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Abstract
Automatic non-native accent assessment has potential bene-
fits in language learning and speech technologies. The three
fundamental challenges in automatic accent assessment are to
characterize, model and assess individual variation in speech
of the non-native speaker. In our recent work, accentedness
score was automatically obtained by comparing two phone
probability sequences obtained through instances of non-native
and native speech. Although automatic accentedness ratings
of the approach correlated well with human accent ratings,
the approach is critically constrained because of the require-
ment of native speech instance. In this paper, we build on
the previous work and obtain the native latent symbol prob-
ability sequence through the word hypothesis modeled as a
hidden Markov model (HMM). The latent symbols are either
context-independent phonemes or clustered context-dependent
phonemes. The advantage of the proposed approach is that it re-
quires just reference text transcription instead of native speech
recordings. Using the HMMs trained on an auxiliary native
speech corpus, the proposed approach achieves a correlation of
0.68 with human accent ratings on the ISLE corpus. This is fur-
ther interesting considering that the approach does not use any
non-native data and human accent ratings at any stage of the
system development.
Index Terms: Automatic accent assessment, non-native
speech, posterior features, KL-divergence, lexical model

1. Introduction
Automatic accent assessment is an emerging topic of interest in
language learning and speech technologies. Non-native accent
or foreign accent is characterized by transfer of pronunciation
rules, phonetic and prosodic structure from the native language
of a speaker to a second language. Accent is typically assessed
through perceptual listening tests, where the listeners either as-
sess a particular aspect of accent (for example, phonetic struc-
ture or intonation) or general accentedness of a speaker [1, 2].
Accent of a speaker depends on various factors such as age of
onset and years of second language learning, language learning
aptitude etc. Furthermore, there is also an influence of the lis-
tener on perception of non-native accent [2]. Therefore, in the
literature there has been a growing interest in fast and reliable
automatic accent assessment methods.

Automatic accent assessment could be performed at phone
or utterance levels. At the phone level, it is typically for-
mulated as a 2-class classification task to determine if the
pronunciation of a phone was correct or not. A variety of

This research was funded by the Commission for Technology and
Innovation (CTI) on “Automatic scoring and adaptive pedagogy for oral
language learning (ScoreL2)”. The authors would like to thank Prof.
Shrikanth Narayanan and Dr. Joseph Tepperman for kindly sharing with
us the human accent ratings of the ISLE corpus.

confidence measures are extracted at the output of an hidden
Markov model (HMM) based speech recognizer such as log-
likelihood [3], log-likelihood ratio [4], goodness of pronuncia-
tion [5], log-posterior probability scores [3, 6]. Accent assess-
ment approaches based on speech structure [7], phonological
features [8, 9], native listener perceptual information [10, 11]
etc., have been proposed. Mispronunciation is detected using
classifiers such as decision trees [12], logistic regression [13]
that combine one or more of the above confidence measures.
In [14, 15], a combination of dynamic programming and clas-
sifier approaches was proposed for word-level mispronuncia-
tion detection. The two main drawbacks of classifier-based ap-
proaches are separate classifiers for each phone are needed, and
human accent ratings are required.

For utterance level accent evaluation using phonetic struc-
ture, phone-level log-likelihood scores were averaged over
the utterance [16]. In [17], an intonation-based accent score
was obtained through HMMs trained for categorical intonation
units. In [1], a large number of rhythm features and prosodic
features are used to train a discriminative classifier. In this pa-
per, our interest is in utterance-level accent assessment.

In our recent work [18], we proposed a novel formulation
for automatic accent assessment as quantifying the acoustic-
phonetic mismatch between latent symbol posterior probability
sequences obtained through instances of native and non-native
speech. Latent symbols can be context-independent phones or
clustered context-dependent phone states. The knowledge of
native speech, i.e., the lexical and phonetic structure, was im-
posed through an instance of native speech. The resulting scores
correlated highly with the human accent ratings on English ut-
terances from German, Finnish and Mandarin native speakers.

In this paper, we build upon our previous work along
the two following directions (Section 2). Firstly, the lexi-
cal and phonetic structure of the native speech are imposed
through an HMM-based lexical model trained on native speech
data [19]. Specifically, the native reference posterior prob-
ability sequence is obtained by modeling the word hypothe-
sis through the Kullback-Leibler divergence based HMM (KL-
HMM). Thus the approach is text-independent and it alleviates
the need for native reference speech. Secondly, we show that
the model-based framework can be exploited to compute con-
fidence measures at various levels. In this paper, word and
phone-level confidence measures are computed as the average
KL-divergence between the non-native latent symbol and the
HMM-based native reference probability sequences.

We evaluate the potential of the approach on the ISLE cor-
pus which contains English speech from native German and
Italian speakers (Section 3) [20, 17]. Using HMM models
trained on an auxiliary speech corpus and without using any
human accent ratings during training, utterance level accent
scores computed using the proposed approach correlate well
(R = 0.68) with the human accent ratings (Section 4).



2. Non-native Accent Assessment Approach
In this section, we first briefly eloborate our previous accent as-
sessment approach [18] before presenting the HMM-based ac-
cent assessment approach.

2.1. Previous Work

In our recent work, we proposed a novel formulation for auto-
matic accent assessment based on comparison of latent symbol
posterior probability sequences obtained through instances of
native and non-native speech [18]. The approach is split into
four subproblems:

1. Latent symbols: The latent symbol set defines the granu-
larity at which the differences between native and non-native
speech are captured. In our previous work we showed that the
latent symbols can be context-independent phones or clus-
tered context-dependent phone states.

2. Acoustic model: The acoustic model, models the relation-
ship between the acoustic feature observations and the latent
symbols on native speech data from the target language. As
in our previous work, we model this relationship through ar-
tificial neural networks (ANNs). Given a non-native speech
utterance Xnn = [x

(nn)
1 , · · · ,x(nn)

n , · · · ,x(nn)
N ], the acous-

tic model estimates the latent symbol posterior probability
sequence Z = [z1, · · · , zn, · · · , zN ],

zn = [z1n, . . . , z
k
n, . . . , z

K
n ]T,

= [P (c1|xn), . . . , P (ck|xn), . . . , P (cK |xn)]
T, (1)

Here N denotes the number of frames, c1, . . . , cK denote the
latent symbols and K denotes the number of latent symbols.

3. Lexical model: The lexical model, models the relationship
between lexical units (context-dependent subword units) and
the latent symbols. In the case of accent assessment, the lexi-
cal model imposes the lexical and phonetic structure of native
speech utterance. Depending on the way word hypothesis is
represented, the lexical model can be instance-based [21] or
model-based [19]. In our previous work [18], we focussed
on the instance-based lexical model. As shown in Fig 1(a),
given the native utterance Xn, latent symbol posterior prob-
ability sequence Y = [y1, · · · ,ym, · · · ,yM ]T is estimated
using an ANN.

4. Match between native and non-native sequences: This
matching is typically performed using dynamic program-
ming with local constraints and a local score that matches
the acoustic and lexical models evidence at each time frame.

2.2. HMM-based Lexical Modeling for Accent Assessment

In this paper, we build on the approach and obtain the native
posterior probability sequence by modeling the word hypoth-
esis through an HMM. As shown in Fig 1(b), the text spoken
by the non-native speaker is converted to a sequence of lexical
units using a pronunciation lexicon. The sequence of lexical
units is represented by a sequence of HMM-states where each
HMM-state captures the relationship between lexical unit and
latent variables. Each HMM-state is either parameterized by a
Kronecker delta distribution (deterministic lexical modeling) or
categorical state distribution (probabilistic lexical modeling).

In the case of deterministic lexical modeling, the lexi-
cal model, models a deterministic relationship between lexi-
cal units and latent symbols. Typically, decision-trees are used
to deterministically map each lexical unit to a latent symbol.

The decision trees are trained using the pronunciation lexi-
con, linguistic knowledge (a phonetic question set) and acous-
tic data of the native speech from the target language. Be-
cause of the deterministic relationship between lexical units and
latent symbols, the lexical model or the HMM-state distribu-
tion is a K-dimensional Kronecker delta distribution. That is
ym = [y1

m, . . . , yk
m, . . . , yKm ]T and if the lexical unit lm is

mapped to the latent symbol cj (lm 7→ cj) then,

yk
m =

{
1, if k = j;
0, otherwise. (2)

In the case of the probabilistic lexical modeling, the lexical
model captures a probabilistic relationship between lexical units
and latent variables. More specifically, the lexical model or
HMM-state distribution is a K-dimensional categorical distri-
bution ym = [y1

m, . . . , yk
m, . . . , yK

m ]T where yk
m = P (ck|lm),

0 < P (ck|lm) < 1 and
∑K

k=1 P (ck|lm) = 1. The lexical
model parameters are trained on the native speech from the tar-
get language using the KL-HMM approach [18].

Match between sequences of native and non-native speech:
The non-native latent symbol posterior probability sequence Z
is matched with the deterministic or probabilistic lexical model
represented by sequence of HMM states through dynamic pro-
gramming. Specifically, in the case of HMM-based lexical
modeling, the Viterbi alignment is used to align the sequences
Z and Y using a local score and local HMM constraints.

In the case of deterministic lexical model, the local score
that matches the acoustic model evidence zn at time frame n
with the lexical model evidence ym at HMM state m is,

S(ym, zn) =

K∑
k=1

yk
m log

(
yk
m

zkn

)
. (3)

Since each lexical unit lm is deterministically mapped to a latent
symbol cj (i.e., lm 7→ cj),

S(ym, zn) = − logP (cj |qt = lm). (4)

where qt is the HMM state at time t. In the case of probabilistic
lexical model, the local score matches the posterior distribution
zn with HMM-state distribution ym through the reverse KL-
divergence,

S(ym, zn) =

K∑
k=1

zkn log

(
zkn
yk
m

)
. (5)

HMM-based lexical modeling provides a framework to com-
pute confidence measures at various levels which can be em-
ployed in accent assessment. A confidence measure C(srm) for
each phone srm is computed as the average of the local score
between the sequence of posteriors of the non-native speech and
the HMM-state distributions i.e.,

C(srm) =
1

erm − brm + 1

erm∑
n=brm

S(ysrm , zn). (6)

Similarly, a confidence measure C(wm) for each word wm is
computed based on the average of the local score between the
sequence of posteriors of the non-native speech and the HMM
state distributions,

C(wm) =
1

Rm

Rm∑
r=1

1

erm − brm + 1

erm∑
n=brm

S(ysrm , zn).

(7)
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Figure 1: Instance-based and Model-based lexical modeling approaches.

where srm is the rth subword state in word wm, brm and erm
are the begin and end indices of the frames aligned with sub-
word state srm, and Rm is number of lexical units in word wm.

The utterance-level accent score is the average of phone-
level or word-level confidence measures across the utterance.
The phone-level score in the case of deterministic lexical mod-
eling C(srm) is equivalent to the log phone posterior (LPP) of
phone as defined in [6]. The deterministic lexical modeling or
LPP based accent assessment serves as a baseline for the prob-
abilistic lexical modeling based accent assessment.

3. Experimental Setup
The experimental evaluations presented in this paper are con-
ducted on the data from the ISLE corpus [20]. We used the
train and test set division for the ISLE corpus as defined in [17].

Speakers: The study consists of English speech from native
German and Italian speakers. The corpus has 8 training speak-
ers and 8 test speakers. The speakers in the train and test sets are
different. There are about 150 train and 40 test utterances for
each speaker. We did not use the train utterances of the ISLE
corpus in our experiments. According to the manual phone-
level error labelling [20], native Italian speakers produced more
phone errors per word (average of 0.54 errors per word) than the
native German (average of 0.16 errors per word). The database
did not include reference native speaker utterances.

Human accentedness ratings: We used the human accent rat-
ings collected by the Signal Analysis and Interpretation Labo-
ratory (SAIL) [17]. The sentences were scored taking into ac-
count intonation and all other cues on a scale from 1 or “no for-
eign accent” to 5 “strong foreign accent”. Two stage approach
was employed to obtain human accent ratings. In the first stage,
part of the corpus (138 sentences) was labelled by five native
speakers of English. Average inter-labeler correlation of 0.657
was achieved. In the second stage, one native listener who had
an average correlation of 0.732 with all the other five listeners,
scored all the utterances of the corpus [17].

MLPs: In this paper, we used the same multilayer perceptrons
(MLPs) used in our previous study on accent assessment as
acoustic models [18]. The MLPs were trained on the Wall Street
Journal (WSJ) corpus [22]. The WSJ corpus consists of two
parts - WSJ0 with 14 hours of speech (7,193 utterances from 84
speakers) and WSJ1 with 66 hours of speech (29322 utterances
from 200 speakers). We used both WSJ0 and WSJ1 (the si-284
setup). We trained the following five-layer MLPs:

• MLP-CI-40: An MLP trained to classify 40 context-
independent phones.

• MLP-CD-N: MLPs trained to classify N context-dependent
phone states. The latent symbols or context-dependent phone
states were obtained by decision tree-based state cluster-
ing of context-dependent phones in HMM/GMM frame-
work. The different number of latent symbols N (N ∈
{183, 419, 1013, 1915, 2832}) were obtained by varying the
state occupancy count and the log-likelihood threshold dur-
ing decision-tree based state clustering.

Lexical Model: In the case of the baseline system using de-
terministic lexical modeling, the accent scores are the same as
log phone posterior based accent scores proposed in [6]. The
decision trees trained during HMM/GMM training are used to
map each context-dependent lexical unit to a latent symbol. The
resulting mapping is used to generate Kronecker delta distribu-
tions of lexical units. Each lexical unit or context-dependent
subword unit was modeled using three HMM-states.

In the case of probabilistic lexical modeling, KL-HMM sys-
tems are trained only on the WSJ0 corpus (the si-84 setup) that
contains approximately 14 hours of speech. Given the MLPs,
first the acoustic unit posterior feature vectors zt are estimated
for the WSJ0 corpus. The lexical model parameters are then
learned using the KL-HMM approach with zt as feature ob-
servations [18]. We trained crossword context-dependent KL-
HMM systems and the lexical units impose three-state mini-
mum duration constraint.

Automatic accentedness evaluation: Utterance-level accent
scores are computed using either the phone-level (Eqn. (6)) or
word-level confidence measures (Eqn. (7)). Furthermore, the
utterance-level accent score is directly correlated (using Pear-
son correlation coefficient) with the human accent ratings.

4. Results and Analysis
Table 1 presents the utterance level correlation between auto-
matic accent scores computed using phone and word-level con-
fidence measures and human accent ratings for the ISLE test set
with increasing phonetic granularity. The results indicate that:

• As the granularity of the latent symbols increases, the corre-
lation with respect to the human ratings generally increases
for both deterministic and probabilistic lexical models. This
trend was also observed in our previous study on the EMIME
corpus using instance-based lexical modeling [18].



Table 1: Correlation between the human accent ratings and the
utterance automatic accent scores computed using phone and
word-level confidence measures with probabilistic and deter-
ministic lexical models.
# of latent Probabilistic Deterministic

symbols phone-level word-level phone-level word-level

40 0.58 0.48 0.53 0.40
183 0.63 0.53 0.55 0.40
419 0.66 0.57 0.61 0.50
1013 0.68 0.60 0.64 0.54
1915 0.67 0.59 0.67 0.55
2832 0.67 0.59 0.67 0.58

• Probabilistic lexical model based systems achieve better cor-
relation than the baseline deterministic lexical model based
systems. Furthermore, probabilistic lexical model based sys-
tem achieved optimal correlation using 1013 latent symbols
while the deterministic lexical model based system achieved
optimal correlation with 2832 latent symbols. Interestingly,
such a trend has also been observed in ASR studies [23].

• The systems using phone-level confidence measures perform
better than the systems using word-level confidence mea-
sures. This result indicates that phone-level confidence mea-
sures are more indicative of the accentedness as perceived by
humans than the word-level confidence measures.

• In [17], on the same experimental setup, a correlation of
0.38 with respect to human accent ratings was obtained us-
ing prosodic models. In the literature, it has been observed
that for advanced language speakers with fluent but accented
speech, prosodic-level differences contribute to perceived ac-
cent more so than the individual phone mispronunciations,
whereas for beginner and intermediate language learners
phone level mispronunciations contribute more to the per-
ceived accent [24]. In comparison to prosodic models [17],
the proposed approach results in higher correlation with the
human ratings. Since the ISLE corpus consists of intermedi-
ate learners [20], we speculate that phonetic level assessment
performs better than prosodic level assessment.

The results are encouraging given that the approach achieves
a correlation of 0.68 without using any non-native data or the
human accent ratings during training. To understand the differ-
ences among different language groups, we analysed the corre-
lation of native German and Italian utterances separately. Fig-
ure 2 plots the correlation achieved with the proposed approach
for native German and Italian speakers for both deterministic
and probabilistic lexical models using phone-level confidence
measures. The plot shows that:

• For native Italians, probabilistic lexical model based systems
achieved higher correlation than the baseline deterministic
lexical model based systems; whereas for native Germans,
deterministic lexical model based systems achieved higher
correlation than the probabilistic lexical model based sys-
tems. Probabilistic lexical modeling is an approach for pro-
nunciation variability modeling which handles the shortcom-
ings of the deterministic lexical unit to latent symbol mod-
eling of standard HMM-based ASR systems [23, 19]. The
results in the paper indicate that for native German speak-
ers whose English is close to the native English speech such
pronunciation variability modeling may not be necessary.
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Figure 2: Correlation between human accent ratings and auto-
matic ratings for native German and Italian speakers using the
deterministic and probabilistic lexical modeling approaches.

• The correlation between automatic accent ratings and human
ratings for native Italian speakers is higher than for the native
German speakers. We speculate the following reasons for
this: Firstly, it has been observed that it is difficult to rate the
accentedness of non-native second language speakers whose
speech is closer to the native speech [25, 26]. Secondly, the
proposed approach focusses on phone-level (or word-level)
mismatch between native and non-native speech. As men-
tioned in Section 3, according to the manual mispronuncia-
tion labels, native German speakers have relatively less phone
errors per word compared to native Italian speakers. This
leaves less scope for the proposed approach to measure na-
tive German speakers accentedness.

5. Conclusions and Future Work
In this paper, we extended our previous work on accent assess-
ment by replacing the native reference posterior probability se-
quence obtained through an instance of native speech signal
with a native posterior probability sequence obtained through
an HMM-based lexical model. The HMM-based lexical model
requires only the text transcription of the non-native utterance
to be assessed and thus removed the constraint that the native
reference speech is required. Furthermore, it offered flexibil-
ity to compute confidence measures at various levels (word and
phone levels) which were used to compute utterance level ac-
cent scores. Our studies on the ISLE corpus show that the utter-
ance level accent scores directly correlate well with the human
accent ratings. The accent scores based on phone-level confi-
dence measures correlated better with the human accent scores
than the scores based on word-level confidence measures. The
results are interesting given that the HMM-model was trained
on an auxiliary out-of-domain native speech corpus and the ap-
proach did not use any non-native speech data or human accent
ratings during system development.

Our analysis has shown how native language background of
the non-native speakers influences the correlation between auto-
matic accent ratings and human accent ratings. Specifically, we
found that for native German speakers (with fewer phone errors
per word) the correlation with the human accent ratings is poor
compared to native Italian speakers. As indicated in the litera-
ture, for advanced non-native speakers, prosodic characteristics
may play an important role in accent perception. Therefore,
in future we will focus on integrating prosodic characteristics
in our formulation (for example, using prosodic representations
as given in [17]). Furthermore, we will extend the approach
to mispronunciation detection at the phone or word levels by
thresholding the confidence measures as done in [27].
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