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Abstract—Humans naturally vary their body posture in order
to quickly move or apply forces along specific directions. Such
posture changes are strongly linked to the specific requirements
of the task at hand, and therefore play a relevant role on task
performance. Posture variation also has a significant role in
robot manipulation (e.g., pushing/pulling objects, reaching tasks),
where manipulability arises as a useful criterion to analyze and
control the robot dexterity as a function of its joint configuration.
In this context, this paper introduces a novel framework for
transferring manipulability ellipsoids to robots. This framework
is first built on a probabilistic learning model that allows for
the geometry of the symmetric positive definite manifold to
encode and retrieve appropriate manipulability ellipsoids. This
geometry-aware approach is later exploited for designing a ma-
nipulability tracking controller inspired by the classical inverse
kinematics problem in robotics. Experiment in simulation with
planar robot arms validate the feasibility of our manipulability
transfer framework.

I. INTRODUCTION

Body posture can greatly influence human performance
when carrying out manipulation tasks. Adopting an appropriate
pose helps us regulate our motion and strengthen capabilities
according to the task requirements. This effect is also observed
in robotic manipulation where the robot joint configuration
affects not only the ability to move freely in all directions
in the workspace, but also the capability to generate forces
along different axes. In this context, manipulability ellipsoids
arise as a useful tool to analyze, control and design the robot
dexterity as a function of the articulatory joints configuration.

Velocity and force manipulability ellipsoids introduced
in [12] are kinetostatic performance measures of robotic
platforms. They indicate the preferred directions in which
force or velocity control commands may be performed at a
given joint configuration. More specifically, the velocity ma-
nipulability ellipsoid describes the characteristics of feasible
motion in Cartesian space corresponding to all the unit norm
joint velocities. The major axis of the velocity manipulability
ellipsoid Y% = (JJ")~! indicates the direction in which the
greater velocity can be generated, which is also the direction
in which the robot is more sensitive to perturbations because
of the duality of velocity and force (see [2] for details).

Any manipulability ellipsoid Y belongs to the set of
D x D symmetric positive definite (SPD) matrices S, .
Consequently, in order to properly work with manipulability
ellipsoids, we must consider that the set Sf . is not a vector
space but forms a Riemannian manifold [8]. Intuitively, a

Riemannian manifold M is a mathematical space for which
each point locally resembles a Euclidean space. For each
point & € M, there exists a tangent space 7,M equipped
with a positive definite inner product. In the case of the SPD
manifold, the tangent space at any point ¥ € S f . is identified
by the space of symmetric matrices SymD . The space of SPD
matrices can be represented as the interior of a convex cone
embedded in its tangent space Sym”. Tangent spaces allow us
to manipulate data using classical Euclidean operations. To do
so, we need mappings back and forth between 7, M and M,
which are known as exponential and logarithm maps (Exps;,
Logy,), illustrated in Fig. [T} right.

Moreover, as manipulability ellipsoids are represented by
matrices, tensor representation is needed for different mathe-
matical operations, such as the computation of covariance for a
set of matrices. Tensors are generalization of matrices to arrays
of higher dimensions [7]], where vectors and matrices may
respectively be seen as 1st and 2nd-order tensors. These permit
to represent and exploit a priori data structure of multidimen-
sional arrays. In this paper, such representation is mainly used
to find the first-order differential relationship between a vector
and the robot manipulability ellipsoid (3rd-order tensor) or to
compute the covariance of a set of manipulability ellipsoids
(4th-order tensor).

We introduce the novel idea that manipulability-based pos-
ture variation for task compatibility can be addressed from
a robot learning from demonstration perspective. Specifically,
we cast this problem as a manipulability transfer between a
teacher and a learner. The former demonstrates how to perform
a task with a desired time-varying manipulability profile, while
the latter reproduces the task by exploiting its own redundant
kinematic structure so that its manipulability ellipsoid matches
the demonstration. Unlike classical learning frameworks that
encode reference position, velocity and force trajectories,
our approach offers the possibility of transferring posture-
dependent task requirements such as preferred directions for
motion and force exertion in operational space, which are
encapsulated in the demonstrated manipulability ellipsoids.

This paper couples the two main challenges addressed
in our previous publications, namely (i) encoding and re-
trieving manipulability ellipsoids [10], and (ii) tracking of
robot manipulability [6]. To address the former problem, we
propose a tensor-based formulation of Gaussian mixture model
(GMM) and Gaussian mixture regression (GMR) that take into



Fig. 1: Left: Examples of applications where the manipulability
ellipsoid (in blue) is closely linked to the dexterity of the executed
movement. Right: Representation of the SPD manifold S7 , embed-
ded in its tangent space Sym>. One point on the graph corresponds to

B

a matrix (g ~ S Symz. Points inside the cone, such as 3 and A,

belong to the manifold. L lies on the tangent space of 3 such that
L = Logs (A). The shortest path between 3 and A is the geodesic
represented as a purple curve in the graph. Note that it does not
correspond to the Euclidean path, depicted by the yellow line.

account that manipulability ellipsoids lie on the manifold of
SPD matrices (see Section [[). The latter challenge is solved
through a manipulability tracking formulation where a first-
order differential relationship between the robot manipulability
ellipsoid and the robot joints is established. This approach
is inspired by the classical inverse kinematics problem in
robotics and exploits tensor-based representations and differ-
ential geometry in order to take into account the geometric
properties of the manipulability ellipsoids (see Section [III).
We combine and evaluate the two aforementioned solutions in
a simulated tracking task where a planar robot is required to
track a Cartesian position trajectory and a time-varying desired
manipulability profile (see Section [[V]).

II. LEARNING MANIPULABILITY ELLIPSOIDS

The first open problem in manipulability transfer is to
appropriately encode and retrieve manipulability ellipsoids. In
order to describe how we tackle this problem, we summarize
the mathematical formulation of a GMM that encodes a
distribution of manipulability ellipsoids over the manifold of
SPD matrices. After, we describe how desired manipulability
ellipsoids can be retrieved via GMR acting on the SPD
manifold. The complete formulation can be found in [10]].

Similarly to multivariate distribution (see [13, [11, [3]),
a tensor-variate distribution maximizing the entropy in the
tangent space is approximated by

1 ¢~ 3Loex(M) S~ Logx (M)
(2m)P|S]|

Nm (XM, 8) =

(1)
where X € Tar M, M € M is the origin in the tangent space
and 8§ € Tps M is the covariance tensor.

Similarly to the Euclidean case, a GMM on the SPD
manifold is defined by

K
p(X) = mNm(X| My, Sy), @)
k=1

with K being the number of components of the model, and 7,
representing the priors such that ), m, = 1. The parameters

of the GMM on the manifold are estimated by Expectation-
Maximization (EM) algorithm as described in [5} [10].

GMR computes the conditional distribution p(Xoo|Xzz)
of the joint distribution p(X'), where the sub-indices Z and O
denote the sets of dimensions that span the input and output
variables. Similarly to GMR in Euclidean space [9] and in
manifolds where data are represented by vectors [13], GMR
on SPD manifold approximates the conditional distribution by
a single Gaussian

P(Xoo|Xzz) ~ N(M003822)7 3)
where the expected output mean M, is computed iteratively
until convergence in its tangent space and the expected output
covariance &, is then computed in the tangent space of the

QO
mean (see [5, [10] for details).

III. GEOMETRY-AWARE TRACKING OF MANIPULABILITY
ELLIPSOIDS

Several manipulation tasks in robotics may demand the
robot to track a desired trajectory with a specific velocity
profile, or apply forces along different task axes. These
requirements are more easily achievable if the robot finds
an appropriate posture that permits to apply the required
velocity or force control commands. This problem can be
viewed as matching a set of desired manipulability ellipsoids
that are compatible with the task requirements, so that the
robot performs successfully. In this section, we introduce an
approach that addresses this problem. The detailed formulation
can be found in [6]].

Given a desired profile of manipulability ellipsoids, the
goal of the robot is to vary its posture to match the desired
manipulability, either as its main task or as a secondary
objective. We here propose a formulation inspired by the
classical inverse kinematics problem in robotics, which permits
to compute the desired robot joint values that lead the robot
to match a desired manipulability ellipsoid.

First, let us write the manipulability ellipsoid as a function
of time as Y (t) = f(J(q(t))), for which we can compute
the first-order time derivative by applying the chain rule as

follows
Ox(t) _ 9f(J(9) oq(t)"
ot Oq 3ot

where J € ROX6X7 js the manipulability Jacobian and
represents the linear sensitivity of the changes in the robot

=J(q@) %3¢, &

manipulability ellipsoid T = agft) to the joint velocity
= a%(tt), and x, is the n-mode product. Note that the

computation of the manipulability Jacobian depends on the
type of manipulability ellipsoid that is used [6].

The standard robot control approach to track a desired end-
effector trajectory is to compute joint velocity commands using
the inverse kinematics formulation derived from & = J(q)qg.
We here use a similar approach to compute the joint velocities
q to track a desired manipulability profile. More specifically,
by minimizing the L-2 norm of the residuals ming | X — J x3
d' ||, we can compute the required joint velocities to track a



profile of desired manipulability ellipsoids as its main task
with ¢ = (7)) vee(T).

The formulation allows us to define a controller aimed at
tracking a reference manipulability ellipsoid as main task,
similarly as the classical velocity-based control that tracks a
desired task-space velocity. Alternatively, for the case in which
the main task of the robot is to follow reference trajectories
such as Cartesian positions or force profiles, the tracking of
a profile of manipulability ellipsoids is assigned a secondary
role. Hence, the robot task objectives are to track the reference
trajectories while exploiting its redundancy to maximize the
match between the current manipulability ellipsoid and the de-
sired one. In this situation, a manipulability-based redundancy
resolution is carried out by computing a null-space velocity
computed from the manipulability tracking controller defined
above. Therefore, for the case of tracking a desired Cartesian
position &; as main task, the full control law is given by

G = I Ky (#—a,)+(I-J 1 J) (T ) Karvee(Logy, (T1)).

®)
where Ky is a gain matrix. Note that the proposed formu-
lation outperforms previous non-geometry-aware or gradient-
based approaches and provides a faster convergence rate [6].

IV. EXPERIMENTS

For the demonstration phase, a 3-DOF teacher robot follows
a C-shape trajectory four times, from which we extracted both
the end-effector position x; and robot manipulability ellipsoid
Y:(q), at each time step ¢. The collected time-aligned data
was split into two training datasets of time-driven trajectories,
namely Cartesian position and manipulability. We trained a
classical GMM over the time-driven Cartesian trajectories and
a geometry-aware GMM over the time-driven manipulability
ellipsoids, using models with five components, i.e. K =5 (the
number was selected by the experimenter).

During the reproduction phase, a 5-DOF student robot
executed the time-driven task by following a desired Cartesian
trajectory &; computed from a classical GMR as &; ~ P(x |t).
As secondary task, the robot was also required to vary its joint
configuration for matching desired manipulability ellipsoids
Y, ~ P(Y|t), estimated by GMR over the SPD manifold.
The robot implemented the geometry-aware controller defined
by (B). The gain Kps was defined either as a scalar value or
as a diagonal matrix composed of the diagonal components of
a grgcision tensor, namely the inverse of the covariance tensor
S, retrieved by GMR. Our goal here was to exploit the
learned variability information of the task to demand the robot
a high precision tracking where low variability is observed,
and vice-versa.

Figure [2a shows the four demonstrations carried out by
the 3-DOF robot, where both the Cartesian trajectory and
manipulability ellipsoids are displayed. Note that the recorded
manipulability ellipsoids slightly change across demonstra-
tions as a side effect of the variation observed in both the initial
end-effector position and the generated trajectory. Figure [2b]
displays the demonstrated ellipsoids (in gray) along with the

Fig. 2: (a) Four demonstrations of a 3-DOF planar robot tracking a
C-shape trajectory. The path followed by the robot end-effector (light
gray solid lines) and the manipulability ellipsoids at different time
steps are represented. (b) Demonstrated manipulability ellipsoids(in
gray) and centers M, of the 5-states GMM in the SPD manifold. (¢),
(d) Reproductions of a C-shape tracking task (Cartesian trajectory in
black solid line, desired and reproduced manipulability ellipsoids in
green and red, respectively).

center M), of the five components of the GMM encoding
XY, These are centered at the Cartesian position recovered
by GMR for the time steps represented in the GMM encoding
X Y. A successful reproduction of the tracking task using our
manipulability-based redundancy resolution controller with a
scalar gain and a variability-based matrix gain are shown in
Figures [2c|and 2d] respectively. Note that the variability-based
matrix gain changes the required precision tracking, where
higher precision is required at both the beginning and the end
of the task. These results validate that the proposed approach
allows the robot to learn and reproduce reference trajectories,
while fulfilling additional task requirements encapsulated in a
profile of desired manipulability ellipsoids.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach to learn and track
robot manipulability ellipsoids. Our work exploits tensor rep-
resentation and Riemannian manifolds to obtain a geometry-
aware learning framework and tracking controller for robot
manipulability. The reported results show the effectiveness of
the proposed approach for transferring manipulability ellip-
soids between robots that differ in their kinematic structure. As
future work, we will explore the use of our formulation in more
complex tasks involving full 6D manipulability ellipsoids,
and scenarios where a humanoid robot is required to track
a manipulability ellipsoid defined at either its center of mass
or zero-moment point [[1, 4].
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