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Abstract

This paper presents an overview of the Mobile Data Challenge (MDC), a large-scale
research initiative aimed at generating innovations around smartphone-based research,
as well as community-based evaluation of mobile data analysis methodologies. First,
we review the Lausanne Data Collection Campaign (LDCC) – an initiative to collect
unique, longitudinal smartphone data set for the MDC. Then, we introduce the Open and
Dedicated Tracks of the MDC; describe the specific data sets used in each of them; discuss
the key design and implementation aspects introduced in order to generate privacy-
preserving and scientifically relevant mobile data resources for wider use by the research
community; and summarize the main research trends found among the 100+ challenge
submissions. We finalize by discussing the main lessons learned from the participation
of several hundred researchers worldwide in the MDC Tracks.
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1. Introduction

Mobile phone technology has transformed the way we live, as phone adoption has
increased rapidly across the globe [1]. This has widespread social implications. The
phones themselves have become instruments for fast communication and collective par-
ticipation. Further, different user groups are using them in creative ways. At the same
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time, the number of sensors embedded in phones and the applications built around them
have exploded. In the past few years, smartphones started to carry sensors like GPS,
accelerometer, gyroscope, microphone, camera and Bluetooth. Related applications and
services cover, for example, information search, entertainment, and healthcare.

The ubiquity of mobile phones and the increasing wealth of the data generated from
sensors and applications are giving rise to a new research domain across computing and
social science. Researchers are beginning to examine issues in behavioral and social
science from the Big Data perspective – by using large-scale mobile data as input to
characterize and understand real-life phenomena, including individual traits, as well as
human mobility, communication, and interaction patterns [2, 3, 4].

This research, whose findings are important to society at large, has been often con-
ducted within corporations that historically have data sets, including telecom operators
[5] or Internet companies [6], or through granted data access to academics in highly re-
stricted forms [3]. Some initiatives, like [7], have collected publicly available data sets,
which are to some extent limited in scope. Clearly, government and corporate regulations
for privacy and data protection play a fundamental and necessary role in protecting all
sensitive aspects of mobile data. From the research perspective, this also implies that
mobile data resources are scarce and often not ecologically valid to test scientific hy-
potheses related to real-life behavior. By ecologically valid data, we mean everyday life
data from users who actually use the sensing phone as their personal primary device.

The Mobile Data Challenge (MDC) by Nokia was motivated by our belief in the value
of mobile computing research for the common good – i.e., of research that can result
in deeper scientific understanding of human phenomena, advanced mobile experiences,
and technological innovations. Guided by this principle, in January 2009 Nokia Research
Center Lausanne (NRC), Idiap Research Institute, and EPFL started an initiative to
create large-scale mobile data research resources. This included the design and imple-
mentation of the Lausanne Data Collection Campaign (LDCC), an effort to collect a
longitudinal smartphone data set from nearly 200 volunteers in the Lake Geneva region
over 18 months. It also involved the definition of a number of research tasks with clearly
specified experimental protocols. From the very beginning, the intention was to share
these resources with the research community. This required the integration of holistic
and proactive approaches on privacy according to the privacy-by-design principles [8, 9].

The MDC was the visible outcome of nearly three years of work in this direction. The
Challenge provided researchers with an opportunity to analyze a relatively unexplored
data set including rich mobility, communication, and interaction information. The MDC
comprised of two alternatives through an Open Research Track and a Dedicated Research
Track. In the Open Track, researchers were given the opportunity to approach the data
set from an exploratory perspective, by proposing their own tasks according to their
interests and background. The Dedicated Track gave researchers the possibility to take
on up to three tasks to solve, related to prediction of mobility patterns, recognition of
place categories, and estimation of demographic attributes. Each of these tasks had
properly defined experimental protocols and standard evaluation measures to assess and
rank all contributions.

This paper presents a description and analysis of the Mobile Data Challenge 2012.
The paper is an extended version of the MDC overview paper originally presented in
[10, 11]. In this paper, we expand our analysis of the submissions and the corresponding
results, and reflect on the MDC process and its outcomes. The paper is organized as
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follows. Section 3 summarizes the LDCC data. Section 4 introduces the MDC tracks
and tasks. Section 5 provides details on the specific data sets used for the MDC. Sec-
tion 6 summarizes the MDC process schedule. With the goal of presenting a global
understanding of the participation of the research community in the Challenge, Section
7 presents a brief analysis of the MDC contributed papers. On one hand, we summarize
the main research questions tackled by the papers contributed to the Open Track; on
the other one, we present a comparative analysis of the objective performance obtained
by the contributions in the Dedicated Track. A selection of these papers, in significantly
extended versions, conforms the current Special Issue. In Section 8, we reflect upon the
MDC process and discussed the main lessons we learned along the way. We hope that
these experiences can inform the design and implementation of future initiatives. Finally,
Section 9 contains some final remarks.

2. Related work

This section presents an overview of mobile phone datasets used in previous studies.
We divide them in two categories: mobile network operator (MNO) data and smartphone
sensing data.

Call Detail Records (CDRs) are the main source of MNO data, and are collected for
billing and network traffic monitoring. In today’s mobile networks, each CDR may cor-
respond to a voice call, video call, SMS, or other operator data services. Besides basic
statistics of a call event (e.g., caller ID, callee ID, time, duration), the ID of the cell
tower that the phone connects to is also available. As cell tower locations are known
by MNOs, their IDs indirectly provide the location traces of users with a coarse resolu-
tion. MNO data are then useful for analyzing not only communication patterns but also
human mobility. As an example, Gonzalez et al. analyzed individual human mobility
patterns from a proprietary dataset provided by a European MNO having roughly 6
million customers [3]. The analysis was done on a subset of 100,000 anonymous users
over 6 months, showing that several fundamental properties of individual human mobility
can be captured. A similar dataset, collected from hundreds of thousands of people in
the US, was used by AT&T researchers to characterize human mobility patterns with a
particular focus on practical applications, such as estimating carbon emissions [12]. In
both datasets, privacy was carefully handled by anonymization and also by limiting the
studies to report aggregate results only.

Researchers worldwide had the opportunity to analyze MNO data via the Data for
Development (D4D) challenge, which was launched in late 2012 by Orange [13]. To get
access to the dataset generated by about 5 million users over 5 months in Ivory Coast,
each research team had to submit a short description of their openly defined research
project, which was then reviewed by the organizers. Instead of giving raw CDR data,
Orange provided four types of preprocessed data: location traces of 50,000 users with
native resolution (cell IDs), location traces of 500,000 users with coarse resolution (cell
IDs were replaced by sub-prefecture IDs), hourly antenna-to-antenna communication
traffic, and ego communication subgraphs of 5,000 randomly chosen users. The selected
and winning projects were presented in May 2013.

Targeting the machine learning and data mining communities, the KDD cup 2009 was
another example of MNO data [14]. Based on a large marketing database of customers,
the goal was to predict the propensity of customer to switch provider, buy new product
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or services, or buy upgrades or add-ons proposed to them. The dataset consisted of
precomputed attributes of customers, provided as a 100,000 × 15,000 customer-attribute
matrix, and the target values for the training set. In the dedicated tasks of MDC, we
also predefined specific prediction problems, but participants were free to exploit the raw
sensor data for their prediction methods.

Regarding smartphone data, the large number of sensors and the possibility to run cus-
tomized recording software have made smartphones a great option to collect data in an
unprecedented quantity and granularity. Smartphone sensing has shown to be effective
across multiple scales: individuals [15], groups of people with shared interests (e.g., the
Garbage Watch project [16]), and also at community/country scale (e.g., Participatory
Urbanism [17]). While energy remains the bottleneck for mobile devices, energy-efficient
sensing techniques have opened the possibility of continuous sensing in daily life [18, 19].
Smartphone data is currently being collected and analyzed by academic researchers,
small companies, and large corporations. For example, the CitySense consumer appli-
cation (developed by SenseNetworks) shows human hotspots in a city in real-time by
combining online data with billions of GPS points generated over a few years [20]. Mo-
bile Millennium is a traffic-monitoring system that accumulates traffic information from
mobile users and then broadcasts highway and arterial information in real-time [21]. This
mobile application was downloaded by more than 5000 users during one year. In another
system to estimate travel time, Thiagarajan et al. [22] collected a dataset of GPS and
WiFi location samples from nearly 800 hours of actual commuter drives, gathered with
iPhones and embedded in-car computers.

While smartphone sensing is very appealing, the available data open to the research
community is very limited. The Reality Mining project pioneered this direction by re-
leasing a dataset recorded with Nokia 6600 smartphones by 100 students over 9 months
at MIT [23]. The data included call logs, Bluetooth devices in proximity, cell tower IDs
and application usage. Inspired by the open-access idea of Reality Mining, the LDCC
was launched in Switzerland in 2009 and benefited from the lessons learned about the
design of Reality Mining. Compared to Reality Mining, the population of LDCC is more
diverse, with a mixture of students and professionals; the LDCC was also twice as long
(18 months). Notably, the LDCC also included additional data types that are highly
relevant such as GPS, WLAN, and accelerometer. Additionally, the LDCC data was
collected in Europe, and therefore it reflects the lifestyle of a European population.

Finally, in another effort to create large mobile data for research on activity recogni-
tion, the HASC project created a shared corpus. The organizers provided the recording
software and ask participants (mainly researchers who want to use the data) to contribute
their own data to the corpus [24]. In 2012, they reported to have data from 24 teams, 136
subjects, and 4 data types: accelerometer, gyroscope, GPS, and magnetic field sensor.
Note that this corpus consists of monitored (and labeled) records only, as opposed to
LDCC in which data samples were recorded automatically in the phone’s background.

3. The Lausanne Data Collection Campaign (LDCC)

The LDCC aimed at designing and implementing a large-scale campaign to collect
smartphone data in everyday life conditions, grounding the study on a European cul-
ture. The overall goal was to collect quasi-continuous measurements covering all sensory
and other available information on a smartphone. In this way, we were able to capture
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phone users’ daily activities unobtrusively, in a setting that implemented the privacy-by-
design principles [8, 9]. The collected data included a significant amount of behavioral
information, including both individual and relational aspects. The intention was to en-
able the investigation of a large number of research questions related to personal and
social context, including mobility, phone usage, communication, and interaction. All
content, like image files and text messages, was excluded from recording as it was consid-
ered too sensitive. Instead, log-files with metadata were collected both for imaging and
messaging applications. This section provides a summary on the LDCC implementation
and captured data types. An initial paper introducing LDCC and its data types and
statistics appeared in [25]. Part of the material in this section has been adapted from it.

3.1. LDCC design

Nokia Research Center, Idiap, and EPFL partnered towards the LDCC since January
2009. After the implementation and evaluation of the sensing architecture, and the re-
cruitment of the initial pool of volunteers, the data collection started in October 2009.
Over time, smartphones with data collection software were allocated to close to 200 vol-
unteers in the Lake Geneva region. A viral approach was used to promote the campaign
and recruit volunteers. This resulted in a population with social connections to other
participants, as well as greater variation in terms of demographic attributes compared to
previous initiatives [23]. This was a consequence of the fact that the participants were
guided to recruit further campaign members representing different social connections
(like family member, colleague, neighbour, hobby mate, etc.) A key aspect of the success
of the LDCC was the enthusiastic participation of volunteers who agreed to take part
in the campaign and share their data mainly driven by selfless interest. The campaign
concluded in March 2011.

Data was collected using Nokia N95 phones and a client-server architecture that made
the collection process invisible to the participants. A seamless implementation of the
data recording process was key to make a longitudinal study feasible in practice – many
participants remained in the study for over a year. Another important target for the client
software design was to reach an appropriate trade-off between quality of the collected
data and phone energy consumption.

The collected data was first stored in the device and then uploaded automatically to
a Simple Context server via WLAN. The server received the data, and built a database
that could be accessed by the campaign participants. The Nokia Simple Context backend
had been developed earlier by the Nokia Research Center in Palo Alto. Additionally, a
data visualization tool was developed to offer a “life diary” type of view for the campaign
participants on their data. Simultaneously, an anonymized database was populated, from
which researchers were able to access the data for their purposes. Fig. 1 presents a block
diagram of the data collection architecture.

3.2. Data characteristics

The LDCC initiative produced a unique data set in terms of scale, temporal dimension,
and variety of data types. The campaign population reached 185 participants. Basic
demographics showed a bias towards male participation (62% male, 38% female), and
concentration on young individuals (the age range 22-33 year-old accounts for roughly two
thirds of the population.) Clearly, the LDCC population is not a fair random sample of
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Figure 1: LDCC data flow, progressing from mobile data from volunteers to anonymized data for research
[25]).

the general population in French-speaking Switzerland. That said, the LDCC population
is diverse in terms of demographic attributes when compared to previous initiatives [23],
where essentially all volunteers were related to a university community. In LDCC, there
is a proportion of users who do not have connections to the local universities, and who
have other professions and age ranges. This diversity gave the possibility of designing
and implementing a task about predicting demographic attributes as part of MDC.

A bird-eye’s view on the LDCC in terms of data types is shown in Table 1. As can be
seen, data types related to location (GPS, WLAN), motion (accelerometer), proximity
(Bluetooth), communication (phone call and SMS logs), multimedia (camera, media
player), application usage (user-downloaded applications in addition to system ones),
and audio environment (optional) were recorded. The numbers themselves reflect a
combination of experimental design choices (e.g., every user had the same phone) and
specific lifestyle choices (e.g., many participants use public transportation).

Due to space limitations, it is not possible to visualize multiple data types here. A
compelling example, however, is presented in Fig. 2, which plots the raw location data of
the LDCC on the map of Switzerland for the volunteer population after 1 week, and then
after 1, 3, 6, 12, and 18 campaign months. When considered in detail, the geographical
coverage of the LDCC allows a reasonable tracing of the main routes on the map of
Suisse Romande – the French-speaking, western part of Switzerland – and partially also
of other regions of the country.

In addition to contributing phone data, LDCC participants also agreed to fill a small
number of surveys during the data recording process. Two types of survey data were
important for the later development of the MDC: (1) a set of manual semantic labels
for frequently and infrequently visited places for each user, and (2) basic demographic
attributes. The relevant places for each user were first detected automatically with a
method discussed in [26]. After that, the campaign participants specified place categories
from a fixed list of tags (home, work, leisure places, etc.). With respect to demographics,
participants self-reported their attributes like gender, age group, marital status, job type,
etc.
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Data type Quantity

Calls (in/out/missed) 240,227
SMS (in/out/failed/pending) 175,832
Photos 37,151
Videos 2,940
Application events 8,096,870
Calendar entries 13,792
Phone book entries 45,928
Location points 26,152,673
Unique cell towers 99,166
Accelerometer samples 1,273,333
Bluetooth observations 38,259,550
Unique Bluetooth devices 498,593
WLAN observations 31,013,270
Unique WLAN access points 560,441
Audio samples 595,895

Table 1: LDCC main data types and amount of data.

Figure 2: LDCC location data (in black) plotted at the country level (outlined in green) after 1 week, 1
month, 3 months, 6 months, 12 months, and 18 months of campaign. The data for each specific day is
plotted in red.
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3.3. Privacy

Privacy played an essential role in the design and implementation of the LDCC, given
the nature and scale of the data shared by the participants. In order to satisfy the ethical
and legal requirements to collect data while protecting the privacy of the participants,
the LDCC team implemented an approach based on multiple mechanisms complementing
each other. The approach can be summarized as follows (more details can be found in
[25]):
1. Communication with volunteers about privacy. Following Nokia’s general privacy

policy, we obtained written consent from each individual participating in the LDCC. We
explicitly stated that data would be collected for research purposes. All participants
were informed about their data rights, including the right to access their own collected
data and to decide what to do with it (e.g. to delete data entries if they opted to do so).
The participants had also the opportunity to opt-out at any moment.
2. Data security. The data was recorded and stored using the best industry practices

in this domain.
3. Data anonymization. By design, the LDCC did not store any content information

(e.g. photo files or text messages). The major portion of the collected data consisted of
event logs, and when sensitive data beyond logs was collected, it was anonymized using
state-of-the-art techniques and/or aggregated for research purposes [9]. Examples include
the use of pseudonyms instead of identifiable data, and the reduction of location accuracy
around potentially sensitive locations. Apart from the core team directly involved with
the data collection/anonymization procedures, any other researchers were only granted
access to the anonymized data.
4. Commitment of researchers to respect privacy. Privacy protection of the LDCC

data purely by automatic anonymization techniques is not possible so that the data
value for research is simultaneously maintained. On one hand, technological approaches
for privacy are not 100% effective for all data types, as mobile privacy research has
often shown. On the other hand, the degree of degradation of some data types (e.g.
location accuracy) can make the data very limited in practice to investigate certain
research hypotheses. Several measures were thus needed in order to maximize the value
for research of the data. Regarding privacy, in addition to technical means, agreement-
based countermeasures were necessary. A first set of trusted researchers was able to
work with the LDCC data after agreeing in written form to respect the anonymity and
privacy of the volunteering LDCC participants. This practically limited the access to
the LDCC data to a small number of authorized partners. After this initial data sharing
experience, the next step was to outreach the mobile computing community at large,
which motivated the creation of the MDC, discussed in detail in the next sections.

4. Overview of MDC tracks

The MDC proposed two alternatives through an Open Research Track and a Dedicated
Research Track. In the Open Track, researchers were given the opportunity to approach
the data set from an exploratory perspective, by proposing their own tasks according to
their interests and background. The Dedicated Track gave researchers the possibility to
take on up to three tasks to solve, related with prediction of mobility patterns, recognition
of place categories, and estimation of demographic attributes.
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MDC’s original intention was to be inclusive at a global scale. Other previous successful
evaluation initiatives in computing, like those organized by NIST in several areas [27, 28]
or the Netflix challenge [29, 30] focused on either one or at most a small number of tasks
with objective evaluation protocols. This was also a guiding principle for the MDC. On
the other hand, the nature of mobile data is highly exploratory, so there was a clear
benefit in encouraging and welcoming novel ideas.

Learning from these past experiences, we decided that MDC would feature both open
and pre-defined options to participate. With this idea in mind we created two tracks.
The Open Track was designed to receive ideas directly proposed by the community. On
the other hand, a set of challenges was given in the Dedicated Track, which defined
three classification/prediction tasks. These tasks covered different aspects related to
the characterization of mobile users and places. The Tracks targeted researchers with
different profiles.

4.1. The Open Track

This Track allowed participants to propose their own Challenge task based on their
interests and background. Examples proposed to the participants included the discovery
of behavioral patterns through statistical techniques, the development of efficient mobile
data management methods, or the design of ways to visualize mobile Big Data.

4.2. The Dedicated Track

This Track gave the possibility of taking up to three concrete tasks, with properly
defined training and test sets, and evaluation measures used to assess and rank all the
contributions. The participants of the Dedicated Track were allowed to define their own
features and algorithms. The three tasks of this Track followed a two-stage schedule. In
the first stage, the training set (including raw data, labels, and performance measures)
was made available to the participants, who were expected to design their features and
train their models using this data set. In the second stage, the test set was made available,
except for the labels which were kept hidden. Participants were allowed to submit up
to five runs of results, and the evaluation of all methods was conducted by the MDC
organizers.

4.2.1. Task 1: Semantic Place Prediction

Inferring the meaning of the most significant places that a user visits is an important
problem in mobile computing [5]. This has been an issue that, under slightly different
formulation, has been studied by a significant amount of literature. The semantic labels
attributed to places have typically included basic categories common to a population
(home, work, restaurant) but could also be personalized (e.g. differentiating the main
and second homes of a user). The goal of the task was to predict the semantic meaning
of these places for a number of users of the MDC data. Each place was represented by a
history of visits over a period of time, for which other contextual information sensed by
the user’s smartphone was available. On one hand, participants had to extract relevant
features for predicting these semantic labels. On the other hand, specific methods for this
task had to be developed, given the particular type of input information (sequences of
visits as opposed to geographic location). Importantly, it was decided that geo-location
would not be provided as a feature for this task for privacy reasons, as some of the place
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categories are privacy-sensitive (like home and work.) Several other types of phone data
were provided as features (see next Section). Semantic place labels (manually provided
by the LDCC users through surveys) were given as part of the MDC training set.

4.2.2. Task 2: Next Place Prediction

Predicting the location of phone users has relevance for context-aware and mobile
recommendation systems [31]. This topic has been increasingly addressed in the literature
under different definitions of the prediction task, including predicting the next location
given the current one; predicting a set of locations likely to be visited in a future time
interval; and predicting the duration of future visits. The goal of the MDC task was to
predict the next destination of a user given the current context, by building user-specific
models that learn from user mobility history, and then applying these models to the
current context to predict where the users go next. In the training phase, the mobility
history of each user was represented by a sequence of visits to specific places, and several
types of phone data associated with these visits were made available. Furthermore, in
the testing phase, previously unseen data from the same set of users was provided, with
the goal of predicting the next place for each user given their current place and a short
history of places.

4.2.3. Task 3: Demographic Attribute Prediction

The knowledge of basic demographic attributes is an important aspect in user mod-
eling that can find diverse applications, ranging from churn prediction in the context of
mobile operator preferences to informing social science studies, where phone data could
complement traditional survey-based methods [32]. The goal of the task proposed in
MDC was to infer basic demographic groups of users based on behavioral information
collected from the phones. As discussed earlier, some of the voluntarily-provided de-
mographic information in the LDCC included self-reported gender, age group, marital
status, job type, and number of people in the household. This information was provided
for training and kept hidden for testing. Three subtasks, namely gender, marital status,
and job prediction were formulated as classification problems, for which classification
accuracy was used as evaluation measure. The two remaining attributes corresponded
to regression problems, for which the root mean square error (RMSE) was used as eval-
uation measure. Each subtask contributed equally to the final score which was defined
as the average of relative improvements over baseline performance.

5. MDC data

This section presents an overview of the MDC dataset and the corresponding prepa-
ration procedures. We first describe the division of the original LDCC data that was
needed to address the different MDC tasks. We then summarize the data types that
were made available. We conclude by discussing the procedures related to privacy and
data security.

5.1. Division of the dataset

The datasets provided to the participants of the MDC consisted of slices of the full
LDCC dataset. Slicing the data was needed to create separate training and test sets for
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the tasks in the Dedicated Track, but was also useful to assign the richest and cleanest
parts of the LDCC dataset to the right type of challenge. Four data slices were created:
Set A: Common training set for the three dedicated tasks.
Set B: Test set for demographic attribute and semantic place label prediction tasks.
Set C: Test set for location prediction task.
Open set. Set for all open track entries.
The overall structure of the datasets is given in Figure 3. The rationale behind this

structure was the following. First, the participants of the LDCC were separated in three
groups, according to the quality of their data with respect to different criteria. The
80 users with the highest-quality location traces were assigned to sets A and C. Set A
contains the full data for these users except the 50 last days of traces, whereas set C
contains the 50 last days for which location data is available for testing.

In order to maximize the use of our available data, we reused Set A as a training set
for the other two dedicated tasks. A set of 34 further users was selected as a test set for
these tasks and appeared as Set B. In this way, models trained on the users of Set A can
be applied to the users of their most visited locations.

Demographic data and semantic labels, as explained in Section 3, were collected
through surveys. Since all steps of the LDCC participation were fully voluntary, a num-
ber of users chose not to complete the surveys, or filled them only partially. Therefore,
the participants for whom complete questionnaire data was not available were assigned
to the last set, which was used for the Open Track. In total, 38 users were assigned
to this dataset. Overall, with this data split, a total of 152 LDCC participants were
included in the MDC datasets.

Set A

(80 users, 20492 user-days)

Set C

(3881

user-days)

Set B (34 users, 11606 user-days)

Open Challenge dataset

(38 users, 8154 user-days)

U
se

rs

Time

Figure 3: Division of the MDC dataset into four challenge subsets. For each set, the total number of
user-days with data is also shown.
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5.2. Data types

For both Open and Dedicated Tracks, most data types were released in a raw format
except a few data types that had to be anonymized. There are two main differences
between the Open Track data and the Dedicated Track data. First, the physical location
(based on GPS coordinates) was available in the Open Track but not in the Dedicated
Track. We released a preprocessed version of the location data in the form of sequences of
visited places for the Dedicated Track. This allowed to study performance of algorithms
in a location privacy-preserving manner. The second main difference was the availability
of relational data between users. This included both direct contacts (e.g., when a user
calls another user) and indirect contacts (e.g., if two users observe the same WLAN
access point at the same time then they are in proximity). We decided to keep this data
in the Open Track but removed it in the Dedicated Track since it could have potentially
revealed the ground truth to be predicted. In the anonymization algorithm, a common
hashing key was used for the users selected for the Open Track data sets. On the other
hand, we used a different hashing key for each user in the Dedicated Track.

Common data types. A table is associated to each data type in which each row
represents a record such as a phone call or an observation of a WLAN access point. User
IDs and timestamps are the basic information for each record. Specific information of
each data type is detailed in Table 2.

Data types for Open Track only. Geo-location information was only available in
the Open Track. In addition to GPS data, we also used WLAN data for inferring user
location. The location of WLAN access points was computed by matching WLAN traces
with GPS traces during the data collection campaign. The description of geo-location
data is reported in Table 3.

Location data in Dedicated Track. Physical location was not disclosed in the
Dedicated Track. For each user in the dedicated track, the raw location data (based
on GPS and WLAN) was transformed into a symbolic space which captures most of
the mobility information and excludes actual geographic coordinates. This was done
by first detecting visited places and then mapping the sequence of coordinates into the
corresponding sequence of place visits (represented by a place ID). A place was defined
as a small circular region with 100-meter radius that had been visited for a significant
amount of time. The place discovery process was done with a two-step approach [26].
First, the sequence of coordinates was segmented into stay points and transitions, where
stay point was defined as a subsequence of the location trace for which the user stayed
within a small circular region (radius=100 meters) for at least 10 minutes. In the second
step, the detected stay points were grouped by a grid clustering algorithm which is based
on a uniform grid where each cell is a square region of side length equal to 30 meters.
The algorithm starts with all stay points in the working set and an empty set for stay
regions. At each iteration, the algorithm looks for the 5× 5-cell region that covers most
stay points and removes the covered stay points from the working set. This process is
repeated until the working set is empty. Finally, the centers of 5×5-cell regions are used
to define circular stay regions that we called places. Note that the place extraction was
done for each user separately, therefore places are user-specific. We also ordered places
by the time of the first visit (thus, the visit sequence starts with place ID=1). Although
the absolute coordinates of places were not provided, a coarse distance matrix between
places was computed for each user and provided for the MDC participants of this track.
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data type description
accel.csv user ID, time, motion measure, and accelerometer samples.
application.csv user ID, time, event, unique identifier of the application,

and name of the application.
bluetooth.csv user ID, time, first 3 bytes of MAC address, anonymized

MAC address, anonymized name of the Bluetooth device.
calendar.csv user ID, time, entry ID, status (tentative/confirmed), entry

start time, anonymized title, anonymized location, entry
type (appointment/event), entry class (public/private), last
modification time of the entry.

callog.csv user ID, call time, call type (voice call/show message), SMS
status (delivered, failed, etc.), direction (incoming, outgo-
ing, missed call), international and region prefix of phone
number, anonymized phone number, indicator if number is
in phone book, call duration.

contacts.csv user ID, creation time, anonymized name, international and
region prefix of phone number, last modification time.

gsm.csv user ID, time, country code and network code, anonymized
cell id, anonymized location area code, signal strength.

mediaplay.csv user ID, time, album name, artist, track, track title, track
location, player state, track duration.

media.csv user ID, record time, media file time, anonymized media
file name, file size.

process.csv user ID, record time, path name of running process.
sys.csv user ID, time, current profile (normal, silent, etc.), battery

level, charging state, free drive space, elapsed inactive time,
ringing type (normal, ascending, etc.), free RAM amount.

wlan.csv user ID, time, first 3 bytes of MAC address, anonymized
MAC address of WLAN device, anonymized SSID, signal
level, channel, encryption type, operational mode.

Table 2: Common data types of Open and Dedicated Tracks (in alphabetical order).

data type fields
wlan loc.csv user ID, time, first 3 bytes of MAC address, anonymized

MAC address, longitude, latitude.
gps.csv user ID, record time, time from GPS satellite, geo-location

(altitude, longitude, latitude), speed, heading, accuracy
and DOP, time since GPS system started.

Table 3: Specific data types for the Open Track.
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5.3. Data anonymization

Various anonymization techniques were applied to the MDC data: truncation for lo-
cation data, and hashing of phone numbers, names (such as contacts, WLAN network
identifiers, Bluetooth device identifiers), and MAC addresses. This process is summarized
in this subsection.

5.3.1. Anonymizing location data

The detailed locations can indirectly provide personally identifiable information, there-
fore risking compromising the privacy of the LDCC participants. A location that is reg-
ularly used at night, for instance, could indicate the participant’s address, which could
then potentially be reversed using public directories to find out the participant’s iden-
tity. While all researchers participating in the MDC committed in writing to respect the
privacy of the LDCC participants, i.e. not trying to reverse-engineer any private data
(see Section 3), we also took specific measures in terms of data processing.
Anonymizing location data for Open Track. In order to provide enough privacy

protection while simultaneously keeping the data useful, we applied k-anonymity by trun-
cating the location data (longitude, latitude) so that the resulting location rectangle, or
anonymity-rectangle, contains enough inhabitants. That is, the exact location, consist-
ing of longitude and latitude information, was replaced by a rectangular area of varying
size, subsequently increasing the uncertainty of the given location. For instance, in city
centers anonymity-rectangles tend to be small, while in rural areas anonymity-rectangles
can be kilometers wide. This step required a considerable amount of manual work that
included visualizing the most visited places of the LDCC participants in order to cor-
rectly set the size of the anonymity-rectangles. Once set, those anonymity-rectangles
were applied to all data from all users.

The data for the Open Track included also the WLAN based location information
which was passed through a similar anonymity-rectangle filtering process.
Location data for Dedicated Track. As discussed earlier, geo-location data was

not used for the Dedicated Track. Visited places were represented by IDs which are pos-
itive integers, intrinsically removing all personally identifiable information. The mobility
history of a given user is then represented as a sequence of place visits, characterizing
by place ID and arrival/leaving timestamps. For the semantic place prediction task,
place categories were provided for a small subset of the discovered places. We used the
following categories: home; home of a friend, relative or colleague; workplace/school;
place related to transportation; workplace/school of a friend, relative or colleague; place
for outdoor sports; place for indoor sports; restaurant or bar; shop or shopping center;
holiday resort or vacation spot.

5.3.2. Anonymizing MAC addresses, phone numbers, and text entries

Hashing was applied to a variety of text entries appearing in the MDC data, including
Bluetooth names, WLAN network identifiers (SSID), calendar titles and event locations,
first names and last names in the contact lists, and media filenames (such as pictures).

For anonymization of the WLAN and Bluetooth MAC addresses, we split them into
two parts. First, the MAC prefix, also known as the “Organizationally Unique Identifier
(OUI)” [33], was kept in clear text. Second, the rest of the MAC address was anonymized
by hashing, after concatenating it with secret key, and the userID for dedicated challenges.
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hash(token) = sha256(token), where,
token = (seckey1||information||seckey2), for open challenges,
token = (userID||seckey1||information||seckey2), for dedicated challenges.

Note that, for the dedicated challenges, this anonymization method results in the same
MAC address appearing differently in different user data sets.

Phone numbers appearing in the call logs and contact lists were also split in two parts.
First, the number prefix, which contains the country and region/mobile operator codes,
was left as clear text. Then, the rest of the phone number was hashed as described
above. The cell ID and the location area code (LAC) of the cellular networks were also
anonymized using the hashing technique described above.

5.4. Watermarking

The release of the MDC data set to a large community of researchers motivated an
additional step in which each distributed copy of the data set was watermarked individ-
ually in order to identify it if necessary. The watermarking process introduced negligible
alterations of the data that did not interfere with the results.

6. MDC schedule and participation

The MDC process started in summer 2011. We targeted to organize the MDC Work-
shop, where methods and results would be presented, within one year. We decided to
keep the challenge open for all researchers with purely academic affiliation. The prospec-
tive participants of the Open Track had to submit a short proposal with their concrete
plan, and the participants of the Dedicated Track had to agree to participate at least one
task. While the MDC was by nature open, a series of steps was established for participant
registration. Importantly, this included signature of a Terms and Conditions agreement,
in which each researcher explicitly committed to use the data only for research purposes,
and to treat the data in an ethical and privacy-preserving manner (reverse engineer-
ing of any portion of the MDC data to infer sensitive personal information was strictly
forbidden).

The MDC registration process was launched in early November 2011 and closed in
mid-December 2011. The challenge was received enthusiastically by the research com-
munity. In early January 2012, the MDC data was released to more than 500 individual
participants as individually watermarked copies for more than 400 challenge tasks. The
participants were affiliated with hundreds of different universities and research institutes,
with a worldwide geographic distribution (Asia 23%, USA 22%, Europe 51%, other re-
gions 4%). Many leading universities in the field participated in the MDC tracks.

A total of 108 challenge submissions were received on mid-April 2012, corresponding
to 59 entries for the Dedicated Track and 49 entries for the Open Track. All submitted
contributions were evaluated by a Technical Program Committee (TPC), composed of
senior members of the mobile and pervasive computing communities. The TPC members
did not participate in the MDC themselves to minimize possible conflicts of interest.

The criteria to evaluate entries for each Track were different. On one hand, the Open
Track entries were evaluated according to a set of standard scientific criteria, including
the novelty and quality of each contribution, and the paper presentation. All entries in
the Open Track were reviewed at least by two members of the TPC. On the other hand, all
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entries in the Dedicated Track were evaluated using the objective performance as the only
criterion to decide on acceptance to the MDC Workshop. Entries for all three dedicated
tasks were compared against standard baseline methods. In addition, all Dedicated Track
papers were subject to review in order to verify basic principles of originality, technical
novelty, experimental correctness, and clarity. Papers corresponding to entries whose
performance did not outperform the baseline were reviewed by one member of the TPC.
All other papers were reviewed at least by two members. The TPC evaluated all papers
without knowledge of the performance obtained on the test set. While the reviews did not
play any role in the acceptance decision for the Dedicated Track, they helped to detect
a few problems, and in every case they were passed on to the authors. In particular, the
reviews served as guidelines to the authors of accepted entries to improve the presentation
of their approach and achieved results. Final acceptance for all entries was decided during
a face-to-face meeting involving all MDC co-chairs, in which all papers were discussed
and in some cases additional reviews were performed. In some cases, a shepherd was
assigned to accepted entries to ensure that the key comments from the reviewers were
implemented. As a result of the reviewing process, 22 entries to the Open Track and 18
entries to the Dedicated Track were accepted. For the Dedicated Track, we decided not
to reveal the teams’ absolute performance scores and relative ranking before the MDC
Workshop. Finally, a number of awards was given to the top contributions, based on the
entries’ performance for the Dedicated Track, and following the recommendations of an
Award Committee specifically appointed for the Open Track.

7. Analysis of the MDC submissions

We were positively surprised by the diversity of ideas and technical approaches submit-
ted to the Challenge. It was clear that many teams could produce promising results and
original approaches in a couple of months of work with the data. With two objectives in
mind (drawing a thematic map of the interests of the MDC community participating in
the Open Track, and objectively comparing the performance of the methods addressing
tasks of the Dedicated Track) we present an analysis of the MDC accepted submissions.
We start with an analysis of the Open Track, and continue with a discussion about the
Dedicated Track.

7.1. Open Track: Diversity in Mobile Big Data Research

The papers related to the MDC Open Track exhibited a wide range of themes, ranging
from visualization techniques to behavioural analysis to the practical application of net-
working and connectivity technologies. This demonstrates broad opportunities related
to rich mobile data. Despite of the diversity in terms of research questions and topics ex-
plored, several commonalities emerged. Many papers underlined that the MDC dataset
provides an unique opportunity to validate a given model or research question. For in-
stance, Schulz et al. [34] utilized the co-existence of cell ID and GPS traces to study the
potential of the former in deriving human mobility patterns. Another recurrent theme
was the utilization of multiple data modalities; for instance, De Domenico et al. [35]
analyzed the correlation between spatial and social patterns. Finally, the applied nature
of several papers is worth noting. Consider, e.g., Frank et al. [36], whose method can
inspire the design of novel interfaces for contextual services, or the paper by McGrath
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et al. [37], whose method could constitute an alternative positioning method for cheap
feature phones, which lack GPS.

A total of 21 papers were accepted to be presented in the MDC workshop. The analysis
of the papers led to three main categories: Big Data at Meta Level, Behavioural Analysis,
and Networking & Connectivity. Separate sections will be devoted to describe each of
these themes.

7.1.1. Big Data at Meta Level

The papers in this category reflected high-level Big Data issues. Several were associated
with techniques for summarizing Big Data, e.g. from a visual perspective. A few entries
were related to inspection and comparison of Big Data analysis techniques.

Summarizing Big Data. Hoferlin et al. [38] and Slingsby et al. [39] focused on systems
that may be used for visualizing complex data sets. The former aimed to provide a tool
for open-ended, exploratory analysis, through the provisioning of complementing views
on the data. The authors underlined the importance of privacy-related considerations
when it comes to generation of visual summaries of behaviour of individual participants.
The latter paper, on the other hand, was focused on visualizing the spatial and temporal
nature of social networks. This entry received the third price in the Open Track. The
MDC data set was shown to have some potential but importantly, the authors also
called for more comprehensive data sets, capturing more than just mobile phone based
communication. Skupin and Miller [40] built on methods related to traditional geographic
atlases by presenting base map configurations on top of which thematic elements, such
as demographic aspects of commuting modalities of MDC participants were overlaid.
The method is a proof-of-concept regarding visualization of high dimensional attribute
spaces in an intuitive way. The above papers are related to visualization. Frank et
al. [36] described the process of translating contextual data collected through mobile
phones to natural language sentences related to locations encountered by the individuals
in the campaign. The applied value of the method can be easily seen: natural language
techniques could be suitable for life logging services. This work was awarded the second
Open Track price.

Improving the Analysis of Big Data. The geographic modalities in the MDC data set
pertain both to GPS as well as GSM traces. Schulz et al. [34] utilized the co-existence of
these two modalities to study the effectiveness of GSM mobility traces in deriving human
mobility patterns. GSM data was shown to be associated with weaknesses and strengths.
Idrissov and Nascimento [41] used MDC data to show the quality of their trajectory
clustering method. Moving from large amounts of data to more simple representations,
Hartmann et al. [42], on the other hand, aimed at reducing the number of states in user
traces. With the increasing popularity of location based services, both papers can have
practical value.

7.1.2. Behavioural Analysis

The papers belonging to this category were related to analysis of spatial and social
behaviors. Some of the papers were also associated with contextual dependencies in
mobile phone usage behaviour.

The entries by Niinimaki et al. [43], and Gustarini and Wac [44] bear relevance to
psychological research. The former paper investigated if weather has an impact on mo-
bility patterns of individuals. Two data sets were combined - the MDC data by Nokia
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and meteorological data by MeteoSwiss. The latter paper tapped into the perception of
intimacy across various locations. Bluetooth encounters, ring tone status of the partici-
pants as well as charging behavior were used as indicators of social density, type of social
connections in one’s surroundings, as well as perceived level of safeness in regard to a
given location.

Two MDC entries were associated with examining the overlap between spatial and
social behaviors. De Domenico et al. [35] showed that user movement forecasting can be
improved through exploiting the correlation between movements of friends and acquain-
tances, an idea that was awarded the first price in the Open Track. Munjal et al. [45], on
the other hand, were interested in using the correlation between locations visited by users
who were socially interacting in making efficient routing decisions in mobile networks.

Muhammad and Van Laerhoeven [46], and McGrath et al. [37] were concerned with
inferring social groups and locations, respectively, using indirect measures. The former
paper found consistent results across a number of modalities, including shared contacts,
shared IDs on the call lists, common WLAN MAC addresses seen by the users, and GPS
clusters in close proximity in time and space to one another. The entry by McGrath et
al., on the other hand, showed that the transitions between spatial habitats of individuals
was predictable solely from daily routines and their smart phone usage habits.

McInerney et al. [47], Barmpounakis and Wac [48], and Tan et al. [49] focused on
understanding mobile phone usage in different contexts. McInerney et al. established
a connection between the instantaneous entropy of individuals, i.e., a measure of their
momentary predictability, and the use of the mobile phone. In particular, almost all
mobile applications showed an increased level of use when the individual behaves in a
non-routine based way. Barmpounakis and Wac [48], on the other hand, investigated
connectivity and application use patterns, with the aim of improving Quality of Service.
Finally, Tan et al. [49] adopted an applied perspective through the investigation of a
method capable of real-time application usage predictions in a mobile context.

7.1.3. Networking and Connectivity

In several cases, the MDC dataset was utilized from the networking and connectivity
perspective. Keller et al. [50] studied ad hoc file sharing over WiFi among individuals
with similar musical taste. Also Wu et al. [51] also investigated opportunistic data
transfer. Their focus was on the use of smart phones to collect data from wireless sensor
nodes. Both papers yielded positive results based on data stemming from the MDC.

Van Syckel et al. [52] set out to study information dissemination in a delay toler-
ant network. In low-density delay tolerant networks, the consistency in everyday user
movement was found to contribute significantly to the information distribution rate.

The entry by Michaelis et al. [53] was concerned with using MDC data to predict
the network cell IDs of a moving user, for the purposes of active load balancing. The
generated paths of MDC participants were used in order to predict the next cell. For
some participants, the experiments exceeded 80% accuracy.

Wang et al. [54] investigated periodicity of encounter patterns between mobile devices
in order to improve communications in a mobile network setting. Strong weekly and
daily patterns emerged; the authors also showed how the persistence of such patterns got
interrupted from time to time.
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7.2. Dedicated Track, Task 1: Semantic Place Prediction

As stated earlier in this paper, the first task was the inference of the semantic labels
of the most significant places that a user visits. This task was a multi-class classification
problem, but the training and testing sets were not distributed uniformly as Figure 4
shows. As only the most visited places were labeled by the participants, it is quite natural
that homes and workplaces are the most represented classes in the dataset. There were
only small discrepancies between the training and test sets, but still guaranteeing enough
representativeness in each class. Manual place labeling was a tedious task, and so to keep
the workload reasonable, only a small fraction of them (around 10%) was shown to the
participants for labeling. Therefore, the training and test sets contained a large number
of unlabeled places.
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Figure 4: Distribution of the classes in the training and testing sets for the dedicated task 1.

To get a first idea of the performance of the different submitted algorithms and to allow
a pre-selection at submission, a baseline classification method was implemented. Using
only time features and a naive Bayes classifier, the baseline achieved 53% of accuracy.
From the submissions, the most popular features were based on time and frequency of
visits, but also on accelerometer features. Many teams did also decompose the problem
into several binary classification problems.

The accuracy was computed as the number of correct predictions over the places in
the test set that were actually labeled. The other unlabeled places were just ignored.

According to this measure, all submissions below the baseline were attributed one
reviewer and rejected by default, and the other ones had at least two reviews. Figure 5
shows the distribution of the best submission for each team. As stated earlier, each team
was allowed to submit blindly 5 results and the best one of them was kept for the ranking.
Detailed analysis showed that the scores of the different submissions originating from
the same team had a low variance and thus most likely resulted from tuning algorithm
parameters rather than from generating random results.

Among the three best results, various methods were proposed and experimented.

In third position, Montoliu et al. [55] used “smart” binary classifiers using 1-vs-1 and
1-vs-2 classes. The features that were selected most often were based on time, phone
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Figure 5: Final result of Dedicated Task 1. Scores of the 17 best submissions, one per team.

profile, call-logs, SMS and WLAN. Moreover, they showed good performance of a novel
MultiCoded class-based method as evaluation rule for the binary classifiers.

In second position, Huang et al. [56] proposed to use a multi-level classification where
the decision tree was manually built to deal with the class imbalance and included some
common sense knowledge. For each level of the tree, several classifiers were trained and
the features selected using χ2 were the following: accelerometer movements, missed-call,
text-out, Bluetooth, and time of visit.

Finally in first position, Zhu et al. [57] focused on generating as many features as
possible (over two million), letting the feature selection algorithms do their job. They also
conditioned the features by time intervals of 30 minutes and showed a great improvement
of accuracy. The most useful features were based on time, Bluetooth and accelerometer.
Several classifiers like Logistic regression, SVM, Gradient Boosting Trees, and Random
Forest were evaluated.

It was interesting to notice that the top contributions reached a performance roughly
in the same range as the one that corresponds to the aggregated percentage for the three
most common categories in the dataset (see first three columns in Fig. 4.)

Overall, this task highlighted the great challenge of giving sense and semantic meaning
to collected data, based purely on mobile data inputs that do not contain explicit ge-
olocation. The promising result obtained by the top contribution (66% accuracy) shows
that this path is worth of more exploration.
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7.3. Dedicated Track, Task 2: Next Place Prediction

The goal of this task was to predict the next destination of a user given the current
context, by building user-specific models that learn from the mobility history, and then
by applying these models to the current context to predict where the users will go next.

For the Dedicated Track, the raw location data was transformed into sequences of place
visits and the prediction task was defined in the symbolic space of place IDs. While the
default minimum stay duration of visit was 10 minutes (see Section 5), we exceptionally
used a larger threshold for the next place prediction task. The motivation was to filter
out short visits which are very challenging to predict. In Task 2, visits of less than 20
minutes were removed, and all evaluations were done with the sequence of visits of at least
20 minutes. The prediction context consisted of the current place ID, the arrival/leaving
timestamps of the visit, and the data recorded during the visit, and the 10 minutes before
arrival. The output to be predicted was the ID of the next destination.

In the training phase, the sequence of visits to places and several types of phone data
associated with these visits were made available. Furthermore, in the testing phase,
previously unseen data from the same set of users was provided. For each user, a number
of test data points were selected randomly from unseen transitions (e.g., transition from
current place to the next place) with the restriction that there was at most one test data
point per day. As described above, each test data point is associated with a time interval
(the mobile phone data in the test set is only available within these time intervals), and
the ground truth is the next place the user visited after the time interval. As people keep
visiting new places over time, both the current place P and the next destination D can
be a new place that did not occur in the training set. In the ground truth, all new places
that did not occur in the training set were processed by setting ID=0 by convention (this
special category occupies 8% of the ground truth data). Classification accuracy was used
as performance evaluation measure.
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Figure 6: Trusted transition and untrusted transition. Each dot represents available location data.

Due to the missing location data during the recording process, some actual visits might
have not been detected, and some detected visits might be erroneous. In other words,
the next place in the recorded sequence of visits might not be the actual next place. For
this reason, we introduced the concept of trusted transition, which is trusted if there are
location data points of the user every 10 minutes between the leaving time of the current
visit and the arrival time of the next visit, as illustrated in Figure 6. By construction,
next places of trusted transitions correspond to actual next places. In the data, we found
that 57% of transitions are trusted, and this indicator of trustworthiness is also provided
in the preprocessed location traces. Finally, we only considered trusted transitions in the
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selection of test data points.
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Figure 7: Final result of dedicated task 2. Accuracies of the 21 best submissions, one per team.

We received 21 valid submissions, in which 52% of the methods were reported to use
only spatial and temporal context (i.e., using only mobility data). While 71% of the
submissions had proposed at least one dedicated probabilistic model for user mobility,
the remaining 29% of the submissions employed only standard machine learning methods
such as SVM or Random Forest. The final accuracy of submissions is shown in Figure 7
in descending order, where the top 3 submissions were selected for oral presentation, and
the next 4 submissions were selected for poster presentation at the MDC workshop. Note
that each team had the right to submit 5 final prediction output files, and the best result
was selected for each team. As a baseline method, we considered a simple method that
predicted the most frequently visited place as the destination if the user is not currently
at that place. If the current place is the most visited place, then the baseline method pre-
dicted the second most frequently visited place as the destination. This baseline method
results in 44% of accuracy on the test set. At the third place, Gao et al [58] reached
an accuracy of 52% by using a probabilistic framework that combines spatial historical
trajectories with temporal periodic patterns. Wang and Prabhala [59] reached second
best performance after investigating a periodicity model and SVM classifiers working
on time and location features. The winner of this task reached an accuracy of 56% by
combining a Dynamical Bayesian Network with two standard methods: Artificial Neural
Network and Gradient Boosted Decision Trees [60].

The final result shows that human mobility is relatively difficult to predict in the
considered setting. One key challenge is to learn from limited number of observations
and to predict with limited contextual data. While many phone data types were provided,
we found that the top 3 submissions only considered mobility data for predicting human
mobility. Our interpretation is that besides spatio-temporal context, other contextual
cues may be too weak for learning a human mobility model from each user data separately.
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We could expect that these additional contextual cues can be exploited more efficiently
by combining generic human mobility patterns with individual mobility patterns.

7.4. Dedicated Track, Task 3: Demographic Attribute Prediction

Many mobile applications could benefit from being able to adapt their behavior accord-
ing to the type of user. This could enable the application to provide more appropriate
services or content to the user and adapt the way information is presented to the user. A
straightforward way for an application to acquire information about users is to ask them
to specify attributes about themselves to the application. This however requires extra
effort from the user and the possibility to integrate the request of such information into
the usage flow of the application. These alternatives may not always be possible, so that
settings related to the user may remain unanswered. An interesting question is whether
applications could infer some of the user’s characteristics based on the contextual infor-
mation traces that they can observe in order to facilitate appropriate adaptation of their
behavior.

To investigate this question, Task 3 of the Dedicated Track was to develop methods
for predicting certain demographic attributes of the users in the MDC dataset based on
the context traces provided for the users.

The demographic attributes in the dataset were self-reported by the participants and
covered the gender, age group, marital status, and job type of the user as well as the
number of persons living in the user’s household. Apart from the binary gender attribute
(female and male), the age groups were modeled by binning the ages of the participants
aged 16-44 years into bins of 5-6 years and providing one bin for persons older than 44
years. Marital status was reported as one of three classes: “single or divorced”, “in a
relationship”, or, “married or living together with my partner”. The job type involved
four possible classes including “Training”, “PhD student”, “Employee without executive
functions”, and, ”Employee exercising executive functions”. Finally, the number of per-
sons living in the user’s household was modeled by five dedicated bins for one, two, three,
four, and more than four persons.

The three prediction subtasks for the gender, marital status, and job type attributes
were formulated as classification problems, for which the prediction accuracy was used
as the evaluation measure. The prediction subtasks for age group and number of persons
in the household were treated as regression problems, and the root mean squared error
(RMSE) was used as the evaluation measure.

The training set consisted of context data traces from 80 distinct users, covering alto-
gether 20492 user days. The demographic labels for users in this dataset were provided
as part of the challenge data. The testing dataset contained data from 34 users, covering
altogether 11606 user days. The demographic labels for users in the testing dataset were
not revealed to the challenge participants. The ranking of the challenge contributions
was based on the relative improvement that the submitted prediction results provided
over the results obtained from very basic, dummy prediction models. The dummy pre-
diction model used for the classification subtasks was such that it always predicted the
class with the highest number of occurrences in the training data. For the regression
subtasks, the dummy model always predicted the average of the attribute values in the
training data.

The basic evaluation measure for classification subtasks is the overall error rate, that
is the fraction of classifications made that were incorrect. For the regression problems,
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root mean square error (RMSE) is used as the basic evaluation measure. The evaluation
score for each subtask was then calculated as the relative improvement of the submitted
prediction over the dummy prediction. The final evaluation score for each challenge
submission was then determined by taking the average of evaluation scores of the five
prediction subtasks.

In addition to the evaluation, we also applied straightforward baseline prediction meth-
ods to obtain a reference against which to compare the performance of the submissions.
For this, only the mobility-related features in the dataset were used. The baseline model
used naive Bayesian inference for the classification subtasks and linear regression for
the regression subtasks. The performance of the baseline model in comparison to the
submissions for the MDC can be seen in Figure 8.
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Figure 8: Final result of Dedicated Task 3. Scores of the best submissions, one per team.

As third in the final MDC ranking Brdar, Culibrk and Crnojevic [61] approached
the task by extracting forty different features from the dataset and experimenting with
models based on k-nearest neighbor (kNN) graphs, mutual kNN graphs, radial basis
function networks (RBFN), and random forests. The kNN graph-based prediction model
was applied both on the full feature set, and a limited feature set determined by a feature
selection. For the gender prediction subtask, Brdar et al. obtained best results on the
training data by using the Random Forest. For the age group, marital status, and job
type subtasks, kNN with feature selection provided the best performance, whereas for the
number of persons in the household subtask, both RBNF and Random Forest provided
good results.

The runners-up for this dedicated task, Mohrehkesh, Ji, Nadeem and Weigle [62],
generated 1100 raw features from the input data and applied feature selection methods.
They then applied support vector machines (SVM) and random forests in their prediction
models.

The winners of the demographic attribute prediction task, Mo, Tan, Zhong and Yang
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[63] , used an approach in which they constructed a set of tens of thousands of raw
features representing conditional probabilities of user actions and applied feature filtering
and dimensionality reduction to the feature set. The prediction models utilized included
C4.5, gradient boosted tree, random forest, SVM, logistic regression, RepTree, support
vector regression, Gaussian process, linear regression, and lasso.

8. Discussion

Nine months after the conclusion of the Challenge, we are in a position to reflect
upon our initiative. This section provides a retrospective discussion on our motivations,
design choices, issues regarding the concrete implementation of the challenge, and the
main outcomes and limitations of the initiative.

8.1. Motivations to implement MDC

As described in earlier sections of this paper, before the MDC there was already a
significant investment behind the LDCC data collection on a level that is obviously
beyond the capabilities of individual researchers or many research groups. The data
collection had initially a two-fold motivation. Such rich data was needed for research
within the groups behind this initiative and among their closest partners. But from
the very beginning the intention was also to share this data with research community.
Therefore, the campaign was also designed so that it was possible to address rather
different research questions using the same multi-dimensional data set.

The wide sharing of this data asset was motivated by the spirit of open innovation, i.e.
by thinking that sharing the data was a key to scale up the overall innovation process
around it. This also extended the coverage of innovation to research questions which did
not match the focus and competence profile of the research groups behind the LDCC and
MDC. Therefore, our intention was to enable scientific advances on different disciplines.
Open data sharing brought along many research teams which had needed competencies,
but without access to advanced mobile data sets before the MDC.

From the research perspective, it was liberating and empowering to enable a research
community by opening the data set for wider use. Before the MDC we regularly received
questions and requests regarding sharing of the LDCC data. However, it was necessary
to start the data usage in a smaller scale, and the extension of the community became
possible only after previous knowledge of this particular data set had accumulated.

8.2. MDC design choices

Perhaps the key design choice was the decision to allow both open entries and specific
entries. The overall result of this was a significant participation on both fronts. The
participation profile also shows that the Open and Dedicated Tracks attracted different
communities. The tasks chosen in the Dedicated Track proved to be challenging enough
(which demonstrates the need for further research in this domain), while at the same time
attractive enough to motivate researchers to test advanced data mining methods. The
tasks in this Track were also diverse enough to generate interest either as individual tasks
or collectively (for those teams who could target more than one). We anticipate that the
definition of these tasks will result in future publications where improvements over the
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best performance obtained so far will be reported. Finally, the dual Open/Dedicated for-
mat resulted in a considerable additional effort for us as organizers, as a fully automated
way of assessing the entries was no longer possible.

The decision of having multiple tracks and tasks created the need to split the data.
Obviously, this lead to trade-offs between the amount of data versus the number of
separate tracks. This was also the decision that implied a significant amount of work
until we achieved a satisfactory solution for splitting the overall data into sub sets with
appropriate amount and quality. As shown in Figure 3 and discussed more in details in
Section 5, the data split had to satisfy multiple time and population-related constraints.
After careful inspection, the data of some LDCC users was deemed not useful for any of
the tasks in the Challenge and was not distributed. This was mainly caused by the sparse
or incomplete device usage of these particular users. Defining a single task or track would
have provided the maximum amount of data but would have reduced participation.

Another design choice (in this case of LDCC rather than of MDC) was the population
that took part in the data collection initiative. As stated earlier, the LDCC population
does not exactly match the overall demographics of French-speaking Switzerland. On the
other hand, it corresponds well to the consumer segment of real smartphone users. This
makes it attractive to investigate consumer behaviour, using this particular data from the
perspective of smartphone service concepts. We have also recently demonstrated that
some large-scale mobility trends observed in the MDC data match patterns obtained
with an independent larger-scale population and their mobility traces (Foursquare) [64].
This proves the value of the MDC data as a snapshot of real European life, beyond the
tasks we proposed.

The decision of not distributing geo-location data for the Dedicated Track was mo-
tivated by our interest in promoting the development of techniques that are location-
privacy sensitive. This was a critical factor for service concept creation by following the
Privacy by Design principles [8]. On the other hand, being aware of the huge interest
of the community in having access to longitudinal location traces, we decided to release
them as a part of the Open Track data set, with an additional location anonymization
step performed for the sensitive, personal locations. When the location data sets for
the Dedicated Track were prepared, the parameters had to be carefully selected (e.g.
retaining shorter or longer stays) so that the data was reliable but did not compromise
the amount of extracted places.

Further decisions were made related to the type of participation and the duration of
the challenge. Most participants decided to work in groups. The maximum group size
was an important parameter influencing the ambition level of the proposed ideas and the
quality of their final implementation. We had no way of testing this a priori, and therefore
decided to target the challenge for small groups. Our intention was to encourage a tight
integration of effort. The same logic was used when the duration of the Challenge was
decided. Three months were considered as a period that would allow seriously involved
people to achieve something significant, without resulting in a prohibitive period that
would distract the participants from their main activities (counting on most of them being
students or postdocs). It was also considered beneficial to execute the whole Challenge
within less than a year to maintain the momentum throughout the whole initiative.

A final design issue was related to data distribution. Existing platforms, like Kaggle
or Crawdad, are commonly used in research. But decided to keep the data distribution
close to the organizing team, in order to control all aspects of authorization, access,
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individually watermarked copies, etc. This choice was a clear one: we owe this level of
care to the volunteers in our study.

8.3. MDC implementation

While the above section relates to the design of MDC, we now discuss aspects related
to the implementation of this initiative. The relevant themes are as follows: community
formation, privacy and legal aspects, as well as outcome analysis.

Community formation. The community accessing and analyzing the data evolved in
the course of the LDCC and MDC. As explained earlier, a core team was formed around
the data during the LDCC stage. The network became significantly wider during the
MDC stage. The core team, which was involved throughout the process and facilitated
all stages, consisted of employees from NRC Lausanne and Idiap. In retrospect, we feel
that the continuity and long-term commitment of this small core team was one of the
most critical factors enabling the scaling up of the community. The core team had a
holistic responsibility both for LDCC and MDC, covering also the practicalities related
to these initiatives. Various aspects had to be mastered, including hosting of the data,
establishing a legal framework for data sharing, taking care of the privacy aspects, as well
as controlling the data access in regard to additional research groups joining in during the
subsequent stages. The Nokia and Idiap teams were located in proximity of one another,
and they operated in a very seamless manner with a lot of collocated meetings. The
overall MDC schedule was designed to be tight, and during many time critical phases
the physical proximity was of particular importance.

From this well functioning core team, it was rather natural to scale up the community
to a larger level. Acquiring a strong familiarity with the dataset during the LDCC stage
enabled critical aspects to be taken into account when starting to significantly increase
the community size during the MDC.

Privacy aspects. Privacy protection required extremely careful considerations due to
multimodality of the rich smartphone data. We already described the necessary counter-
measures both when the smartphone data was originally collected and when it was later
released to the research community. In practice, this required both technical countermea-
sures and agreement-based privacy protection. In that manner it was possible to achieve
an appropriate balance between the necessary privacy protection, while simultaneously
maintaining the richness of the data for research purposes.

When it comes to lessons learned in respect to the privacy aspects of the process, two
issues are worth emphasizing. First, the workload associated with privacy protection
should not be underestimated. For example, the manual location obfuscation process
was time-consuming and had to be split among all members of the core team. Second,
we learned that despite serious attempts in adhering to the privacy protection principles,
some of the research findings can nevertheless be associated with privacy issues. For
example, when reviewing the challenge entries, some of the submissions had conducted
analysis at the level of individuals rather than at population level. Therefore, the core
team has an important role to play not only when providing access to the data, but
also when inspecting the outcomes of the analysis across the various participating teams.
Implementation of a privacy review process in regard to publications based on the mo-
bility data is highly recommended to ensure maximal elimination of unintentional and
accidental privacy issues.
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In addition to implementing this type of privacy review, we also learned that a specific
philosophy is needed when the responsibility that the core team has adopted toward the
data collection participants is transferred to the extended network of MDC researchers.
All data users need to have an understanding of what is acceptable and they need to be
responsible and respect the underlying principles. Therefore, the core team has an essen-
tial educative role in establishing such principles and guidelines, articulating clearly what
is acceptable from the privacy point of view. It is important to use concrete examples to
illustrate the principles in a clear and understandable manner. Also, the guidelines have
to play a prominent role in the overall communications toward the participating teams.

Legal aspects. The collection of rich mobile data meant that severe responsibility to-
wards the data collection campaign participants had been taken. Therefore, an appropri-
ate legal framework had to be established to transfer this responsibility to the researchers
using the shared data. In our context, several data sharing frameworks were prepared:
one for initial institutional data sharing partners before the MDC, one for MDC partici-
pation, and finally one for extended use of the MDC data after the challenge itself. This
all creates a significant burden of legal work which should not be underestimated when
further such initiatives are planned or prepared. As a consequence of global coverage
of the initiatives and different legislation in different parts of the world, some organiza-
tions came up with special wishes and modification requirements which easily leads to
iterative interactions and high investment with respect to usage of legal resources. Such
interactions, however, offer also one channel to communicate the related responsibilities
and importance of underlying privacy matters. On the other hand, it is essential that
the understanding about the responsibilities propagates among the involved researchers,
not only in the legal teams of the organizations.

8.4. Other implications

Already so far the Mobile Data Challenge has produced interesting findings and multi-
disciplinary scientific advances. The contributions to the MDC addressed various inter-
esting angles from the perspective of mobile computing research, like investigations on
predictability of human behavior patterns or opportunities to share/capture data based
on human mobility, visualization techniques for complex data as well as correlation be-
tween human behavior and external environmental variables, such as weather patterns.

On the other hand, the establishment of a community around this particular data set
has already been an achievement as such. It is too early to make a final assessment
regarding the overall scientific findings less than a year after the MDC. Many of the
participating teams have continued their efforts, and extended outcomes and complete
new research tracks will be reported in the open literature during the months and years
to come.

However, one of the observations already at this point is that the range of topics as-
sociated with the submissions was surprisingly wide and multidisciplinary, consequently
imposing challenges on the review process. While the dedicated tasks were quite strictly
associated with using machine learning techniques, the open challenge entries varied
widely. The reviewers needed, therefore, to assess a range of disciplines, from computer
science to social sciences, from visualization and HCI to geography. This requires multi-
disciplinary review teams to ensure a fair and reliable review process independent of the
scientific angle of the analysis.
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We also noticed that most of the research was conducted at a theoretical level. An
applied angle, especially in regard to user experience aspects, was less frequently encoun-
tered. More specifically, not many challenge entries took a stance on what would be the
manifestation of a given pattern based on mobility data, in terms of concrete application
or service running on the mobile phone, and bringing concrete benefits to the end users.
One way of supporting such applied, UX centric angle in the future would be to extend
the challenge more explicitly to design and HCI communities.

9. Conclusions

This paper described a systematic flow of research over four years, targeting to create
and provide unique longitudinal smartphone data for wide use by the research community.
In this paper we motivated our initiative and summarized the key aspects of the Lausanne
Data Collection Campaign (LDCC) in which the rich smartphone data was collected from
around 200 individuals over more than a year. We also described in further details the
Mobile Data Challenge (MDC) by Nokia, which was a data analytics contest making this
data widely available to the research community. The data collection campaign run in
2009-2011 whereas the challenge was organized in 2011-2012.

Collecting such data requires extensive effort and underlying investments, which often
means that data sets are available for researchers only in the limited manner. This has
recently generated discussions about the basic principles of science in connection with
Big Data driven research. Verification of claimed scientific findings can be challenging if
access to data is limited. Protecting privacy of individuals behind the data is obviously
the key reason for access and usage limitations of Big Data.

We demonstrated that data sharing with the research community and open innovation
momentum around common resource are both possible. Achieving that required a holistic
approach on privacy throughout the whole flow of design and execution of the LDCC and
MDC initiatives. Privacy protection requires extremely careful considerations. In this
paper we described the necessary countermeasures both when the smartphone data was
originally collected and when it was later released to the research community. In practice
this required both technical countermeasures and agreement based privacy protection.

Running the LDCC and MDC required significant long-term commitment from the
teams behind these initiatives. This commitment was a key to build extended initiatives
for data sharing by utilizing the knowledge accumulated over several years. Furthermore,
the commitment related to this data and the community established around it remains
strong. In practice, the dataset continues to be accessible both for MDC participants and
new users through a Data Sharing Agreement framework [65] (managed by Idiap since
early 2013). Based on our experience, if something similar is planned by other research
organizations in the future, the overall effort required should not be underestimated in
the planning phase, and the long-term commitment of the organizing teams needs to be
ensured. Otherwise, the quality level of execution might be risked, which might have
undesired impact e.g. on privacy aspects.

If we started organizing the MDC initiative again, based on our experience today, we
would to a large extent repeat the same design choices and other decisions. But if we
started to design a successor initiative for the MDC now, taking into account the existing
community and past history, the expansion of the community towards new disciplines
would be an interesting option. In practice, this would be possible by scoping the new
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challenge increasingly towards the HCI community. An Open Track format together with
the fresh angle of the new community could potentially lead to radically new innovations
around the same data.

Already so far the Mobile Data Challenge has produced interesting findings and multi-
disciplinary scientific advances. The contributions to the MDC addressed many angles in
mobile computing. The materials presented in the MDC workshop are available in [11].
Obviously the established community around this data will continue producing novel
findings. Therefore, we plan to maintain an updated list of the most important LDCC
and MDC research outcomes in the future. The initiatives described in this paper create
a solid basis for future innovation. This is not only because of open data sharing, but
also because the MDC provided a set of benchmarks with accurate documentation.

Finally, the momentum around MDC is expected to continue and expand. The MDC
resources remain valid to analyze various research questions in the future, even though the
data was originally collected in 2009-2011. Many of the underlying behavioral patterns
captured by the data do not change quickly; Only the details related to application usage
might be more device-specific, and therefore outdate in a shorter time. The contest
format of the MDC limited the interactions among the participating teams during the
contest itself. On the other hand, now when the community continues their research
around the same data, a community spirit is highly encouraged. In practice, this can
mean early and open sharing of the research findings and shared tools for data processing
and visualization. We could facilitate that kind of momentum by arranging the needed
channels.

In conclusion, we look forward to seeing further innovations from the community work-
ing together.
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