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ABSTRACT
In the recent past, there has been interest in characterizing the phys-
ical and social ambiance of urban spaces to understand how peo-
ple perceive and form impressions of these environments based
on physical and psychological constructs. Building on our earlier
work on characterizing ambiance of indoor places, we present a
methodology to automatically infer impressions of place ambiance,
using generic deep learning features extracted from images publicly
shared on Foursquare. We base our methodology on a corpus of
45,000 images from 300 popular places in six cities on Foursquare.
Our results indicate the feasibility to automatically infer place am-
biance with a maximum R2 of 0.53 using features extracted from
a pre-trained convolutional neural network. We found that features
extracted from deep learning with convolutional nets consistently
outperformed individual and combinations of several low-level im-
age features (including Color, GIST, HOG and LBP) to infer all the
studied 13 ambiance dimensions. Our work constitutes a first study
to automatically infer ambiance impressions of indoor places from
deep features learned from images shared on social media.

1. INTRODUCTION
There is increasing interest in characterizing the physical and so-

cial ambiance of urban spaces (both indoor and outdoor), to under-
stand how people perceive these environments based on physical
and psychological constructs [7, 21, 22, 23]. Ambiance, formally
defined as the “character and atmosphere of a place” [4], is the
human way of relating to places. Consequently, understanding am-
biance of places in cities has been proposed as a new topic in multi-
media research [22]. Characterizing place ambiance has many ap-
plications ranging from hyper-local, ambiance-driven place search
and discovery (e.g., a trendy place for a night-out or a romantic
place for the wedding anniversary) to data-driven recommendations
for place owners to improve the presentation (e.g., architecture de-
sign and style) of their venues.

In hospitality research, there is a significant body of work that
investigates the effect of ambiance on patrons’ dining experience,
perception, and customer retention [1, 25, 8], but most of these
studies are small-scale and based on in-situ interviews and ques-
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tionnaires, which may have limitations with respect to generaliza-
tion or recall biases. To overcome these limitations, researchers
have used geo-tagged images from Google Street View or taken by
volunteers to measure the perceptions of outdoor spaces for several
urban dimensions including safety, quietness, etc. [21, 16, 19, 23].

Until recently, most of the studies examining urban perceptions
using online images were focused on outdoor spaces. From the
perspective of urban design, studying elicited impressions for in-
door places should involve examination of different variables when
compared to outdoor spaces; for instance, “formal” is a meaning-
ful ambiance construct in an indoor venue, but not necessarily so
in an outdoor space. As a brave new topic in [22], we presented
a crowdsourcing methodology to examine the suitability of social
media images for the characterization of indoor ambiance impres-
sions across 13 dimensions (including artsy, romantic, formal, loud
and trendy, among others) in 300 popular Foursquare places. We
found that reliable estimates of ambiance were obtained for sev-
eral of the dimensions, suggesting the presence of visual cues that
allow to create such impressions. In this paper, we extend our ear-
lier work to automatically characterize place ambiance using visual
cues from images.

To infer human perception of outdoor spaces, recent works have
used a variety of low-level image features including Color, GIST,
HOG, LBP, SIFT and generic deep convolutional activation fea-
tures. Using these features on geo-tagged images from Google
Street View, high-level attributes (e.g., wealthy, uniqueness, and
safety) for outdoor scenes are inferred in two US cities [11, 14].
Using the same dataset, in [15], a CNN architecture is proposed
to predict and discover mid-level visual patterns which correlate
with the perceived safety of an outdoor scene. Building upon these
works, in this paper we focus on studying places across 13 dimen-
sions appropriate for the indoor environment. Specifically, we ad-
dress two research questions:

RQ1: Can judgments of ambiance of an indoor place be automat-
ically inferred using low-level image and generic deep fea-
tures extracted from social media images?

RQ2: What visual categories represent popular places on Four-
square in connection to indoor ambiance?

To address these questions, we build upon our earlier work and
dataset [22]. For automatic characterization and inference, we build
upon prior work in object classification and scene understanding
using deep learning techniques [20, 17, 26]. Our contributions are
two-fold. First, we devised a methodology to automatically infer
ambiance impressions of popular Foursquare places, using generic
deep features extracted from images. We base our methodology
using a corpus of over 45,000 images from 300 popular places on



(a) Restaurant, Eating Place (b) Stage (c) Library (d) Grocery Store

Figure 1: Sample of random images from the 50K image corpus which were classified as (a) Restaurants/Eating Place, (b) Stage, (c) Library, and (d) Grocery
Store. For each class, from top to bottom, images are sorted in decreasing order of ImageNet dominant class probability (Section 4.1).

Foursquare spread across six cities. The results indicate the fea-
sibility to automatically infer the ambiance of these places with a
maximum R2 of 0.53 using features extracted from a pre-trained
convolutional neural network, precisely GoogLeNet model trained
on ImageNet data. Furthermore, we found that CNN features con-
sistently outperform individual and combinations of several low-
level image features for all the 13 studied dimensions. Second, to
better understand the image corpus, we studied the distribution of
the most likely ImageNet class assigned to each image. We find
that most of the top-10 dominant classes are associated with either
food or drinks, but also contains images which represent the phys-
ical environment with clear and unoccluded views of the indoor
space. These findings point towards the nature of images shared on
Foursquare, which to our knowledge have not been analyzed before
at such a scale from the perspective of ambiance [7].

2. DATASET
We use the image corpora and place ambiance annotations col-

lected as part of our prior work [22], which contains data from
300 popular places on Foursquare in six cities – Barcelona, Mex-
ico City, New York City, Paris, Seattle, and Singapore. For each
city, we chose 50 popular places among restaurants, cafes, bars, or
nightclubs. Below we describe the data:

Image Corpora: For each selected place, there are two image cor-
pora: a) Physical Environment Image Corpus: this corpus was man-
ually curated to contain images with clear views of the physical
environment of a place. It contains three images per place, which
show the indoor space from different angles, resulting in a total
of 900 images for all 300 places; b) 50K Image Corpus: the sec-
ond image corpus contains all publicly available images shared on
Foursquare for each place, resulting in a total of 45,848 images for
280 places (an average of 164 images per place). Note that the 50K
image corpus contains images for 280 places, as opposed to 300
places, due to changes in the Foursquare API [6]. Figure 1 shows
a sample of images selected randomly across four ImageNet cate-
gories from this corpus.

Ambiance Annotations: In addition to images, the data contains
the results of an online crowdsourcing study to collect ambiance
impressions for each place, based on physical environment image
corpus. Ambiance ratings were elicited across 13 physical and psy-
chological dimensions (shown in Table 1), where images served as
stimuli to form place impressions. Ambiance ratings were obtained
using the three manually selected images for each place. For this
study, we used the mean annotation ratings for each place and di-
mension as described in [22].

3. METHODOLOGY

3.1 Feature Extraction
Building upon recent work in the literature, we have extracted

the following set of low-level and deep visual features:
1. Color: We computed global color histogram in RGB space.
Each channel was quantized into 8-bins, resulting in 83 possible
color combinations and a 512-dimensional color feature vector.
2. GIST: This descriptor captures the dominant spatial structure
of a scene from a set of perceptual dimensions (e.g., naturalness,
openness, roughness, etc.) [13]. We use the standard setting of this
descriptor, resulting in a 512-dimensional vector.
3. Texture (LBP): Texture captures the spatial arrangement of
color and intensities in an image. We apply the local binary pat-
tern (LBP) descriptor [12], which encodes local texture information
(such as spots, edges, and corners) by comparing each pixel with
its neighborhood pixels, resulting in a 256-dimensional vector.
4. Gradient (HOG): Histogram of oriented gradients (HOG) com-
putes occurrences of gradient orientations in localized region of an
image [10]. We apply the pyramid HOG implementation, where
images are first represented in pyramid hierarchies, then the HOG
descriptor is computed on each level, and finally the final descrip-
tor is the concatenation of vectors across all levels [2]. We compute
the pyramid HOG descriptor for levels l = 0 to l = 3. Images are
divided into 22∗l regions, and a 8-bin histogram is computed within
each region, which results in a 680-dimensional feature vector.
5. CNN: The availability of large-scale image datasets [20] and
the performance of deep neural networks for object classification
and scene understanding [17, 26], have opened opportunities to ex-
plore these features for our problem. We have used the features
extracted using a pre-trained convolutional neural networks model
(CNNs) using the Caffe framework [9]. Specifically, we used the
GoogLeNet CNN [24] trained on ImageNet data. ImageNet data
contains over 14 million images across 1,000 categories. To extract
the CNN descriptors, for each image, we obtained the final layer
class probabilities across all 1,000 ImageNet classes, resulting in a
1000-dimensional feature vector.

We chose to use a pre-trained model trained on a large and di-
verse data (ImageNet in our case), as opposed to training a CNN
model on our data for two reasons. First, it has been shown that fea-
tures extracted using pre-trained CNN models can potentially pro-
vide discriminative features for multiple visual recognition tasks [5,
17]. ImageNet categories are well suited for our problem as they
are descriptive of visual cues typically present in restaurants, bars,
etc. (refer to Figures 1 and 2). Second, using a pre-trained model
avoids the need to train, adapt or fine-tune a CNN on our dataset,
which can be computationally expensive and resource intensive.



Feature Aggregation: As stated in Section 2, ambiance ratings
were given for each place and each place had an average of 164
images. We extracted all the previously described visual features
for each image. Then, in order to obtain a representative feature
vector for each place, we apply an early feature fusion approach
by computing the mean feature vectors of all images describing the
same place, for each feature set.

3.2 Inference Method and Evaluation
We are interested in examining the predictive power of both the

low-level image features and deep CNN features to automatically
infer the perceptions of social ambiance for the studied dimensions.
We approach this problem as a regression task, where the objec-
tive is to infer the mean annotation scores of each place. For re-
gression, we use Random Forest, a tree-based supervised learning
method that guards against overfitting to the training data [3]. In
all our experiments we used a 10-fold cross-validation approach.
To evaluate the performance of different feature sets, we used two
standard measures: the root-mean-square error (RMSE) and co-
efficient of determination (R2) between the perceived ground-truth
and inferred ambiance scores for each label and feature set. Fur-
thermore, we have used variable importance measures from ran-
dom forests to understand the relative importance of visual cues for
each dimension (see Section 4). To understand and compare the
predictive performance of each feature set, we choose the baseline
model to be the mean annotated score as the predicted value for
each label.

4. RESULTS AND DISCUSSION

4.1 Visual Categories
We begin our analysis by examining the distribution of the most

likely ImageNet class assigned to each image. As stated before, the
last layer of the GoogLeNet CNN model outputs the probability
distribution of the image across all 1,000 ImageNet classes. Given
this probability distribution, we chose the ImageNet class with the
highest probability as the dominant class for each image. In Fig-
ure 2, we show the distribution of the top-10 dominant classes for
both image corpora. For the 50K image corpus, most of the top
ten dominant categories are associated with either food (e.g., plate,
meatloaf, ice-cream, chocolate) or drinks (e.g., beer glass, espresso,
eggnog), as shown in Figure 2a. These results are consistent with
previous findings [22] and expected given that all places are restau-
rants, bars, cafes, or nightclubs (Section 2).

While analyzing the top-10 class distribution for the physical en-
vironment image corpus, we observe that most of the dominant
classes relate to the physical attributes of the indoor environment
(e.g., stage, library, dining table, bakery, etc.) and do not contain
food or drinks categories, which is in contrast with the class dis-
tribution for the 50K image corpus (Figure 2b). These findings are
not surprising given that all images in this corpus were manually
selected to show clear views of the indoor scene (Section 2) [22].
Some of the recognized categories in physical environment image
corpus may seem intriguing at first glance (e.g., library, grocery
store, or barbershop), but after manually browsing the images be-
longing to these categories, we found that these classes describe
various attributes of the indoor environment and are misclassified
yet makes sense visually. For instance, most of the images belong-
ing to “library” class contain images showing wall shelves typically
found in cafes and bars (Figure 1c); while some of the “grocery
store” images contain transparent window shelves displaying food
or drink items (Figure 1d).
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(b) Phy. Env. Image Corpus
Figure 2: Histogram of Top 10 recognized ImageNet classes for a) 50K
Image Corpus, and b) Physical Environment Image Corpus

Further, we observe that the top class in both image corpora is
“restaurant/eating place”. For the 50K and physical environment
image corpora, this class respectively contains 8% and 65% of to-
tal images. At first, it looks like a generic class but after manually
browsing these images (Figure 1a), we found that most of the im-
ages represent the physical environment well, providing clear and
unoccluded views of the indoor space. These findings point to-
wards the feasibility to automate the selection of images for indoor
ambiance characterization. As we previously reported, human ob-
servers preferred views of the physical environment of places to
make impressions of ambiance [22]. However, as we show in the
following subsection, other image categories are also exploited by
the learning algorithm.

While the plots shown in Figure 2 are focused on illustrating the
dominant visual class, many other classes are also informative of
ambiance for a given image (e.g., a photo of someone eating an
ice cream in a restaurant or drinking an espresso in a coffee shop
are not likely to be generated in a club). This is the reason why
we use the 1000-dimensional probability vector to infer the am-
biance dimensions, as described in the next subsection. Overall,
these findings point towards the nature of images shared on Four-
square, which to our knowledge has not been analyzed before at
such a scale from the perspective of ambiance.

4.2 Regression
In this section, we evaluate the performance of both low-level

image features and deep CNN features to automatically infer im-
pressions of place ambiance. In Table 1, we report the R2 values
between ground-truth and inferred ambiance scores for each label
and feature set. For the baseline model and the model learned using
CNN features, we also report the RMSE values. All the low-level
visual features (Color, GIST, HOG, and LBP) are computed on the
50K image corpus, while the CNN features are computed for both
image corpora.

Overall, the results indicate that a maximum R2 of 0.53 can be
obtained by the CNN-based regressor (for the loud dimension),
while low R2 values are obtained for other dimensions (creepy,
dingy, off the beaten path). For six out of 13 dimensions, the ob-
tained R2 exceeds 0.30. On the 50K image corpus, we find that
CNN features consistently outperform individual and combinations
of several low-level image features (including Color, GIST, HOG,
and LBP) for all labels, consistent with results reported in the vi-
sion and multimedia literature [17]. Note that in Table 1, we have
not shown the results for the combination of low-level image fea-
tures due to space constraints. The results highlight the suitability
of pre-trained CNN models to infer perceptual judgments in indoor



Baseline-50K Color-50K GIST-50K HOG-50K LBP-50K CNN-Phy-Env CNN-50K
R2 RMSE R2 R2 R2 R2 R2 RMSE R2 RMSE

Artsy 0.0 0.69 0.01 0.02 0.04 0.05 0.12 0.66 0.22 0.63
Bohemian 0.0 0.55 0.08 0.05 0.11 0.09 0.08 0.54 0.24 0.50

Conservative 0.0 0.67 0.21 0.20 0.19 0.11 0.24 0.60 0.30 0.57
Creepy 0.0 0.29 0.05 0.04 0.01 0.00 0.06 0.29 0.14 0.28
Dingy 0.0 0.50 0.04 0.02 0.01 0.05 0.05 0.50 0.17 0.47
Formal 0.0 0.82 0.10 0.07 0.03 0.10 0.28 0.72 0.37 0.70
Loud 0.0 0.73 0.33 0.29 0.26 0.31 0.53 0.51 0.52 0.51

Off the beaten path 0.0 0.61 0.05 0.01 0.01 0.00 0.15 0.47 0.17 0.47
Old-fashioned 0.0 0.50 0.16 0.11 0.10 0.08 0.24 0.54 0.22 0.55

Romantic 0.0 0.67 0.10 0.15 0.03 0.08 0.36 0.57 0.39 0.56
Sophisticated 0.0 0.79 0.11 0.10 0.04 0.10 0.26 0.72 0.38 0.67

Trendy 0.0 0.64 0.19 0.1 0.12 0.15 0.17 0.61 0.32 0.54
Up-scale 0.0 0.78 0.14 0.11 0.03 0.13 0.29 0.69 0.40 0.65

Table 1: Inference results for 13 ambiance dimensions for all feature sets, using R2 and RMSE as evaluation measures. Cells marked in bold
correspond to the best R2 result obtained for each dimension across all feature sets.

places; our finding complements what has been shown in recent lit-
erature regarding deep learning of high-level perception of outdoor
scenes [14, 15].

While evaluating the performance of deep features between the
50K and physical environment image corpora, we observe that the
CNN-50K model outperforms the CNN-Phy-Env model in terms of
higher R2 and lower RMSE values for most of the dimensions ex-
cept the loud and old-fashioned dimensions. When examining the
differences in more detail, we find that for some labels (e.g., loud,
romantic, old-fashioned, off the beaten path), R2 values are com-
parable, while for some dimensions (e.g., artsy, bohemian, trendy),
the difference between R2 values across image corpora is relatively
high. Note that the ambiance ratings were obtained using just three
manually selected images. These findings suggest that it is difficult
to automatically represent some dimensions with just three images
(compared to the human ability to infer and generalize from very
few examples), and that the availability of more images provide ad-
ditional informative visual cues to characterize some of these labels
at high level. Future work will investigate the effect of the amount
of data used for learning ambiance.

The performance of low-level features indicates that all feature
sets perform the best for the loud feature (Table 1). Amongst the
low-level feature sets, color features achieve the highest R2 for
most of the ambiance dimensions, including trendy and up-scale
places, which corroborates results reported in [18], that attempted
to infer ambiance for a 50-place dataset from profile pictures of
Foursquare users rather than using photos of the venues. HOG and
GIST also perform moderately for the conservative label.

While examining individual labels, the loud label achieves the
highest performance with R2 ≥ 0.26 for all feature sets, suggest-
ing visual patterns such as texture cues associated with the percep-
tion of loudness e.g., presence of crowd, an elevate stage, etc. (see
Figure 1b). On the other hand, creepy achieves the lowest predic-
tive performance (R2 ≤ 0.14). The low R2 values for creepy can
be attributed to a combination of lower inter-rater agreement and
lowest mean annotation scores across all labels [22]. Overall, pos-
itively phrased (romantic, up-scale, sophisticated) and negatively
phrased labels (creepy, dingy), which likely correspond to different
ambiances, achieve in each case similar R2 values.

Moreover, the romantic label achieves promising prediction per-
formance (R2 = 0.39) with CNN features, and relatively poor per-
formance with low-level image features. We further analyze the
relative importance of visual categories for different labels using

(a) Dining Table (b) Table Lamp (c) Suits (d) Altar
Figure 3: Sample of images from the 50K image corpus which are recog-
nized to belong to the visual category of a) Dining Table, b) Table Lamp,
c) Suits of clothes, and d) Altar. For privacy reasons, images showing faces
have been pixelated.

the variable importance measures taken from random forests [3].
Using these measures, we find that “dining table” and “table lamp”
are the top two discriminative visual categories for romantic places
(see Figure 3a and 3b); “suit of clothes” and “red wine” for places
perceived as upscale and formal (see Figure 3c); and “altar” for
artsy places (see Figure 3d). In summary, the regression results
suggest the feasibility to automatically infer place ambiance with
promising prediction performance for some of the dimensions.

5. CONCLUSIONS
In this paper, we presented a methodology to automatically in-

fer human impressions of place ambiance from social media im-
ages. Our results demonstrated the feasibility to automatically infer
place ambiance using visual cues extracted from a pre-trained CNN
model. We found that CNN features consistently outperformed
low-level image features. Our work constitutes a first study to au-
tomatically characterize ambiance impressions of popular indoor
places from deep features learned from social media images. Future
work includes understanding the specific combination of different
image types (food, people, environment) to ambiance inference, as
well as the effect of the amount of available data.
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