determine if the gains in acoustic
modeling are retained.

5. Experimental Results

5.1. Single-condition Baseline

As shown on the top part of Table 1, the performance
gap between IHM and SDM is large (about 44% WER

Test sets
Trained on IHM SDM RT-07

Si
ng

le
-c

on
di

tio
n

SD
M

IHM 32.3 76.0 37.2
+ fMLLR 28.4 74.7 33.4
SDM 46.7 58.0 50.8
+ fMLLR 43.2 54.2 48.0
Bottleneck-based systems:
IHM 33.8 63.4 38.8
+fMLLR 31.2 57.0 36.7
SDM 41.8 57.3 46.7
+fMLLR 40.3 52.5 45.7

Si
ng

le
-c

on
di

tio
n

M
D

M

MDM
4bmit 55.1
4fmcct 55.3
4fmbmit 54.0
8bmit 52.7
8fmcct 54.8
8fmbmit 51.8
+fMLLR 49.9
+fMLLR (4gram-LM) 47.4

IHM SDM

M
ul

ti-
co

nd
iti

on

Multi-condition 33.3 59.5
+fMLLR 29.5 56.2
Bottleneck-based systems:
IHM 31.3 65.5
+fMLLR 26.9 55.4
SDM 36.8 56.8
+fMLLR 30.3 52.2

Table 1: WERs[%]: Baseline and mapping results with single and
multiple distant microphones for single and multi-condition systems.
In order to simplify comparison, the ASR results for mismatch condi-
tions are displayed in italics.

absolute) for the model trained on IHM, due to the diffi-
culty of recognizing the distant microphone. We intro-
duced the feature mapping technique used in combina-
tion with fMLLR to reduce the mismatch between clean
and reverberant conditions. Apart from improving ASR
performance due to the mismatch of conditions, the fea-
ture mapping approach is also investigated for improv-
ing distant speech recognition performance (i.e., using
the best model to recognize the SDM test). In order
to simplify comparison, the ASR results for mismatch
conditions are displayed in italics.

Employing fMLLR to the input features prior to
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training DNN improves the ASR performance on both
matched and mismatched conditions. The performance
improves for the IHM model by 3.9% and 1.3% absolute
WER when recognizing IHM and SDM tests, respec-
tively. The SDM model improves the performance by
3.5% and 3.8% absolute WER when recognizing IHM
and SDM tests, respectively. For RT-07 evaluation task,
the performance improves by 3.8% and 2.8% absolute
WER for model trained using IHM and SDM, respec-
tively. For single-condition baseline, the best system
for recognizing the IHM test by using a stronger LM
(4-gram) yields 25.6% WER instead of 28.4%.

5.2. Single-condition Mapping using SDM

The results for systems without applying fMLLR
have been previously reported in [22]. Compared to
the baseline performance, BN-based system improves
the performance on SDM while trained on IHM data
by 12.6% absolute WER (from 76.0% to 63.4%; 16.5%
relative), whilst a minor degradation of 1.5% absolute
(4.5% relative) is observed on the matched condition.
Using the model trained on SDM data yields improve-
ment by 4.9% absolute WER (10.5% relative; from
46.7% to 41.8%) when recognizing the IHM test. This
suggests that the SDM features have more discriminant
classification ability, close to the IHM condition, af-
ter being transformed by the mapping network. A mi-
nor improvement of 0.7% (from 58.0% to 57.3%) ab-
solute WER is observed when recognizing the SDM
test. A similar trend is also observed when recogniz-
ing RT-07 evaluation task using the SDM model, which
yields 4.1% absolute WER (8% relative; from 50.8% to
46.7%) improvement, while using the IHM model de-
grades the ASR performance by 1.6% absolute (from
37.2% to 38.8%).

The use of speaker adaptation improves the over-
all performance of the feature mapping approach. Ta-
ble 1 shows that, on matched condition, using the IHM
model with fMLLR gains 2.6% absolute WER (from
33.8% to 31.2%) over the non-fMLLR system, while
using the SDM model gains 4.8% absolute WER (from
57.3% to 52.5%). For the BN-based system trained on
SDM, a noticeable improvement of 1.7% (from 54.2%
to 52.5%) absolute WER is observed when recognizing
the SDM test. An improvement by 2.3% (from 48.0%
to 45.7%) absolute WER is observed when recogniz-
ing RT-07 evaluation task. We attributed these improve-
ments to the use of SDM with speaker-normalized fea-
tures as input to learn the mapping, where the clean BN
features act as the teacher signal. Note that the mapping
results denoted as “+fMLLR” stand for ASR systems

applying two-stage fMLLR transforms (first before fea-
ture mapping, second on the transformed features).

5.3. Single-condition Mapping using MDM

Beamforming has been a popular speech enhance-
ment technique for distant speech recognition tasks.
This paper further investigates the feature mapping ap-
proach from multiple distant microphones by compar-
ing conventional beamforming, feature mapping of the
beamforming signal, and feature concatenation used in
combination with feature mapping. For the MDM ex-
periments, the BeamformIt toolkit [3] (with default set-
tings) is used to perform noise cancellation with delay-
sum beamforming.

The four and eight SDM channels are also used to-
gether to perform an adaptation. More precisely, the
same BN DNN (DNN 1) already trained is used to
forward-pass the SDM channels (channels 1, 2, 3, and
4 from a primary array for 4-channel adaptation, and
all channels from a primary array for 8-channel adapta-
tion).

Since the input dimension of DNN is fixed, stacked
multi-channel inputs would not generalize to setups
with a different number of channels. Therefore, we
decided to train the first DNN with 39 dimensional
MFCCs for IHM data rather than with higher num-
ber of dimension for the multi-channel mapping. The
1-channel feature mapping DNN enables us to easily
transform features for each microphone of the array for
any number of channels. The transformed features from
the four SDM channels are then concatenated to con-
struct a new feature vector to train final DNN/HMM.
Note that, for feature concatenation, no beamforming
signal processing is involved. In addition, we performed
feature mapping directly on the single channel of the
enhanced signal. For these experiments, fMLLR is ap-
plied only to the best performing system and evaluated
by using a 4-gram LM, with eight microphones.

The middle part of Table 1 (single-condition MDM)
shows results of feature mapping used in combination
with channel concatenation (denoted as “fmcct”). The
results of feature mapping used with beamformed out-
put (denoted as “fmbmit”) are presented in the same ta-
ble. Channel concatenation generates large feature di-
mensionality and requires a large amount of parameters
for acoustic modeling. For this reason, the HMM state
alignment for training the acoustic model is obtained
from IHM. To have a fair comparison, all experiments
using MDM exploit the IHM system to generate HMM
state alignment.
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5.4. Multi-condition Baseline

One of the widely-used models for noise-robust ASR
is obtained from multi-style training, where examples
of clean and noisy speech, under various conditions,
are included in the training data. Experimental studies
reported that ASR performance from multi-condition
models is better in various SNR conditions when com-
pared to a model trained only on clean speech data [61,
57]. In this paper, the multi-condition model is obtained
by training IHM and SDM data together using DNN 2.

Compared to the single-condition model for recog-
nizing matched condition, small performance degrada-
tion is observed for the multi-condition model. The
bottom part of Table 1 (multi-condition) shows that the
performance degrades by about 1% (32.3% compared
to 33.3%) absolute WER, when evaluated on an IHM
test set, and by 1.5% (58% compared to 59.5%) when
evaluated on an SDM test set. A similar trend is also
observed when fMLLR is applied to the input features
prior to multi-style training. The small degradation in
performance suggests the inherent robustness of DNN
to noise. Therefore, we conducted additional experi-
ments, described in the next subsection, where BN fea-
tures extracted from a multi-condition network were
used to construct the deep BN features-based DNN.

5.5. Multi-condition BN-based System

If the multilayered networks are regarded as a cas-
caded sequence of feature extractors followed by a lo-
gistic regression classifier at the output layer [58], it is
reasonable to assume that the features extracted from
the hidden layers contain information for classification
and environmental noise level. Training and decoding
on features extracted from such a network are assumed
to be inherently robust to noise.

For the multi-condition BN-based system, instead
of training feature mapping DNN, the multi-condition
DNN is trained with a BN layer. Once this network with
a BN layer is trained, we forward-pass the IHM or SDM
training data in order to extract 39-dimensional features
from the activation of the units of the BN layer. The
bottom part of Table 1 shows the results from training
the IHM and SDM models from such BN features using
DNN 2. Compared to multi-condition with fMLLR on
matched condition, the BN-based systems with fMLLR
yield improvement by 2.6% (from 29.5% to 26.9%) and
by 4% (from 56.2% to 52.2%) absolute WER when rec-
ognizing the IHM and SDM test sets, respectively.

6. Discussion

The BN feature mapping approach trained on IHM
data outperforms the baseline IHM ASR system when
recognizing the SDM test, whilst minor degradation is
observed when recognizing the IHM test. When trained
on SDM data, the mapping approach outperforms the
baseline SDM ASR system when recognizing the IHM
and SDM tests. Results reveal that DNN, employed to
learn the feature mapping between the SDM and IHM
conditions, improves distant speech recognition on the
AMI meeting corpus. In addition, improved ASR per-
formance on the RT-07 evaluation task indicates that the
BN-based ASR systems, using acoustic models trained
on SDM data, are robust to noise and reverberation. Fur-
thermore, results show additional improvement when
fMLLR is applied in combination with the mapping ap-
proach. Note that in [55], a denoising autoencoder is
used for mapping, and ASR improvement is reported
when recognizing noisy speech. One of the reasons for
this is that they initialize the deep neural network by per-
forming pre-training using an efficient algorithm [55].
In our preliminary experiments, direct feature mapping
(i.e, SDM MFCC to IHM MFCC) does not yield any
improvement when recognizing distant speech if we did
not initialize the neural network.

As shown in Table 1, channel concatenation used in
combination with the mapping approach for four chan-
nels yields slight performance degradation when com-
pared to conventional beamforming. The performance
is degraded by 2.1% (from 52.7% to 54.8%) absolute
WER for 8-channel concatenation. However, these re-
sults are better than feature mapping using SDM, sug-
gesting that the feature mapping approach can general-
ize to unseen conditions (i.e., the existing feature map-
ping network is used to forward-pass other channels).
Also, eight channels improve over four channels by
0.5% absolute WER. An additional experiment is con-
ducted by recognizing a single channel from the sec-
ondary array by using the existing feature mapping net-
work (i.e., where a single channel of the primary ar-
ray is used for mapping to an IHM condition). The re-
sult shows improvement by about 11.6% absolute WER
(from 83.4% to 71.8%) when recognizing the SDM us-
ing the IHM ASR system. For comparison, the reported
improvement for a single channel of the primary array is
12.6% absolute WER (from 76.0% to 63.4%). A better
performance for channel concatenation using two and
four microphones over the conventional beamforming
is reported in [21]. Their experiments used tandem sys-
tems for concatenating features. From our experiments,
the best strategy for feature mapping involving MDM
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is to perform mapping using features from beamformed
output. The improvements by 1.1% and 0.9% absolute
WER (2% and 1.7% relative) are achieved by using four
and eight microphones over conventional beamforming
systems, respectively.

The best system is achieved by using the combination
of 8-channel beamforming, feature mapping, and fM-
LLR. This system yields improvement by 8.1% (from
58.0% to 49.9%) absolute WER (14% relative) over the
conventional SDM system. The same system yields im-
provement by 4.3% absolute WER (8% relative) over
the SDM system with fMLLR. When a 4-gram LM
is used, the best system obtains 47.4% WER (a fur-
ther gain of 5% WER relative). This shows that the
gains achieved by acoustic modeling are preserved with
a stronger language model.

In regard to the multi-condition BN-based systems,
the best performance for recognizing the IHM test re-
sulted in a WER of 26.9% using the IHM model, and for
recognizing the SDM test resulted in a WER of 52.2%,
using the SDM model when fMLLR is applied. The best
performance when recognizing IHM reported in this pa-
per shows that multi-condition BN-based networks are
inherently robust to noise. A small performance gain
of 0.3% absolute WER is observed when recognizing
SDM, as compared to the feature mapping approach
(52.5% compared to 52.2%). The gains in performance
from single channel case imply that the BN-based sys-
tems from multi-condition networks can be extended to
the multi-channel case. Analysis of results from multi-
microphones experiments will be left for future work.

7. Conclusions

This paper investigates DNN-based BN feature map-
ping using far-field microphones for improving distant-
talking speech recognition on the AMI meeting corpus.
For recognizing a mismatch condition, large improve-
ment is observed when an acoustic model trained on
IHM is used to recognize SDM data. The mapping ap-
proach is beneficial for improving distant speech recog-
nition performance where the SDM acoustic model
gives the best result for recognizing an SDM test, with a
performance gain of 1.7% absolute WER. The ASR im-
provement obtained on the RT-07 evaluation task shows
that the feature mapping approach generalizes to unseen
conditions with a performance gain of 2.3% absolute
WER. In terms of WER, the feature mapping approach
is shown to be complementary to fMLLR feature space
adaptation.

Feature mapping used in combination with beam-
forming and fMLLR improves the ASR performance

over the baseline beamforming systems, while no im-
provement is observed when microphone channels are
combined using feature concatenation. The multi-
channel integration in DNN acoustic modeling may be
beneficial for a small number of microphones since
four-channel feature concatenation obtains roughly sim-
ilar performance with beamforming. The ASR perfor-
mance below 50% WER on AMI (SDM) evaluation
set can be achieved by using the feature mapping ap-
proach in combination with beamforming and fMLLR.
Experimental results on multi-style DNN training reveal
that models trained using BN features extracted from a
multi-condition network are inherently robust to noise.
The BN-based system trained using the SDM data from
such a network could be used to improve the perfor-
mance of distant speech recognition.
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