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Abstract

Automatic speech recognition (ASR) systems, throusg of the phoneme as an
intermediary unit representation, split the problemmodeling the relationship
between the written form, i.e., the text and theustic speech signal into two disjoint
processes. The first process deals with modelinthefrelationship between the
written form and phonemes through developmentmbaunciation dictionary using
prior knowledge about grapheme-to-phoneme relatipss Given the pronunciation
lexicon and the transcribed speech data, the squoeéss then deals with modeling
of the relationship between the phonemes and tlestic speech signal using
statistical sequence processing techniques, sudiidden Markov models. As a
conseqguence of the two disjoint processes, devalnpof an ASR system heavily
relies on the availability of well-developed acausind lexical resources in the target
language. This paper presents an approach wherelétienship between graphemes
and phonemes is learned through acoustic data, preaisely, through phoneme
posterior probabilities estimated from the spedghas. In doing so, the approach
tightly couples the above mentioned two proceseddeads to a framework where,
existing acoustic and lexical resources frofffiedent domains and languages can be
effectively exploited to build ASR systems without d®pment of a pronunciation
lexicon and to develop lexical resources for resewcarce domains and languages.
We demonstrate these capabilities of the propopedoach through cross domain
studies in English, where the grapheme-to-phonetagionship is deep.

Keywords: Automatic speech recognition, hidden Markov modelsonemes,
graphemes, grapheme-to-phoneme conversion

1 Introduction

Speech technologies, such as automatic speechnigong ASR) systems (Gold
and Morgan, 1999), text-to-speech synthesis (TVSems (Taylor, 2009) interface
or connect two dferent modes of human communication, namely, th&esporm
(the acoustic speech signal) and the written fothe (extual message). As a
conseqguence, these systems need to model theomskipy between the acoustic
speech signal and units of written form, such aplgemes. However, modeling the
relationship between the acoustic speech signageagghemes directly is not trivial.
The primary reason is that the realized acousgedp signal is more related to the
units of spoken form, i.e. phonemes, and the gmaph®-phoneme relationships,
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which depends upon whether the phoneme-graphenagioredhips within the
language are shallow or deep. For instance, largiagich as Spanish and Finnish,
have shallow grapheme-to-phoneme relationship,eMaihguages such as English
and German have deep grapheme-to-phoneme relaponshaddition, languages
tend to evolve over time, as a result the graphenphoneme relationship could
undergo changes.

During the development of an ASR system, the problef modeling the
relationship between graphemes and acoustic sign&pically broken down into
two parts through use of phonemes as the intermedipresentation. In the first part,
the relationship between the words (in written fpamnd the phonemes or phones in
the language is modeled through a pronunciatioitdex(Gold and Morgan, 1999;
Schultz and Kirchhof, 2006). In the second pas, rédationship between phonemes
and acoustic speech signals is usually modeledinwttie framework of hidden
Markov models (HMM) using either Gaussian mixturedals (GMM) (Rabiner,
1989) or artificial neural networks (ANN) (Morgan darBourlard, 1995). A
conseqguence of splitting the problem in two digjguarts is that development of an
ASR system heavily depends on prior acoustic amgiilstic resources from the target
language. For instance, development of a pronuani#étxicon requires knowledge
of the grapheme-to-phoneme rules in a languageshndnie primarily derived from
linguistic studies. Similarly, in the second partarge amount of transcribed speech
in the target language is needed, in addition & é&wailability of a pronunciation
lexicon, in order to train better models.

This paper presents an approach that was origidaNgloped at Idiap Research
Institute to automatically learn grapheme-to-phoaeeiationships through acoustic
speech signals given prior resources such asctiptisn of the speech signal and a
seed lexicon. In this approach, the relationshipvben acoustic speech signal and
phonemes is first modeled by an ANN. And, then admndMarkov model (HMM)
whose states represent graphemes and the stategparscharacterize a probabilistic
grapheme-to-phoneme relationship is trained. Thampeaters of the HMM are learned
by using posterior probabilities of phonemes edihaby the ANN as feature
observations (Magimai.-Doss et al., 2011; Rasipueard Magimai.-Doss, 2015;
Rasipuram, 2014). In this paper, we present a gfadur research on English to
demonstrate the viability of the approach and liifitg to address lexical resource
scarcity issues.

The remainder of the paper is organized as folldextion 2 provides a brief
background on the development of the pronuncidégiton and HMM-based ASR
systems. Section 3 presents the proposed appré&ttions 4-7 present the
experimental studies. Finally, Section 8 summaraespresents directions for future
work.

2 Background

In this section, we provide a brief overview of tipeonunciation lexicon
development and the standard HMM-based ASR system.
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2.1 Development of Pronunciation Lexicon

Pronunciation lexicon development can be seen gsoeess of converting a
grapheme sequen€e={g1, - - - @} obtained from the orthography of the word into
a phoneme sequené€e= {f1, - - - fi}. Usually, the starting point for pronunciation
lexicon development is grapheme-to-phoneme cormerriles derived from the
linguistic studies of the language. Given thesegutwo approaches can be adopted:

1. Human experts can be employed to predict the phersgguence. In this
case, a human expert enters the sequence of phemnethe orthography of
the target word.

2. Employ computational phonological methods. Foransg, formulation of
the rules in terms of finite state automata and iptied of a phoneme
sequence (Kaplan and Kay, 1994). This would stkadh supervision by
humans, i.e., hand-correction.

These approaches can be employed if the vocalsilsys small. However, in the
case of a large vocabulary, these approaches caimbeconsuming and tedious.
Therefore in practice, a seed pronunciation lexiconsisting of a few words is
developed first using human expertise. Automatapgeme-to-phoneme conversion
(G2P) techniques are then employed to learn thehgrae-to-phoneme relationships
from the seed lexicon and to populate the prontiocidexicon with new words. The
challenge of how well the grapheme-to-phoneme icglahip can be modeled
automatically depends upon the language. As wesedlshortly, the G2P techniques
typically rely on modeling the contextual inforrmatiin the grapheme sequence and,
in some cases, the contextual information in thenpme sequence as well. The
underlying assumption here being that the relakipnbetween context-dependent
graphemes and phonemes is shallow. A number ofimatdarning techniques have
been proposed for automatic G2P. These approaehdsecbroadly classified as,

1. Local classification-based approaches: In theseoappes, the grapheme
sequences (the orthography of a word) and thegmoreling sequences in the
seed pronunciation lexicon are first aligned. Ahdnta decision tree (Pagel et
al., 1998) or an ANN (Sejnowski and Rosenberg, 1B87ained to predict the
corresponding phoneme for each grapheme in thegmphy of the word
given the context information (preceding and foilogvgraphemes). The
pronunciations for new words are obtained by lggaiédicting the phonemes
using the trained decision trees or ANN, and careing them.

2. Sequence classification-based approaches: The probleG2P can be
formulated as a sequence classification problem,

F* = argmax P(F|G)
F

(1)

= argmax P(F,G)
F
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where, P (F |G) denotes the probability of the gmoa sequence F given the
grapheme sequence G, P (F, G) denotes the joibapildy of the phoneme
sequence F and the grapheme sequence G, andHetiisférred phoneme
sequence.

The conditional random fields (CRF) based G2P teglen(Wang and King, 2011)
is based on Eqgn. (1), while approaches such a,jailtigram or joint n-gram based
technique (Bisani and Ney, 2008) and HMM-based riegte (Taylor, 2005), are
based on Eqgn. (2). In addition to these approactmese are other data-driven
approaches, such as inductive learning of grapherp&oneme rules (van Coile,
1990), Pronunciation by Analogy (Dedina and Nusbat@91), Default&Refine
(Davel and Barnard, 2008).

Currently, the joint n-gram approach is the stdttie-art G2P technique. In this
approach, the grapheme sequence and the phoneoensednformation are jointly
modeled by units referred to as "graphones”, whiehcreated by pairing graphemes
and phonemes after alignment and training of aramgnodel of the graphones using
the seed lexicon (Bisani and Ney, 2008). Given Gafo unseen word, F* is then
inferred by Viterbi decoding (Forney, 1973).

2.2 HMM-based ASR

In HMM-based ASR system (Rabiner, 1989; MorganBadrlard, 1995; Gold and
Morgan, 1999; Schultz and Kirchhof, 2006), the ge&b find the best matching word
hypothesidV* given the acoustic feature observation sequErec, - - - ¥ - - - X},
wherex; is the acoustic feature observation, typicallyasametric representation of
short-term spectrum, at time frarhandT is the number of frames. Formally, it can
be expressed as,

wW* = argmax P(W|X),

wew
3
= argmax p(X|W) - POW)
Wew p(X)
4
= argmaxp(X|W) - P(W)
Wew
®)

whereWdenotes a word sequence hypothegi&lenotes the set of hypothede@\V|X)
denotes the probability of the word sequewbgiven the acoustic feature sequeKce
p(X|W)denotes the likelihood of the acoustic feature plag®n sequenck given the
word sequenc®/, P(W)denotes the prior probability of the word sequan@ndp(X)
denotes the likelihood of the acoustic feature nlzgmn sequenck. Eqn. (5) results
from the assumption thp{X)is independent of the word hypothéais

Typically, HMM-based ASR systems use phonemes asvad units. During
training, the relatiop(X|W)is modeled using the transcribed speech data aredl-a
developed pronunciation lexicon, whiPW)is modeled using the textual resources.



During recognition, given the pronunciation lexiard the parameters pfX|W)and
P(W)estimators\W* for a test utterance is obtained using a Viteguadler.

3 Learning Grapheme-to-Phoneme Relationship througl\coustics

In this section, we present a novel approach tlaat developed at Idiap under the
FlexASR project for learning grapheme-to-phoneme relationshipoutin the
acoustic speech signal and its subsequent us@timmatic speech recognition. This
is achieved through the recently proposed Kullbagibler divergence based HMM
(KL-HMM) approach (Aradilla, 2008).

3.1 Kullback-Leibler divergence based HMM

Kullback-Leibler divergence based HMM is a new Agproach where the posterior
probability estimates of phonengs [P (Cix), - - - P (@), - - - P (6|x)] " are used as
feature observations (Aradillaetal., 2008; Arad2008). Herdc,, - - -, 6} denotes the
set ofD phoneme classes andlenotes the acoustic feature vector at time fiaifige
phoneme posterior probabilities can be estimatettdoging an ANN (Morgan and
Bourlard, 1995; Aradilla et al., 2008) or Gaussiaimture models (GMM) (Rabiner,
1989; Rasipuram and Magimai.-Doss, 2013). Forake sf clarity, we hereafter refer
tozasthe posterior feature. Inthe KL-HMM approsatieHMM stateis parametrized
by a categorical distributiop=[y1, - - -y, - - -, ¥]", which is trained by minimizing a
cost function based on Kullback-Leibler divergerte#ween the state categorical
distributiony; and posterior feature observations (see Figutddie precisely, unlike
the HMM/GMM system (Rabiner, 1989) where the logedre is likelihood or the
HMM/ANN system (Morgan and Bourlard, 1995) where thcal score is scaled-
likelihood, the local scor&(y, z) at each HMM statein the case of the KL-HMM
system s the Kullback-Leibler divergence betwysamda ie.,

KL = S(y;,z) ZJ log

(6)
The above equation represents the case wherehe reference distribution and the
local score is denoted &4.. However, given that KL-divergence is an asymroetri
measure, there are two other possible ways to a&iilL-divergence, namely, the
reverse KL-divergence (RKL, where the posterioniesz: is the reference distribution)
or the symmetric KL-divergence(SKL), as fO||0WS'

RKL = S(yi,z) Zz, log( —tl
d=1

()

1 https://www.idiap.ch/scientific-research/projects/flexible-grapheme-based-automatic-
speech-recognition
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SKL = S(yi,z) :%[KLHML].

(8).
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Figure 1:lllustration of KL-HMM approach with ANN as poster feature estimator.

3.1.1 Training
The KL-HMM system is fully parameterized By{{y i}'i-1, {ai}'ij=1}, wherd is the
total number of states, each stagrepresented by a categorical distribugianda; is
the transition probability from staiteo statg. Given a training set &f utterances, where
each training utterance n is a sequence of phopesterior featureg(n) ={z(n), - - -,
zrn(n)}, andT (n)is the length of the training utterance n, thepeaeter® are estimated
by the embedded Viterbi expectation maximizatigoathm which minimizes the cost
function,
N T(n)
nnn Z Z (Yqe,2e(n)) —log ag, g,
n 1t=1
©)
over all parameter®, where Q(n) denotes the set of possible state sequences dllowe
by utterancaandqt €{1, - - - I} For more details about the training and updategons
for each of the local scores, the reader is redgo@radilla (2008).
3.1.2 Decoding
The decoding is performed using the standard Mittgboder. Given a sequence of
phoneme posterior featurgs= {zi, - - - , z} and the trained paramet&sdecoding
involves recognition of the underlying hypothesis
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Qm) =1
(10)
where Q(m) denotes the set of possible state segseailowed by the hypothesis m
and g€ {1, - - - I}. For further understanding about siailarities and dissimilarities

between the KL-HMM approach and the standard HMMellbASR approach, and
the dfect of dfferent local scores on parameter estimation andddeg,ahe reader is
referred to (Rasipuram, 2014; Rasipuram and Magibass, 2015).

3.2 Proposed Approach

More recently, a grapheme-based ASR approach vegmged in the framework
of KL-HMM (Magimai.-Doss et al., 2011; Rasipuram@12; Rasipuram and
Magimai.-Doss, 2015) where,

* the relationship between acoustic features arwhgies is first modeled
through a posterior feature estimator, e.g., ANNXGBM,

* then, a KL-HMM whose states represent graphemsésined by using the
phoneme posterior probabilities as feature obsienstIn doing so, the
parameters of the KL-HMM tend to capture a probsiiil grapheme-to-
phoneme relationship (see Section 5).

This approach has been found to yield significab#iter performance than the
standard HMM-based ASR approach, where the rekttipnbetween the acoustic
feature and the graphemes is modeled directly (kdnand Ney, 2002; Killer et al.,
2013). The remainder of the paper presents a patraesearch that shows how the
proposed approach can address lexical resouragtgeasues by using the KL-HMM
as a recognition model and as a generative model.

4 Experimental Setup

This section presents the experimental setup faase study on English to
demonstrate the potential of the proposed apprdaah.main reason for choosing
English is that it has deep grapheme-to-phonenaioakhips. Thus, modeling the
grapheme-to-phoneme relationship effectively istnoial.

4.1 Databases

In-domain corpus: We used the DARPA Resource Manage (RM) corpus
(Price et al., 1988) as the in-domain or target-@iomorpus. The DARPA RM corpus
consists of read queries on the status of Navalress (Price et al., 1988). The task
is artificial in many respects, including speechetypange of vocabulary and
grammatical constraints. The speaker-independei #aSk training set consists of
3,990 utterances spoken by 109 speakers corresgptalepproximately 3.8 hours
of speech. The test set is a combination of fobssts provided by DARPA, namely,
feb89, oct89, feb91, and sep92. Each of the subseatain 300 utterances spoken by
10 speakers. Thus, the test set in total has Li@efances, amounting to 1.1 hours of
speech. The lexicon consists of 991 words. The @menbased lexicon was obtained
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from UNISYN? lexicon. There are 42 context-independent phpiesuding silence.
The test set is completely covered by a word peamgnar included in the task
specification.

Out-of-domain corpus: We used the Wall Street JaldrVSJ1 — Paul and Baker,
1995), a read speech corpus, as the out-of-dorogius. It consists of approximately
66 hours of speech recorded from 200 speakerse®rer10,000 unique words. The
lexicon was obtained from UNISYN lexicon. There a® context-independent
phones, including silence.

4.2 Modeling of the relationship between the acoustsignal and phonemes

Acoustic featuresThe acoustic feature vector is comprised of 13disional PLP
cepstral cofficients, their first order temporal derivatives aadosd order temporal
derivatives estimated using a window of 30 ms wittD ms frame shift. The features
were estimated using the HTK toolkit (Young et 2006). We used ANNSs to model
the relationship between the acoustic featurestaghonemes to estimate phoneme
posterior probabilitieg. More precisely, we used two different ANNs, namely

1. In-domain ANNWe used a three layer ANN (i.e., ANN with singieden
layer) that was trained on the DARPA RM corpus lassify 45 context-
independent phones. This ANN was originally usethenstudy reported in
(Dines and Magimai.-Doss, 2008).

2. Out-of-domain ANNWe used a three layer ANN that was trained on the
WSJ1 corpus to classify 45 context-independent siohhis ANN was first
used in the study reported in (Aradilla et al. 2008

The input to the ANNs were 39 dimensional cepdeatures with four frames
preceding context and four frames following contegt, (4 + 1 + 4) x 39 dimensional
input. The ANNSs were trained by minimizing a castdtion based on cross entropy
using the Quicknet softwdre

4.3 Studies

We present three different studies to demonstiaepotential of the proposed
approach:

1. The first study presented in Section 5 demonstidtescapability of the
proposed approach to learn a probabilistic grapherphoneme
relationship. More specifically, in this study bttle ANN and the KL-HMM
are trained on the in-domain data and, the parametdahe KL-HMM are
analyzed to show how the probabilistic graphempkoneme relationships
are captured.

2. The second study presented in Section 6 focusdéleorecognition model
aspect of the KL-HMM. More precisely, we show ttia# ASR systems for

2 http://www.cstr.ed.ac.uk/projects/unisyn/
3 Phonemesel/, /em/ and/en/ were merged withl/, /m/ and/n/, respectively
4http://wwwl.icsi.berkeley.edu/Speech/gn.html
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a domain that lacks well-developed phonetic lexicedources can be
effectively developed by
(a) training the ANN that models the relationshgivieen the acoustic
signal and phonemes on the out-of-domain data and,
(b) capturing the grapheme-to-phoneme relationsbhipghe in-domain
data.

3. The third study presented in Section 7 focusebegenerative model aspect
of the KL-HMM. More specifically, we show that theained grapheme-to-
phoneme relationships can be exploited to perforaplgeme-to-phoneme
conversion by using the KL-HMM as a generative nhotfethat respect,
building upon the second study, in this study wesshow the out-of-domain
acoustic resources and lexical resources can bleiexpto build lexical
resources for new domains.

All the KL-HMM systems reported in this paper assbd on the local score SKL,

Eqn. (8).

5 Analysis

This section presents an analysis of the KL-HMMapagters to show that indeed
grapheme-to-phoneme relationships can be captyrételproposed approach.

5.1 Context-independent grapheme modeling

We trained a KL-HMM, where the feature observatias 45-dimensional phone
posterior probabilities estimated by the in-domahN described earlier in Section
4.2 and the states represented 29 context-indepegdgphemes, including silence,
hyphen, and apostrophe. Each grapheme was modgleal &ingle state. The
parameters 29 x 45 were trained using the costtibmbased on SKL. The 45-
dimensional parameter for each of the graphemessteds sorted in descending order
and and the dimensions with probability value gredbhan or equal to 0.1 were
selected. Table 1 shows the captured graphemeetogpine relationships. It can be
seen that the proposed approach is able to capeidmminant grapheme-to-phoneme
relationships. In English, it is well known thaetbontext-independent grapheme-to-
phoneme relationship is variable, especially fowels. This aspect was frequently
observed. The context-independent grapheme H sdiataspirant sound /hh/. It can
be seen that in addition to /hh/, the model capttlre relation to stop consonants /dh/,
ith/, /d/ and /t/, and silence. This indicates tiet approach was able to implicitly
capture the context in which grapheme H can oaxgr,/dh/ reflects D followed by
H. It can be observed that the parameters alsoum@coustically confusable
relationships that are potentially resulting frdma aissimilation process. For instance,
see the relationships captured for graphemes M, &, to name a few.
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Table 1: Dominant grapheme-to-phoneme relationships (soa@zbrding to the
maximum probability value and with a probabilitywe greater than or equal to 0.1)
learned by KL-HMM states. For the sake of displag probability values were
rounded €.

Grapheme Captured phoneme relationship

/ael (0.5), /eh/ (0.2), /eyl (0.1), /ax/ (0.1)

/bl (0.9)

/k/ (0.6), /t/ (0.2), Ich/ (0.1), /s/ (0.1)

/d/ (0.7), It/ (0.1)

liyl (0.3), /ax/ (0.2), /ih/ (0.2), /eh/ (0.1), lefD.1)
/1 (0.9)

/g/ (0.7), /d/ (0.1), /k/ (0.1)

/dh/ (0.2) sil(0.2), /t/ (0.2), /th/ (0.1), /d/ @, /hh/ (0.1)
fin/ (0.5), /ax/ (0.2), /eh/ (0.1), /ay/ (0.1)

/jh/ (0.9)

/k/ (0.9)

/11 (0.8)

/m/ (0.9), /n/ (0.1)

In/ (0.8), /en/ (0.1)

/aol (0.2), /aal (0.2), /ow/ (0.2), /ah/ (0.1),/88.1)
/p/ (0.9)

/k/ (0.9)

/r] (0.6), /axr/ (0.3), /er/ (0.1)

/sl (0.8), /z/ (0.2)

It/ (0.8)

/uw/ (0.3), /ax/ (0.3), /ih/ (0.1), /ah/ (0.1)

/vl (0.9)

/w/ (0.9)

/k/ (0.5), /s/ (0.3), /t/ (0.1)

liyl (0.5), /eyl (0.3), /ih/ (0.1)

/z/ (0.8), /s/ (0.1)

sil (1.0

NAXS<CHOWITOTVOZZIFrAC"IOTMOUO®>

4]

5.2 Effect of context-dependent grapheme modeling
The underlying idea of grapheme-to-phoneme conmemrgpproaches, discussed in
Section 2.1, is that the relationship between geaps and phonemes can become
shallow when contextual information is modeled. Pineposed approach provides
similar capabilities. To illustrate it, we presanmtinvestigation, where
1. Single state grapheme models with threffedent types of contextual
information: mono (context-independent), tri (wamternal single preceding
and single following graphemes), and quint (wotdrnal two preceding and
two following graphemes) were trained. Table 2siliates the different
context models for word AREA as an example.
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2. Entropy of the categorical distribution estimated éach of the grapheme
models is computed.
In the case of tri and quint, it is an averagehefentropies of the grapheme
models that share central graphemes. For exampigdle 2, modelb-A+R
and E-A+e share the central grapheme A. Entropy of the caiea)
distribution is a good indicator of the one-to-ameshallow relationship and
the one-to-many or deep relationship. More pregjsilr the one-to-one
relationship, the entropy is low while the entropyr one-to-many
relationship is high.

Figure 2 plots the entropy for thefférent graphemes. It can be observed that

» vowel graphemes (A, E, I, O, U) and a few consbigmaphemes (C, H, R,

X) have high entropy for context mono which indesathat the parameters
capture one-to-many G2P relationships. As the abrgeincreased to tri
and quint, the entropy decreases, which indicaegshe context-dependent

grapheme models are capturing a shallower graphespbeneme
relationship, as compared to mono.

+ a few consonant graphemes like B, K, P, and \éhaw entropy for context
mono, which indicates that the context-independesgpheme itself models
a one-to-one grapheme-to-phoneme relationship. Mewvahe entropy
slightly increases as the context is increaseditand quint. A closer
inspection of the parameters revealed that this duesto the phoneme
context information captured by the grapheme KL-Hiiddels.

Table 2:Context expansion for the word AREA, where b deadteginning of word
ande denotes end of the word. The symbols ‘+’ and &far to the first and second
following contexts, and ‘- and ™’ refer to the dirand second preceding contexts,
respectively.

Model Context expansion for word AREA

mono A R E A

tri b-A+R A-R+E R-E+A E-A+e
quint b-A+R*E  b~A-R+E*A A~R-E+A*e R~E-A+e

6 Grapheme-based Automatic Speech Recognition

The development of a phoneme-based ASR systemresquiiior resources, such
as acoustic resources (i.e., speech data with igged transcription) and a phonetic
lexicon. Not all domains or languages may have delleloped lexical resources. In
the previous section, we presented analyses tbateshhow the proposed approach
was able to capture grapheme-to-phoneme relatipsisfiihis suggests that the
proposed approach has the capability to integeadiedn learning as a phase in ASR
system training.

Towards that end, in this section we present an &t8&y to show that the proposed
approach canftectively address the lack of lexical resource mobby exploiting
out-of-domain acoustic and lexical resources. migalar, we present an ASR system
where,
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1. the relationship between the acoustic speech saqmthphonemes is learned
with out-of-domain acoustic and lexical resourced, a

2. the grapheme-to-phoneme relationship is learnetyusidomain acoustic
resources. In doing so, the ASR system uses aolexiased on graphemes,
which is easy to obtain given the orthographicgcaiption of words.
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Figure 2: Entropy of grapheme models with increasing contéat.contexts tri and
quint, average entropy of all the grapheme modéis same center grapheme is
displayed.
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Graphemes

In this study, the DARPA RM task serves as theamdin task for which we treat
as having no phoneme lexicon. The acoustic anddéxesources of WSJ1 corpus
serve as the out-of-domain data. We used the edtwfain ANN described earlier
in Section 4.2 to estimate phoneme class conditfmoedabilities, i.ez, and built two
KL-HMM ASR systems using RM data:

1. A grapheme-based ASR system: the states of KL-HMprasent cross-
word context-dependent graphemes. In this cas&IthdMM models the
grapheme-to-phoneme relationships. This systenesepis the case where
no phoneme lexicon is available for the target dama. DARPA RM task.

2. Aphoneme-based ASR system: the states of KL-HMbdasent cross-word
context-dependent phonemes. In this case, the KiMHWodels the
phoneme-to-phoneme relationship. We used the ves#loped phoneme
lexicon of the RM corpus to build this system. s system represents the
case where a well-developed phoneme lexicon idadlaifor the target
domain.

Table 3 presents the performances of the two sgstaaillustrated, the grapheme-
based ASR system was able to achieve performanogarable to the phoneme-
based ASR system. Thus, indicating that the prapeggproach canffectively
address the lexical resource constraint problemreMdetails about this study,
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including comparison with other approaches sudhastandard HMM/GMM based
ASR system can be found in Rasipuram’s thesis (2014

Table 3: Performance of grapheme-based and phoneme-baséd FStems
expressed in terms of word error rate. A conveali@ontext-dependent phoneme-
based HMM/GMM ASR system achieves a performancd.b¥ word error rate
(Hain and Woodland, 1999).

grapheme phoneme
4.5% 4.1%

7 Acoustic Data-Driven Grapheme-to-Phoneme Conversn

In this section, we present a novel acoustic dated grapheme-to-phoneme
conversion approach that exploits the learned gnawgito-phoneme relationships.
This approach was originally proposed by us in {®aam and Magimai.-Doss
2012). As illustrated in Figure 3, in this approach

1. Context-dependent grapheme KL-HMM models are taafimst, as shown
in the case of the grapheme-based ASR system peesenthe previous
section,

2. Given the orthographic transcription of the woite grapheme KL-HMM
models are then used to generate a sequence ofermpRomposterior
probabilities

3. Finally, the phoneme posterior probabilities areadled using an ergodic
HMM to obtain the phoneme sequence.

Context—dependent .
[ Text parser grapheme sequence Tra]ned gl‘apheme—based
probabilistic lexical model system

Input word : CAT

as a generative model

+ \ P(/aa’) P(/aa’) P(/aa’) P(/aa/) P(/aa’) P(/aa) P(/aa’) P(/aa’) || P(/aa)
[C] [A] [T] ‘ v |

\

§[CJ+[AJ [CI-AHT] [A]-[T]

P(izh{) P(/zh#) P(/zh{) P(/zh{) P(/zh/) P(/zh/) P(/zh/) P(/zh{) | | P(/zh/)

y[]l»A] )(;—A] y[:._-\] },E(»A»T]y@L—A»T] }l:‘C~«'\-T] y[\A»T] -VEA—T; _v[{\_T]E

Phone posterior .
probability sequence @ ° ]
I

|

Ergodic
Phonc HMM HMM |
decoder '
Output Phone Pronunciation @ :
/k/ [ae/ 1t/ e e N ]

Figure 3: Acoustic data-driven G2P conversion.

One of the key advantages of the acoustic datadrapproach is that, as in the
case of ASR, it can exploit the out-of-domain aticusnd lexical resources to build
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lexical resources for a new domain or language.ards/that end, building on top of
the ASR study presented in the previous sectiorpnesent a cross-domain study to
demonstrate this capability. In this study, the BPRRM task served as the target
domain from which we were interested in buildinghewneme lexicon using acoustic
and lexical resources of WSJ1 corpus.

We used the trained context-dependent grapheme MMHnodels of the ASR
study presented in the previous section to devislegphoneme lexicon. We refer to
this lexicon ascoustic-g2pTable 4 presents pronunciation of a few wordsweae
extracted using the acoustic data-driven graphesmbneme conversion approach,
along with their respective pronunciations obtaifrech the RM lexicon.

Table 4:Pronunciation models of a few words generatedguiie acoustic data-
driven G2P approach. By actual pronunciation, vierr® the pronunciation given in
the RM lexicon.

Word Actual Extracted

pronunciation pronunciation
WHEN+S Iwl lehl In/ /z/ Iwl lehl In/ Iz/
ANCHORAGE /ael Ingl/ Ikl ler/ lih/ [ih/  [ael Inglllkch/ [aol Ir/ [ih/ [jh/
ANY lehl In/ liyl lael In/ liyl
CHOPPING /ch/ Jaal Ipl lih/ Ing/ /ch/ laal Ip! liyg/
ADDING fael /dx/ [ih/ Ing/ lael It! [ih/ Ing/

In order to compare our approach to the state-@faith G2P approach, we trained
a joint n-gram based G2P converter (Bisani and R&@8), briefly presented in
Section 2.1, on the WSJ1 lexicon using Sequitut®tand developed a phoneme
lexicon for the DARPA RM task. The graphone widthstuned by excluding 5% of
the WSJ1 lexicon as the development set. We reftis$ lexicon agraphone-g2p
We compare thacoustic-g2dexicon andgraphone-g2gdexicon by evaluating them
at two dfferent levels, namely,

1. At pronunciation level, by comparing the respeckexicons to the RM lexicon.

2. At ASR system level, by building a phoneme-ba&8& system for each of the

lexicons in the framework of KL-HMM.

Table 5 presents the evaluation at pronunciatigelldt can be observed that the
graphone-based G2P approach yields better proriiomsathan the acoustic data-
driven G2P approach.

Table 6 presents the evaluation at the ASR systeml.lIt can be observed that,
despite the wide ffierences in the performance at pronunciation lethed, two
lexicons yielded similar ASR systems. This suggdbtt in the acoustic G2P
approach, errors at the pronunciation level cowddoe to substitution with an
acoustically similar phone, which is reflected ia th-domain data.

5 http://www-i6.informatik.rwth-aachen.de/web/Softefg2p.html
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Table 5:Evaluation of the extracted pronunciation modél$he pronunciation level
in terms of phone error rate (PER) and word et (WER).

Lexicon PER WER
acoustic-g2p  185% 65.4%
graphone-g2p 7.8% 27.6%

Table 6:Evaluation of the extracted pronunciation modeth@a ASR system level in
terms of WER.

Lexicon WER
acoustic-g2p  4.7%
graphoneg2p 4.4%

8 Summary and Discussion

This paper presented a novel approach for leartiiegrelationships between
graphemes and phonemes through the acoustic sgggehl. In doing so, the
approach jointly models the link between the wnitterm and the spoken form as
represented by the acoustic speech signal. We shtheepotential of the approach
in addressing lexical resource scarcity issues eMpecifically, we illustrated the (a)
development of an ASR system without explicit depetent of a pronunciation
lexicon and (b) development of a pronunciationderiusing the learned grapheme-
to-phoneme relationship. In addition, we demonstralhat the parameters of the KL-
HMM can be analyzed to understand the learned grapkto-phoneme relationships.
The proposed approach opens potential directions fiiother research and
development. In the remainder of this section, wiefly discuss a few of these
directions.

It can be observed that the acoustic G2P-basedmsggpresented in Table 6) yield
similar or slightly worse performance, as compatedhe grapheme-based ASR
system (presented in Table 3). This indicates that proposed approach can
potentially remove the necessity to explicitly lial lexicon, given auxiliary acoustic
and lexical resources. Indeed, as shown recentigghg et al., 2011; Rasipuram,
2014; Rasipuram and Magimai.-Doss, 2015), ASR systeor new domains and
languages can be rapidly developed by

1. training a language or domain independent ANN ortimgual data

obtained from resource-rich languages to classifititimgual phone$and,

2. learning a probabilistic relationship between tugét language graphemes

and the multilingual phones on a relatively smatioant of transcribed
speech data.

6 The central idea is that phonemes are sharabtssadanguages. So, the relationship
between phonemes and acoustic signal can be modedeldnguage independent manner.
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Furthermore, this approach allows the possibility perform ASR in a new
language without using any acoustic and pronurmiatexical resources of that
language (Rasipuram et al., 2013a). In this case,probabilistic grapheme-to-
phoneme relationships are knowledge-based, whitcheadapted in an unsupervised
manner if untranscribed speech from the targetuagg is available. In other words,
the proposed approach can address both acoustarcesand lexical resource
scarcity issues. This is particularly interesting the development of ASR systems
for minority languages that do not have well-depeld resources, for instance see
(Rasipuram et al., 2013b).

As noted in Section 2.1, the starting point for deeelopment of a pronunciation
lexicon is extraction of the grapheme-to-phoneniesrobtained from the linguistic
studies of the target language and the viabilityhef G2P techniques (described in
that section) rely on the availability of a seedden in the target language. There are
a number of languages in the world that do not sk well-developed linguistic
resources (Besacier et al., 2014). As discussedkalite proposed approach enables
development of ASR systems without explicit proriation lexicon development by
borrowing resources from resource-rich languages domains, and learning the
relationship between graphemes and multilinguahpBmn target language speech
data. This aspect can be exploited together with dboustic data-driven G2P
approach presented in Section 7 to build pronuiecidexicons for resource scarce
languages. This is interesting not only for ASR;, d&lgo for TTS. In that regard, there
is an on-going project AddG2SU at Idlap

HMM-based ASR systems and statistical parameteesip synthesis systems (also
referred to as HMM-based TTS systems [Zen et @09D have a few components in
common, such as a pronunciation lexicon, modelinip® relationship between the
acoustic speech signal and phonemes, which basin@dels the link between
graphemes, phonemes and the acoustic speech Bigaaimilar manner. In other
words, similar to HMM-based ASR system, the HMM4xhd TS system must first
model the relation between words (textual form) gpldonemes through a
pronunciation lexicon and then the relationshipMeein phonemes and the acoustic
signal is modeled via a generative model, such EBBV& These two separate
modeling steps in a TTS system could be linkedutinathe acoustic G2P approach,
presented in Section 7, to take advantage of thefite provided by the proposed
approach, in particular in addressing challengésga@ to resource scarcity. More
precisely, this could be achieved by learning thababilistic relationship between
the graphemes and the clustered context-dependemepHMM states that emit
spectral-based acoustic feature vector. Furthernsoh an approach could possibly
aid in bridging the gap between HMM-based ASR aifi® Technologies (Dines et
al., 2010).

7 https:/iwww.idiap.ch/scientific-research/projects/flexible-acoustic-data-driven-grapheme-

to-subword-unit-conversion
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Finally, the modeling of grapheme-to-phoneme retethips inherently assumes
that the spoken language has a writing system. Menyéhere are spoken languages
that do not have a writing system (Besacier et28114). As discussed above, the
proposed approach enables borrowing of lexical mmnptic resources from other
languages. Along similar lines, in conjunction wiikld linguistics, it could be
possible to extend the proposed approach to bomraten scripts or graphemes from
other languages to build a writing system for laaggs that do not have one. This is
highly challenging, but interesting, from both spopkanguage research and spoken
language preservation perspectives.
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