UNICITY: A depth maps database for people detection in security airlocks
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Abstract

We introduce a new dataset, dubbed UNICITY', for the
task of detecting people in security airlocks in top view
depth images. If security companies have been relying on
computer systems and algorithms for a long time, very few
are trusting artificial intelligence and more specifically ma-
chine learning approaches in production environments. We
are confident that the recent advances in these domains,
especially with the democratization of deep learning, will
open new horizons for security systems. We release this
dataset to encourage the development of such approaches
in the scientific community.

UNICITY consists of 58k images collected from 65
recorded sequences with one or two people performing dif-
ferent behaviors including attacks and trickeries (e.g. tail-
gating®). It also provides full annotation of people such as
the location of head and shoulders. As as result, UNICITY
is perfectly suited for training and adapting machine learn-
ing algorithms for video surveillance applications. This pa-
per presents the data collection, an evaluation protocol, as
well as two baseline methods for attack detection.

1. Introduction

In this paper, we focus on people detection inside secu-
rity airlocks. An airlock is a space separating a restricted
area from a non-restricted area, in which a person needs
to authenticate to be granted access to the restricted area.
For a company active in this field, the need for benchmark
data is growing as more and more features and flexibility
are expected by customers, but such data is lacking. Ex-
pert systems are usually sufficient for standard use cases
like anti-tailgating solutions as long as the conditions are

I The dataset is released on https://www.idiap.ch/dataset/unicity
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Figure 1: The UNICITY dataset (Bluetechnix Argos).

controlled (e.g. specific room size, specific sensor-person
relation, minimal lighting variations). But more advanced
approaches taking advantage of artificial intelligence are
needed to bring more flexibility and cope with more com-
plicated use cases, like for instance granting access to a se-
cure zone only if certain number of authorized persons are
present in a delimited sub-part of the monitored zone.

To meet the demand of these even more challenging
purposes, we introduce a new publicly available dataset of
depth maps (see Figure 1). For building this dataset, named
UNICITY, we recorded 3.4 millions of images using 6 color
and depth cameras (4 Kinects and 2 industrial cameras) lo-
cated at different positions inside an airlock constructed to
simulate a building access room.

The UNICITY database is a selected part of the full
data collection in order to focus in the problem of detect-
ing people from top view images acquired by a depth and
industrial sensor. These particular choices are motivated by
(1) data protection regulations to maintain people’s privacy
(use of depth data), (2) increase people visibility (camera in
zenithal position to cope with occlusions), and (3) robust-
ness (industrial sensors for daily applications).

Specifically, UNICITY has three main contributions: the
first one is the recorded data that has about 58k images



from two top view industry-oriented cameras (Bluetechnix
Argos3D-P220 and Fotonic G-series) at two different air-
lock heights. It comprises 65 sequences recorded with or
two persons for two given scenarios: one person entering
inside the airlock to swipe their badge to be granted access
(normal scenario), and two persons entering the airlock, the
second either tailgating or attacking the first one to fool the
system and enter to the restricted area (attack scenario).

The second contribution are the ground truth annotations
of all persons in the 58k images. Each annotation was man-
ually done and includes the location of head and shoulders
in the image and the degree of visibility of persons to dis-
tinguish between easy and difficult cases.

Lastly, the third contribution is that the dataset comes
along with an evaluation code which computes performance
criteria, to allow fair comparison between different users
benchmarking their methods on this dataset.

We present the related work in section 2 while section 3
describes the data acquisition and overcame challenges.
Section 4 introduces the UNICITY dataset and its main fea-
tures. Finally, two baseline methods and their performance
for detecting attacks are shown in sections 5 and 6.

2. Related work

The dataset targets a security application: the verifica-

tion of the presence of a single person in an airlock using
depth data. As such, it indirectly relates to two main topics:
person counting, and depth processing for similar purpose
(person detection and tracking). Below we review previous
works in these topics and present existing datasets.
People Counting. People counting can be considered as a
straightforward extension of person detection, but due to its
applications in video analytics for surveillance, it has been a
subject of important research on its own [8, 13, 2, 5, 10, 1].
The main use case is concerned with occupancy and flux
analysis in open spaces, but other applications like anti-
tailgating in metro turnstiles, presence verification or intru-
sion detection have been considered as well. As such, it has
a multitude of challenges: variability in illumination condi-
tions, viewpoints, person shapes, and depending, on scenar-
ios, crowd density and proximity between people, efc. As an
early work, Liu et al. [8] proposed a segmentation algorithm
to improve robustness of people counting systems using one
or more cameras. Histograms of oriented gradients com-
bined with local binary patterns have shown good robust-
ness to partial occlusion by detecting head and shoulders of
people in real time [13], but this technique only allows an
estimation of the number of people, not a precise count.

The fusion of different data sources is another approach
studied in the field of surveillance. As a representative case,
Schreiber et al. [10] used a trinocular configuration based
on two monochrome cameras (stereo configuration) for an-
alyzing the depth information as well as a color camera

placed in the middle to count the number of people pass-
ing a door or ensure that only one person is present in a
room. The method has demonstrated good performance in
real environments (e.g. airports).

Depth maps for counting and tracking. In recent years,
real-time depth cameras have brought new opportunities, in-
cluding in surveillance, and have been prefered over color
cameras for counting people [5]. Approaches generally
consists on foreground/background segmentation to seg-
ment persons before using depth information to localize
head candidates, as in Bondi et al. [1], allowing real-time
counting in crowded environments. In [9], a method to track
people from top view depth maps is proposed. The head
detection step relies on the extraction of viewpoint specific
features that are classified with a SVM framework in order
to estimate the location of head in the image. Interestingly,
a 93% true positive rate for a 99% true negative rate perfor-
mance is reported for the head classification step.

Datasets. Li ef al. [6] released a public dataset named CA-
SIA Pedestrian Counting Dataset. They recorded over 1 TB
of both RGB images and videos from more than ten cam-
eras, capturing scenes through several seasons and weather
conditions and with various crowd densities. While the im-
ages are meant to be used for training and testing pedes-
trian detectors, the videos can be used to evaluate pedes-
trian counting systems. Liciotti et al. [7] created a dataset
for person re-identification with a RGB and depth camera
in top view configuration and fixed camera height. This
dataset comprises 23 video sequences (around 60k images)
where 100 people pass under the camera wearing different
seasonal outfits. Recordings were made in indoors and illu-
mination conditions were not controlled, thus not constant.
Del Pizzo et al. [3] provide a top view dataset for people
counting using a RGB camera and a Kinect depth sensor.
It includes 17 sequences recorded in indoors and outdoors
with a variable number of persons (from one and up to
four persons) walking in the same and/or opposite direc-
tions. Yet, this dataset is weakly annotated including only
the number of people crossing a virtual line in the scene.
Therefore, it cannot be used neither for benchmarking nor
for training machine learning approaches for localizing peo-
ple and body parts (e.g. head and shoulders). Moreover, the
depth maps are only coded on 8 bits out of the 11 available.

Compared to these datasets, the UNICITY dataset con-
sists of the original depth data from two industry-oriented
sensors placed at two different airlock heights. UNICITY
has 65 sequences (about 58k images) where 26 participants,
wearing diverse outfits, performed attack and standard sce-
narios in the airlock (Figure 1). Full annotation of people
along with evaluation code are also provided. This dataset
is then appropriated for training relatively small approaches
from scratch, or for adapting (e.g. fine tuning) more ad-
vanced methods such as deep networks for people detection.



Feature Kinect Argos Fotonic
Framerate (fps) 30 40 40
Depth camera x 512x424 1160x120| 640x480
Depth range (m) 0.5-45 3.5 0.15-5
Field of view (h-v) | 70° —60° 90° 80° — 64°
RGB camera 1920x 1080 - -
Protection No P65 | IP6S, IP67

Table 1: Sensors features.

3. Data acquisition

In this section we describe the process of data acquisi-
tion. We describe the sensors used, the recording architec-
ture, the considered scenarios, and the challenges faced.

3.1. Sensors and data formats

Three types of sensors have been used for the data ac-
quisition process: (/) Microsoft Kinect for Windows v2,
(2) Bluetechnix Argos3D-P220 and (3) Fotonic G-series.
We will refer to them as Kinect, Argos and Fotonic in the
rest of this paper. The features of the sensors are detailed in
table 1. Thanks to its very good value for money, the Kinect
is commonly used for academic research purposes, but it is
not an adequate choice in industrial applications, due to its
design: lack of robustness to various lighting or low/high
temperatures, no International Protection Marking, and the
robustness of the plastic construction is questionable in the
long term. Moreover, it has been announced that the Kinect
would not be manufactured anymore. For this reason, the
Argos and the Fotonic — which are two industry-oriented
sensors — have been used in addition.

Four kinds of data have been recorded: depth, infrared,
HD color and registered color. The registered image means
that each pixel of the color image is corresponding to a pixel
of the depth sensor. Depth and infrared data are OpenCV
matrices saved as binary files. HD color data (1920 1080)
and color data (512 x 424) are saved as JPEG files. For
Argos and Fotonic sensors, only depth data is recorded. For
Kinect sensors, the four kinds of data have been recorded.

3.2. Recording architecture

A dedicated structure, see Figure 2, was manufactured.
The structure was made adjustable to ease data recordings
and allow different base configurations and heights. On
the top, there are three sections where the sensors can be
screwed to a mounting bracket: a fixed central section and
two sliding sections. To reduce clutter (recording devices,
room furniture, etc.) as well as to limit the ambient infrared
noise (outdoor lighting), cloth was added all around the
recording structure.

Physical settings. The position of each sensor is schema-
tized in Figure 2 representing a top view of the recording
structure. One Argos and one Fotonic are placed in the mid-
dle of the structure, next to each other, facing down. Four
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Figure 2: Schema of the recording structure (left). A: Fixed sec-
tions, B: Graduated telescopic sections, C: Sliding sections, D:
Sliding mounting brackets. Top view of the recording structure
(right). K1-K4: Kinects, A: Argos, F: Fotonic.

Kinects are placed on each corners, with an angle allow-
ing to cover a maximum of the airlock. The physical struc-
ture configuration used is a 200 cm square, with two distinct
heights: normal height (250 cm) and low height (210 cm).
Recording hardware. Four recent laptops (with Intel Core
17-6700HQ and 16GB RAM) were used as recording de-
vices. Both the Argos and the Fotonic sensors are con-
nected to them through Ethernet, while the Kinects are con-
nected through USB3. One recording device has been used
to simultaneously record one Kinect and the Argos, one is
in charge of one Kinect and the Fotonic, and the last two
recording devices are connected to one Kinect each.
Softwares. Several softwares have been specifically de-
veloped to ease the whole process, constituting a complete
acquisition system. The recording configurations (partici-
pants, scenario, efc.) are edited and saved in database with
a Django application. An Angular web application allows
to control (start and stop) the recording of all sensors at
the same time by communicating with the recording de-
vices through sockets. The whole system is running inside
a Docker container, thus facilitating its deployment.

3.3. Scenarios

During the recording process, the participants were in-
structed to perform different behaviors, but following three
scenarios established to build the dataset. The scenarios are:
e Normal: one person enters the room, crosses and exits.
The person can act in a natural way, but he can also adopt a
strange behavior.

e Standard attack: this is the most common attack in air-
lock security. One assailant is trying to force an authorized
person to let him enter the secure zone. In this scenario, a
first person enters the room, then a second person forces the
first one to let him enter as well. Finally both persons enter
the secure zone.

o Tailgating: tailgating is a fairly common airlock secu-
rity attack. Two persons enter, one following the other very
closely to fool the system into detecting only one person.



3.4. Challenges

Several challenges have been encountered, a major one
being the synchronized recording. Indeed, six sensors con-
nected to four different recording devices have to be con-
trolled so the saved frames are synchronized. Even if all
sensors could be controlled to start the recording at the ex-
act same time, they can all have a variable framerate: even
if the framerate is known, for example 40 fps for the Argos,
there can be small variations, mainly due to the load of the
recording device. For this reason, it is not possible to only
rely on frame indexes, but it is also needed to know the ex-
act time when a frame has been recorded. Our solution is
to retrieve the UNIX timestamp when the frame is grabbed,
and store it directly in the frame filename. In order to have
synchronized recording devices clocks, the NTP protocol?
has been used. Due to the variable framerate of the sensors,
the delays introduced by the messaging protocol to control
the start and the end of the recording of each sensor — be-
tween 5 ms to 40 ms — has been considered acceptable as it
introduces an offset of one frame only in the worst case.

Another challenge has been finding an efficient way to
write the frames to disk. At first, writing a single frame
was taking more time than the delay between two consecu-
tive available frames. We came up with a solution based on
an asynchronous queue and a dedicated thread for handling
this problem. This way, we can continue to grab frames
without having to wait until the previous frame has been
written. A second problem was the size of the files. At the
beginning, we were saving depth maps in YAML format,
but it was taking too much space. We ended up saving them
as OpenCV Mat structures in binary files. Regarding the
RGB images, we first save them as Bitmap files, then con-
vert them to JPEG in batch once the recording is finished,
thus reducing the write time.

4. The UNICITY dataset

This section describes the UNICITY dataset that we
release’. Out of the 3,409,137 frames recorded from the
6 cameras, we extracted a relevant part which was fully an-
notated and allows studying people counting and attack de-
tection under different conditions.

4.1. Data

Some statistics of the data we release are provided in ta-
ble 2. In essence, the data are 65 video sequences collected
with the Argos and Fotonic sensors (top view, see Figure 2
for their respective location) under the following conditions:
e Normal scenarios: people enter the airlock, stop in the
middle, swipe their badge, and leave the airlock.

e Attack scenarios: another person enters the airlock, either
to force the first one to let him/her enter, or by tailgating the
first one to fool the system.

3https://help.ubuntu.com/Its/serverguide/NTP.html

# Frames # Sequences # Participants
58,404 65 26

# Heads | # Left Shoulders | # Right Shoulders
41,292 39,687 39,445

Table 2: UNICITY dataset features.
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Figure 3: Synchronized views of Argos (left) and Fotonic (right)
sensors (rotation of 90° due to physical constraints).

4.2. Dataset annotation

We manually annotated all the frames of the UNICITY
dataset with several elements. This process took around
50 hours for the 58k frames of both sensors.

Body landmarks. Figure 3 shows two synchronized Ar-
gos and Fotonic frames in an attack scenario, with the body
landmark annotation: head, right and left shoulders. When
one of the limbs is occluded (i.e. not visible), the annotation
is not present.

Number of people, attack, and visibility labels. In addi-
tion to the location of the three body landmarks, we have
also annotated for each frame the number of people in the
airlock. As a by-product, when two persons are present, the
frame corresponds to an attack.

Given the airlock size and camera field of view, detect-
ing attacks may depend on the visibility of the person(s).
Hence, we have also annotated the degree of visibility for
each person in the airlock using four visibility tags:

e Full: the person is fully visible (landmarks are visible).

e Partial: the person is partially visible and at least one
landmark (head or shoulder) is visible.

o Truncated: alarge portion of the person is visible but not
any landmarks (e.g. lower body).

o Difficult: similar to the truncated label but it only applies
for a small portion of the person (e.g. a leg or a hand).

e Invisible: the person is not visible in the airlock.

These visibility tags allow to measure the performance
of the security system for different levels of difficulty (refer
to section 4.3).

4.3. Task and evaluation protocol

This section describes the evaluation protocol and crite-
ria for the task of detecting attacks in airlocks. Importantly,
note that an evaluation code is released alongside the dataset
for fair comparison with future publications on this dataset.
Also, note that other tasks could be considered for evalu-
ation as well, like the detection of body landmarks, body
orientation estimation, or explicit people counting.
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Figure 4: Distribution of the sum of depth-map pixels (i.e. vol-
ume inside airlock). A simple threshold on this value can discrim-
inate between attack (i.e. more that one person), and non-attack
(i.e. less than one).

Evaluation difficulty levels. For evaluation, we have pro-
posed four different levels of difficulty according to the de-
gree of visibility of people in the airlock. Note that it is a
common practice [4, 12] to perform the evaluation on dif-
ferent subsets of the dataset, and be able to analyse how the
methods perform on “easy” and “hard” cases.

Specifically, the level 1 only has frames with full visi-
bility tag. Level 2 includes level 1 and frames with partial
visibility tag. Likewise, level 3 includes level 2 and frames
with truncated visibility tag. Finally, level 4 has all frames
in the dataset. All levels also have frames with invisible
tag which act as negative samples during evaluation.
Performance criteria. Standard ones were used. As we
are interested in attack detection, a true positive (TP) is cor-
rectly detecting an attack (i.e. more than one person in the
airlock), a true negative (TN) is correctly detecting one per-
son or an empty airlock. We note FP for false positives,
and FN for false negatives. Using these values, we compute
four metrics for evaluation and comparison: Recall (R), Pre-
cision (P), F-measure (F) and Accuracy (A)*.

5. Baseline Methods

This section presents two baseline methods to detect at-
tacks in an airlock of a given size. The first is a simple
method based on the estimated volume of the person(s) in-
side the airlock. The second method uses a deep convolu-
tional network to detect and count people through the local-
ization of body landmarks [11].

Volume-based Method. The depth sensors provide a depth
map: a pixel value represents how far (in millimeters) the
object is from the sensor. If we call B the airlock back-
ground (i.e. when the airlock is empty), and I a depth map,
then B — I represents how high the objects are from the
ground, and ) (B — I), the sum of all the depth map pixels,
is proportional to the “volume” of the object in the airlock.

Figure 4 depicts the histograms of the “volume” inside

the airlock across the frames of a given sequence. The left

‘R=TP/(TP+ FN) P=TP/(TP+ FP)
F =2xRxP/(R+P) A= (TP+TN)/(TN+TP+FN+FP)

figure corresponds to a normal scenario, with only one per-
son in the airlock, and the right one to an attack (i.e. two
persons in the airlock). The red histograms correspond to
the case where the airlock is empty; the green ones to the
case where there is one person, and the blue one to the case
where there are two persons inside. Obviously, the volume
inside the airlock is larger with one person inside than when
empty; and larger with two than with one.

Based on this observation, we introduce a simple attack
detector f (i.e. an alarm is raised when more than one per-
son are in the airlock) with the following rule:

{1 if SI(B—1)>7

0 otherwise,

(eY)

where 7 is a threshold selected to meet a specific precision
or recall score.

Network-based Method. As second baseline, we use the
network proposed in [11] for people detection. This net-
work, named WatchNet, comprises a feature extraction sub-
network and a series of prediction stages that progressively
refine the localization of human body landmarks in the im-
age. Particularly, the network predicts the head, left and
right shoulders as body landmarks and estimates from them
the body centers to count the number of people inside the
airlock. For further details about the network architecture
and its training procedure using both synthetic and real
depth data, please refer to [11].

6. Experiments

Settings. To evaluate and compute both baseline methods,
the UNICITY dataset, consisting of 65 recorded sequences,
was split in two parts: one for training, and the other for
testing. The training set has 33 recordings while the test
set has 32 recordings. The split was done such that a given
participant does not appear in both training and test sets.
This was done to prevent the algorithms to overfit on some
given shape, corpulence, or height.

The parameters of both methods were computed on the
training set: the threshold 7 for the volume-based method
and the network weights for WatchNet. The network was
trained for 50k iterations using synthetic data and for 5k it-
erations with real data (i.e. training set) for fine tuning [11].
Detection Results. Figure 5 shows the detection perfor-
mance (via ROC curves) of the volume-based method on
the UNICITY test set and for the Argos data. Solid lines
are for the scenarios with low height whereas dash lines are
for the normal height. We show one curve for each level of
difficulty. We see that this method works very well on low
height, and perfectly in the case of level 1, and there is still
room for improvement for the normal height.

The discrepancy between the two can be accounted for
by the fact that the recording structure (Figure 2) was moved
from low to height several times, and that it has not been put
back in the exact same position between recordings. The
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Figure 5: Detection performance of the volume-based baseline

method in terms of the level of difficulty and the airlock height.

Difficulty| R P F A R P F A
Volume-based Network-based

Level1 | 097 0.55 0.70 0.90| 0.99 1.00 1.00 1.00
Level2 | 096 0.74 0.84 0.91| 0.96 1.00 0.98 0.99
Level 3 | 0.88 0.79 0.83 091| 0.82 1.00 090 0.95
Level4 | 0.72 0.81 0.76 0.87| 0.63 1.00 0.77 0.89
Average | 0.88 0.72 0.78 0.90| 0.85 1.00 091 0.96

Table 3: Detection rates for both baseline methods.

R P F A R P F A
Without UNICITY With UNICITY
Average| 0.72 098 0.82 092| 0.85 1.00 091 0.96

Table 4: Detection rates for the network-based method according
to the use of the UNICITY dataset.

background image (empty background) may thus be differ-
ent. Moreover, this method does not take into account the
corpulence of people and share the same threshold across
all recordings of the same height.

Table 3 shows quantitative results of the two baseline
methods for the different levels of difficulty and for the Ar-
gos data’. These rates are computed for all scenarios and
airlock heights using the evaluation code. We see the su-
perior performance of the network-based method since it
is a more stringent method that focuses on learning and
detecting body-part patterns instead of performing simple
foreground/background segmentation. As a consequence,
WatchNet is a more robust detector with much lower num-
bers of false positives (see the precision rates).

Finally, table 4 reports the average detection rates of
WatchNet according to whether the UNICITY dataset is
used to train the network or not. Left side of the table shows
the scores without using the dataset. The network is trained
using artificial data only, refer to [11]. Right side shows
the rates after fine tuning the network with the UNICITY
dataset (real data). Note that the use of the proposed dataset
improves the detection rates of the network, showing that it
allows to train and adapt complex machine learning models

SResults for the Fotonic data will be available at the dataset website.

for video surveillance applications.

7. Conclusion

The UNICITY dataset! is a collection of depth map

images taken from industry-oriented cameras, Bluetechnix
Argos3D-P220 and Fotonic G-series, that is introduced to
push the state-of-the-art further for the task of detecting
people in security airlocks. An evaluation code is provided
alongside the data for fair comparison with all future meth-
ods benchmarked on this dataset.
Acknowledgments: The work was supported by Innosu-
isse, the Swiss innovation agency, through the UNICITY
(3D scene understanding through machine learning to se-
cure entrance zones) project.
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