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Abstract
Amplitude demodulation (AM) is a signal decomposition tech-
nique by which a signal can be decomposed to a product of two
signals, i.e, a quickly varying carrier and a slowly varying mod-
ulator. In this work, the probabilistic amplitude demodulation
(PAD) features are used to improve prosody in speech synthesis.
The PAD is applied iteratively for generating syllable and stress
amplitude modulations in a cascade manner. The PAD features
are used as a secondary input scheme along with the standard
text-based input features in statistical parametric speech syn-
thesis. Specifically, deep neural network (DNN)-based speech
synthesis is used to evaluate the importance of these features.
Objective evaluation has shown that the proposed system using
the PAD features has improved mainly prosody modelling; it
outperforms the baseline system by approximately 5% in terms
of relative reduction in root mean square error (RMSE) of the
fundamental frequency (F0). The significance of this improve-
ment is validated by subjective evaluation of the overall speech
quality, achieving 38.6% over 19.5% preference score in respect
to the baseline system, in an ABX test.
Index Terms: Probabilistic amplitude demodulation, speech
synthesis, deep neural networks, speech prosody

1. Introduction
In human-to-human communication, through speech, the
speaker conveys information on different levels i.e., linguistic
(e.g. phonetic and linguistic information), paralinguistic (e.g.
speaking style or emotions of the speaker) and extralinguis-
tic levels (e.g. socio-geographical background of the speaker).
Prosody is related to all of these levels and varies depending on
the message that is desired to be conveyed to the listener [1]. In
acoustic terms, prosody is mainly composed by three aspects,
i.e., the fundamental frequency, duration of phonetic units and
intensity [2, 3]. Since the properties of prosodic features are
units of speech larger than segments, prosody is related not
only to segmental level information, but also to the supraseg-
mental one. Consequently, the correlation of segmental and
suprasegmental information levels becomes very important in
prosody modelling. Robust modelling of prosody is essential
since very often changing prosody could even change the under-
lying meaning of the message [4]. This makes it very important
not only for text-to-speech (TTS) synthesis systems and related
applications but also for broader applications such as speech-to-
speech translation (S2ST), where prosody becomes one of the
essential information that needs to be analysed (in the source
language), transferred to the target language and synthesized.

A speech signal conveys information on different time-
scales. Traditionally, sequential speech processing suggests the
segmental and suprasegmental time-scales be used for different

models of our interest, such as for the acoustic and prosodic
modelling. Different time-scales have often been treated inde-
pendently in the past. However, we can hypothesise that they
are related, and that this relation is important also for prosody
modelling.

Over the last decades, an increasing interest can be ob-
served in the literature, concerning the spectro-temporal struc-
ture of the speech signal and its correlation to the phonologi-
cal structure of language and speech perception [5, 6, 7]. In
research related to children with impaired phonological de-
velopment, in several languages [8, 9, 10], reduced sensitiv-
ity to the amplitude demodulation structure of acoustic sig-
nals was observed across languages, relating the extraction of
information about phonological structure, to the energy pat-
terns of the amplitude envelope. Nonetheless, it remains un-
clear which modulations (time-scales), are the most important
relating acoustic information with phonological. Investigat-
ing this issue, Leong and Goswami [11], studied how acous-
tic spectro-temporal structure is related to the linguistic phono-
logical structure of speech, using amplitude demodulation in
three time-scales, i.e, prosodic stress, syllable and onset-rime
unit (phonemes) levels.

In this work an attempt is made to provide us an insight
into the prosody hierarchy. For this reason we have selected
the probabilistic amplitude demodulation (PAD) approach [12].
The PAD method is noise robust and allows the algorithm to
be steered using a-priori knowledge of modulation time-scales,
i.e., the user can specify the prosodic tiers — stress, syllables,
and utterance — to be analysed. And as an analytic model, it is
assumed to be language independent. The PAD method can be
used iteratively to get progressively slower prosodic tiers.

A novel speech synthesis with enhanced prosody (SSEP)
system is presented in this paper. An attempt is made to inves-
tigate the importance of PAD features used as additional input
feature scheme in DNN-based speech synthesis. Two level am-
plitude demodulation is performed in this work. A first demod-
ulation is performed with a syllable-based modulation where
an average syllable duration in samples is used as parameter.
The resulting syllable envelope is used as input signal for pro-
gressively slower demodulation at the stress level, to generate a
stress envelope. The motivation behind this attempt is to man-
age to capture the relation between segmental and suprasegmen-
tal levels, using the PAD technique. We hypothesize that the
PAD features are able to capture this correlation and are going
to be beneficial in speech synthesis.

The remainder of the paper is organized as follows. In Sec-
tion 2, the proposed SSEP scheme is presented. The experimen-
tal protocol is described in Section 3. In Section 4, the objective
and subjective evaluation results are presented. Finally the con-
clusions are given in Section 5.



2. Speech synthesis with enhanced prosody
In this section, the probabilistic amplitude demodulation (PAD)
scheme along with the DNN-based speech synthesis framework
are described. The combination of these two schemes lead to
the proposed speech synthesis with enhanced prosody (SSEP)
scheme.

2.1. Probabilistic amplitude demodulation

The probabilistic amplitude demodulation (PAD) models the
speech signal yt as:

yt = ct.mt (1)
where ct and mt are a carrier and modulator components, re-
spectively. The modulator is represented as a non-linear func-
tion

mt = m(xt) = σm log(1 + exp(xt)) (2)
of the transformed-modulator signal xt, with the amplitude σm,
drawn from a stationary Gaussian process. The covariance
function of xt represents the typical time-scale of variations
of mt, and importantly, it can be controlled manually using a-
priori user knowledge. The carrier is modelled as a Gaussian
process which is uncorrelated in time.

There are many solutions for solving Eq. (1). The PAD
method describes a Bayesian inference given the data for ex-
tracting the amplitude modulation structure. More specifically,
posterior probability of all the possible modulators and carriers
given the data is:

p(cT1 ,m
T
1 |yT1 , θ) =

p(yT1 , c
T
1 ,m

T
1 |θ)

p(yT1 |θ)
, (3)

where p(yT1 , cT1 ,mT
1 |θ) is the joint probability of the signal,

carrier and modulator, T is the number of frames of the pro-
cessed speech signal, and θ corresponds to the model parame-
ters. The most probable modulator and carrier are obtained by
the maximum a posteriory (MAP) inference as:

ĉT1 , m̂
T
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cT1 ,m
T
1

p(cT1 ,m
T
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using a gradient-based method that is used to search for the op-
timal solution. To allow the demodulation to be user steerable,
i.e., perform the demodulation using a specific time-scale, the
parameters of the model θ can be obtained by the MAP infer-
ence as:

θ̂ = argmax
θ

p(θ|yT1 ) = argmax
θ

p(yT1 |θ)p(θ), (5)

where the prior over parameters p(θ) is set by the user. The
maximum-likelihood estimate is recovered when the prior is
uniform, i.e., p(θ) ∝ c.

To reveal different time-scale information present in the
speech signal, we used the PAD process to decompose the signal
into a cascade of modulators and a carrier [13]. The time-scales
of the modulators are considered as the prior constants p(θ),
creating a concept of steered demodulation. A first demodu-
lation is performed with a syllable-based modulation where an
average syllable duration in samples is used as the parameter
prior psyll(θ). The obtained syllable envelope σsyll is used as
input signal for progressively slower demodulation at the stress
level, using a different prior pstress(θ), to generate a stress en-
velope σstress (see Figure 1). The general purpose values for
the speech signal demodulation could be 5Hz for the first de-
composition with the syllable frequency, and an average be-
tween the half and one third of the syllable frequency for the

Figure 1: Two-level Probabilistic amplitude demodulation
scheme; syllable-level and stress-level demodulations.

stress modulation frequency. For example, considering 16kHz
sampled data, the values could be psyll(θ) = 3200 samples and
pstress(θ) = 8000 samples. The better prior estimate of the
syllabic rate, the more accurate the obtained cascaded demodu-
lation.

In addition, the PAD method is able to deal with noisy
data, as it explicitly incorporates additive uncorrelated Gaussian
noise around the product of ct.mt.

In Figure 2 the PAD syllable- and stress-level modulations
are shown for the utterance it’s generally a frog or a worm.

Figure 2: The PAD syllable- and stress-level modulations of the
utterance “it’s generally a frog or a worm”.

2.2. Speech synthesis with enhanced prosody scheme

In this subsection, initially, the DNN-based speech synthesis
framework, following the framework of [14, 15], and consti-
tutes the baseline system in our experiments, see Section 3, is
described and consequently the proposed SSEP scheme is pre-
sented.

A DNN is a feed-forward artificial neural network with
multiple hidden layers between the input and output layer, cre-
ating a mapping function between the input (i.e. linguistic fea-
tures) vector and the output (i.e. acoustic features) vector. In the
training phase, the input text is processed and transformed into
labels, which contain linguistic features in an appropriate for-
mat for training the DNNs, i.e., containing binary and numer-
ical features. Back-propagation is used for training the DNN
using the input and output data.

The text corresponding to each audio file has to be con-
verted into a sequence of labels suitable for DNN training. A
conventional and freely available TTS front-end was used for
this [16]. The text is turned into a sequence of labels (text-
based labels), which contain segmental information and rich
contextual parameters such as lexical stress and relative posi-
tion within syllables, phrases or sentences. The standard “full”
labels generated by the scripts, i.e. quinphone segmental infor-
mation, and a large number of categorical, numeric, or binary



linguistic and prosodic information, was used [17]. These la-
bels were aligned with the speech signal through a phone-based
forced alignment procedure, using the Kaldi toolkit [18]. The
models for the alignment were trained on the training plus de-
velopment sets, and state-level labels force-aligned to acoustic
frame boundaries were generated for the training, development
and evaluation sets.

Concerning the output features, the STRAIGHT [17]
vocoder was used for the acoustic analysis and feature extrac-
tion, essentially using the default settings from the EMIME [19]
scripts: 25ms frame window, 5ms frame shift, STRAIGHT
Mel-cepstral analysis with 40 coefficients, single F0 value,
and 21 coefficients for band aperiodic energy, extracted by the
STRAIGHT vocoder. For each acoustic feature, derivatives of
first and second order are added. The overall acoustic vector
dimension is 186.

A slightly modified version of the Kaldi toolkit for the DNN
training was used. An automatic procedure was used to con-
vert the labels into numeric values: the categorical data (such as
segmental information) was turned into arrays of binary values,
while the numerical and binary data was preserved.

Since training requires a frame-level mapping between in-
put labels and acoustic features, the segment-based labels have
to be sampled so that we have an input label per acoustic frame.
The DNN system was trained using the state position within the
phone as categorical data, plus using two position features, i.e.
numeric values corresponding to the frame position within the
current state, and to the frame position within the current seg-
ment, plus the standard “full” labels (i.e. a total of 403 input
features). Furthermore it should be noted that the input (label)
data was normalized globally so that each component had val-
ues between 0.01 and 0.99. The output (acoustic) data was fur-
ther normalized for each component to be of zero mean and unit
variance; the output activation function was a sigmoid.

Unlike other approaches (such as Zen [14] or Qian [20]),
we did not remove silent frames from the training. The training
procedure was standard: we used a stochastic gradient descent
based on back propagation. The minimisation criterion was the
Mean Square Error (MSE). The training was run on the training
set, and we used the development set for cross-validation.

In the synthesis phase, the input text is processed by the
same front-end as in the training phase, creating the input vec-
tors and the trained DNN is used in a forward-propagation man-
ner for mapping them to output vectors. The aligned label
files from the evaluation set were used for synthesis. Synthesis
was performed doing a forward pass through the network, fol-
lowed by acoustic trajectory smoothing [21], through applying
the “mlpg” tool from SPTK [22] and global variance computed
on each acoustic component. This was followed by resynthesis
using the STRAIGHT vocoder.

In Figure 3, the proposed SSEP scheme is shown. As can
be seen, the DNN-based speech synthesis (baseline) system is
combined with the PAD scheme.

During the training phase, in parallel with the baseline
scheme, the PAD scheme is used to extract the PAD features.
These features are combined, on frame-level, with the text-
based features and used as the input features for the DNN. The
output features remain the same as in the baseline system de-
scribed above. During the synthesis phase, both the text-based
and the PAD features are extracted in the same way as in the
training phase.

Since in a real scenario, during the synthesis phase, the
speech signal is not available, in order to extract the PAD fea-
tures, these features need to be predicted from text. Alterna-

Figure 3: Speech synthesis with enhanced prosody scheme.

tively, this scheme could be used in a S2ST scenario. In this case
the PAD features would be extracted from the source speaker
in the source language, be transformed/adapted to the target
speaker and language and consequently be used in the proposed
speech synthesis scheme.

3. Experiments
3.1. Database

For the experiments the blizzard-challenge-2008 [23, 24]
database was used. The speaker is known as “Roger” and is
a native Uk English male speaker. The database consists of
15 hours of data, comprising around 9.6k utterances. For our
experiments a subset of the database was used, composed by
the “carroll”, “arctic” and the three news sets (i.e., “theherald
1,2,3”). The total number of utterances of this subset was ap-
proximately 4.8k corresponding to 7.5 hours of speech. This
subset was split in a training set of 4273 utterances, a develop-
ment set of 335 utterances and an evaluation set of 158 utter-
ances. The sampling frequency of the audio is 16kHz.

3.2. DNN-based speech synthesis setup

The DNNs were built implementing various combinations of
the number of hidden layers (i.e. from 4 to 6 hidden layers),
and nodes (i.e. 1000 and 2000 nodes) in each layer. Each layer
comprised an affine component followed by a sigmoid activa-
tion function. Based on the development set, the best perfor-
mance in respect to mel-cepstral distortion (MCD) [25] and root
mean square error (RMSE) of the F0 was achieved by the DNN
system composed of 4 hidden layers and 2000 units per layer.



3.3. PAD features setup

For the extraction of the PAD features, a frame window of 25ms
and a frame shift of 5ms were used. The default (not calculated
based on the specific speaker) syllable frequencies of 5Hz was
selected. The two PAD features were combined with the frame-
level text-based input features as described in Section 2.2.

4. Results
To validate our hypothesis, that these features will be beneficial,
especially in prosody modelling, both objective and subjective
evaluation was performed.

4.1. Objective evaluation

The MCD between original and synthesized samples is used as
an objective metric to compare the two systems. Higher MCD
values indicate lower speech quality of the synthesized speech
samples. Additionally for evaluating the two systems in respect
to prosody modelling, the RMSE of F0 was calculated for each
system. These results can be seen in Table 1.

Table 1: MCD in dB and RMSE of F0 in Hz for the baseline and
proposed systems on the evaluation set.

System MCD (dB) F0 (Hz)
Baseline 3.938 19.096
Proposed 3.912 18.208

As can be seen from the results, the reduction in MCD of
the proposed SSEP system over the baseline one is very small,
i.e, approximately 0.7% relative improvement. Nonetheless, the
reduction of RMSE of F0 of the SSEP system over the baseline
one is approximately 4.7%, showing a small but clear relative
improvement in respect to prosody modelling. The results are
statistically significant (p < 0.05).

It should be pointed out that the PAD features were ex-
tracted using the “default” syllable frequency of 5Hz and not
a specific one based on the speaker. This means that there is
potential for improve the PAD features extraction procedure,
by using a syllable rate estimation before the PAD extraction.
This is expected to give more accurate PAD features and conse-
quently better performance of the SSEP system. Furthermore,
since the database used in these experiments consists of read
speech, where prosody variations are constraint due to the strict
speaking style, it is expected that the importance of the PAD
features, when more expressive or emotional speech (e.g. au-
diobooks) is used, will be substantially bigger.

4.2. Subjective evaluation

In order to identify whether the improvement in the reduction of
the RMSE of F0 would be perceivable by listeners, a subjective
evaluation ABX test was performed.

We employed a 3-point scale ABX subjective evaluation lis-
tening test [26], suitable for comparing two different systems.
In this test, listeners were presented with pairs of samples pro-
duced by two systems (A and B) and for each pair they were
indicating their preference for A, B, or both samples sound the
same (X). The material for the test consisted of 15 pairs of sen-
tences such that one member of the pair was generated using
the baseline DNN speech synthesis (system A) and the other

member was generated using the proposed SSEP system (sys-
tem B). Random utterances from the evaluation set were used.
27 listeners (native and non-native English) participated in the
ABX test. The subjects were presented with pairs of sentences
in a random order with no indication of which system they were
represented with. They were asked to listen to these pairs of
sentences (as many times as they wanted), and choose between
them in terms of their overall quality. Additionally, the option
X, i.e. both samples sound the same, was available if they had
no preference for either of them.

As can be seen in Figure 4, the SSEP system clearly outper-
forms the baseline one, achieving double preference score, i.e.,
38.6% over 19.5% respectively. In addition the both samples
sound the same (“Equal”) choice achieved a 41.9%.

19.5% 41.9% 38.6%

Baseline Equal Proposed

Figure 4: Subjective evaluation ABX test results (in %) of the
baseline and proposed systems.

Furthermore, it should be pointed out that, according to
the feedback from many of the listeners, bigger differences in
prosody between the audio pairs was perceived, when the varia-
tions in prosody were bigger. This confirms our hypothesis, that
the contribution of PAD features, when using more expressive
and emotional speech, will be bigger.

5. Conclusions
A novel speech synthesis with enhanced prosody scheme was
proposed. The probabilistic amplitude demodulation technique
was used as additional, to the standard text-based input fea-
tures, scheme in deep neural network speech synthesis. Both
the objective and subjective evaluation showed improvement in
F0 modelling of the speech synthesis with enhanced prosody
system compared to the baseline one. The proposed system
using PAD features achieved approximately 5% relative reduc-
tion in the root mean square error of F0 in respect to the base-
line system without using the PAD features. The improvement
in F0 modelling was validated by subjective ABX listening
test, where the proposed system achieved a preference score of
38.6% over 19.5% of the baseline.

As future work, lower time-scales (i.e. higher frequency)
demodulations will be investigated, e.g. phoneme-level. Fur-
thermore, the authors are interested in investigating ways to
predict these features from text for evaluating whether these
features could be beneficial also in text-to-speech synthesis.
Finally, using this technique in speech-to-speech translation,
transferring these features from the source speaker (in the
source language), to the target speaker (in another language),
is another very interesting path which will be investigated.
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